diff --git a/student.ipynb b/student.ipynb
index d3bb34af..725d6bcb 100644
--- a/student.ipynb
+++ b/student.ipynb
@@ -4,23 +4,6986 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "## Final Project Submission\n",
+ "### Group 7 Project : Analyzing King County House Sales Data. \n",
"\n",
- "Please fill out:\n",
- "* Student name: \n",
- "* Student pace: self paced / part time / full time\n",
- "* Scheduled project review date/time: \n",
- "* Instructor name: \n",
- "* Blog post URL:\n"
+ "#### Students:\n",
+ "\n",
+ "- **Jeremiah Waiguru**\n",
+ "\n",
+ "- **Olive Muloma**\n",
+ "\n",
+ "- **Troye Gilbert**\n",
+ "\n",
+ "- **Josephine Maro**\n",
+ "\n",
+ " Student pace: FULL TIME HYBRID\n",
+ " Scheduled project review date/time: N/A\n",
+ " Instructor name: MARYANN MWIKALI\n",
+ " Blog post URL: N/A\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Introduction\n",
+ "The aim of this project is to analyze the King County House Sales dataset, which comprises data from house sales in King County, spanning the years 2014 to 2015. This dataset provides a comprehensive view of various factors influencing house prices in the region, including location, size, condition, and other relevant attributes. By exploring and analyzing this dataset, we seek to gain insights into the factors that drive house prices in King County and to build predictive models to estimate house prices accurately. \n",
+ "\n",
+ "We use an iterative process to prepare and model our data while utilizing exploratory data analysis to better understand our dataset. Next, we try to iterate across models using various statistical techniques in order to identify the model with the best statistical R-Squared Value, RMSE, and differential values. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Objectives:\n",
+ "\n",
+ "- Explore and understand the structure and content of the King County House Sales dataset.\n",
+ "- Perform descriptive analysis to gain insights into key features, trends, and patterns in the data.\n",
+ "- Identify factors that significantly influence house prices in King County.\n",
+ "- Build predictive models to estimate house prices based on relevant features and attributes.\n",
+ "- Evaluate and validate the performance of the predictive models using appropriate metrics.\n",
+ "- Provide actionable insights and recommendations based on the analysis to stakeholders."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Methodology \n",
+ "1. Business Understanding\n",
+ "2. Data Understanding\n",
+ "3. Exploratory Data Analysis\n",
+ "4. Pre-processing\n",
+ "5. Modelling\n",
+ "6. Results Interpretation\n",
+ "7. Recommendations"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Data\n",
+ "We have been provided with a dataset with house sale prices in King County, Washington State, USA from 2014 to 2015 to use for this project.\n",
+ "\n",
+ "A dataset has been provided and can be found in the kc_house_data.csv file in this repository.\n",
+ "\n",
+ "The column names and descriptions as provided can be found in the column_names.md file in this repository.\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# import the necessary libraries\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import matplotlib as plt\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "import statsmodels.formula.api as sfm\n",
+ "import statsmodels.api as sm\n",
+ "import scipy.stats as stats\n",
+ "%matplotlib inline\n",
+ "\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### loading dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ],
+ "text/plain": [
+ " price bedrooms bathrooms sqft_living sqft_lot \\\n",
+ "count 2.159700e+04 21597.000000 21597.000000 21597.000000 2.159700e+04 \n",
+ "mean 5.402966e+05 3.373200 2.115826 2080.321850 1.509941e+04 \n",
+ "std 3.673681e+05 0.926299 0.768984 918.106125 4.141264e+04 \n",
+ "min 7.800000e+04 1.000000 0.500000 370.000000 5.200000e+02 \n",
+ "25% 3.220000e+05 3.000000 1.750000 1430.000000 5.040000e+03 \n",
+ "50% 4.500000e+05 3.000000 2.250000 1910.000000 7.618000e+03 \n",
+ "75% 6.450000e+05 4.000000 2.500000 2550.000000 1.068500e+04 \n",
+ "max 7.700000e+06 33.000000 8.000000 13540.000000 1.651359e+06 \n",
+ "\n",
+ " floors waterfront view condition grade \\\n",
+ "count 21597.000000 21597.000000 21597.000000 21597.000000 21597.000000 \n",
+ "mean 1.494096 0.006760 0.246932 2.596703 7.657915 \n",
+ "std 0.539683 0.081944 0.815213 0.669407 1.173200 \n",
+ "min 1.000000 0.000000 0.000000 1.000000 3.000000 \n",
+ "25% 1.000000 0.000000 0.000000 2.000000 7.000000 \n",
+ "50% 1.500000 0.000000 0.000000 3.000000 7.000000 \n",
+ "75% 2.000000 0.000000 0.000000 3.000000 8.000000 \n",
+ "max 3.500000 1.000000 4.000000 5.000000 13.000000 \n",
+ "\n",
+ " ... sqft_basement yr_built yr_renovated zipcode \\\n",
+ "count ... 21143.000000 21597.000000 21597.000000 21597.000000 \n",
+ "mean ... 291.851724 1970.999676 0.034449 98077.951845 \n",
+ "std ... 442.498337 29.375234 0.182384 53.513072 \n",
+ "min ... 0.000000 1900.000000 0.000000 98001.000000 \n",
+ "25% ... 0.000000 1951.000000 0.000000 98033.000000 \n",
+ "50% ... 0.000000 1975.000000 0.000000 98065.000000 \n",
+ "75% ... 560.000000 1997.000000 0.000000 98118.000000 \n",
+ "max ... 4820.000000 2015.000000 1.000000 98199.000000 \n",
+ "\n",
+ " lat long sqft_living15 sqft_lot15 \\\n",
+ "count 21597.000000 21597.000000 21597.000000 21597.000000 \n",
+ "mean 47.560093 -122.213982 1986.620318 12758.283512 \n",
+ "std 0.138552 0.140724 685.230472 27274.441950 \n",
+ "min 47.155900 -122.519000 399.000000 651.000000 \n",
+ "25% 47.471100 -122.328000 1490.000000 5100.000000 \n",
+ "50% 47.571800 -122.231000 1840.000000 7620.000000 \n",
+ "75% 47.678000 -122.125000 2360.000000 10083.000000 \n",
+ "max 47.777600 -121.315000 6210.000000 871200.000000 \n",
+ "\n",
+ " month_of_date year_of_date \n",
+ "count 21597.000000 21597.000000 \n",
+ "mean 6.573969 2014.322962 \n",
+ "std 3.115061 0.467619 \n",
+ "min 1.000000 2014.000000 \n",
+ "25% 4.000000 2014.000000 \n",
+ "50% 6.000000 2014.000000 \n",
+ "75% 9.000000 2015.000000 \n",
+ "max 12.000000 2015.000000 \n",
+ "\n",
+ "[8 rows x 21 columns]"
+ ]
+ },
+ "execution_count": 40,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### MODELLING"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "***1. Linear Regression model***\n",
+ "\n",
+ "We will pick **`sqft_living` - Square footage of living space in the home** to be used to create our linear regression model because it has the most correlation with the price and it has the most linear scatter plor hence a good candidate."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mean Squared Error: 65977373783.62\n",
+ "R-squared Score: 0.49\n",
+ "Root Mean Squared Error (RMSE): 256860.61158460553\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.linear_model import LinearRegression\n",
+ "from sklearn.metrics import mean_squared_error, r2_score\n",
+ "\n",
+ "X = df[['sqft_living']]\n",
+ "y = df['price']\n",
+ "\n",
+ "# Splitting the dataset into training and testing sets\n",
+ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
+ "\n",
+ "# Creating the linear regression model\n",
+ "model = LinearRegression()\n",
+ "\n",
+ "# Training the model\n",
+ "model.fit(X_train, y_train)\n",
+ "\n",
+ "# Making predictions\n",
+ "y_pred = model.predict(X_test)\n",
+ "\n",
+ "# Evaluating the model\n",
+ "mse = mean_squared_error(y_test, y_pred)\n",
+ "r2 = r2_score(y_test, y_pred)\n",
+ "rmse = np.sqrt(mse)\n",
+ "\n",
+ "print(f'Mean Squared Error: {mse:.2f}')\n",
+ "print(f'R-squared Score: {r2:.2f}')\n",
+ "print(\"Root Mean Squared Error (RMSE):\", rmse)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " OLS Regression Results \n",
+ "==============================================================================\n",
+ "Dep. Variable: price R-squared: 0.492\n",
+ "Model: OLS Adj. R-squared: 0.492\n",
+ "Method: Least Squares F-statistic: 1.676e+04\n",
+ "Date: Mon, 29 Apr 2024 Prob (F-statistic): 0.00\n",
+ "Time: 09:56:25 Log-Likelihood: -2.4012e+05\n",
+ "No. Observations: 17277 AIC: 4.802e+05\n",
+ "Df Residuals: 17275 BIC: 4.803e+05\n",
+ "Df Model: 1 \n",
+ "Covariance Type: nonrobust \n",
+ "===============================================================================\n",
+ " coef std err t P>|t| [0.025 0.975]\n",
+ "-------------------------------------------------------------------------------\n",
+ "const -4.645e+04 4961.972 -9.361 0.000 -5.62e+04 -3.67e+04\n",
+ "sqft_living 282.2015 2.180 129.476 0.000 277.929 286.474\n",
+ "==============================================================================\n",
+ "Omnibus: 11495.535 Durbin-Watson: 1.996\n",
+ "Prob(Omnibus): 0.000 Jarque-Bera (JB): 371098.388\n",
+ "Skew: 2.737 Prob(JB): 0.00\n",
+ "Kurtosis: 25.035 Cond. No. 5.65e+03\n",
+ "==============================================================================\n",
+ "\n",
+ "Notes:\n",
+ "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
+ "[2] The condition number is large, 5.65e+03. This might indicate that there are\n",
+ "strong multicollinearity or other numerical problems.\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "# Add a constant term to the predictor variable for the intercept\n",
+ "X_train_with_const = sm.add_constant(X_train)\n",
+ "\n",
+ "# Fit the linear regression model\n",
+ "model = sm.OLS(y_train, X_train_with_const)\n",
+ "results = model.fit()\n",
+ "\n",
+ "# Display the summary table of regression results\n",
+ "print(results.summary())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This model has an RMSE of 256860.61, indicating significant variability in the model's predictions. The R-squared score is 0.49, indicating that 49% of the variance in house prices can be explained by the square footage alone. While an R-squared value of 0.49 indicates that the model explains a moderate amount of the variability in house prices, it also suggests that there is still a substantial amount of variability that remains unexplained by the model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0wAAAIhCAYAAAB9gDqHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3xcdZ0//te5zMyZW2Zyb5qmTZteoC2lQKGUQlvk0kVgUVdUQIHi/lYXdlXQ1VURxQvIellZV1FXKbCoKF8RF1HuUi5SBEoLLYU2Lb3lNrlN5j7n+vvjZGYyzUxuTTJJ83o+HnloJmdmPpkZ0vM+78tHsCzLAhEREREREQ0ilnoBREREREREUxUDJiIiIiIioiIYMBERERERERXBgImIiIiIiKgIBkxERERERERFMGAiIiIiIiIqggETERERERFREQyYiIiIiIiIimDAREREREREVAQDJiIad/fccw8EQcCrr75a9JgDBw5AEATcc889k7ewcfTss89CEITslyRJqK6uxqWXXjrk7328ybzXBw4cKPVSsga+L4IgIBAIYMOGDXj00UdHdP/Me/vss89O7EInWXd3N774xS9i6dKl8Hq9CAQCOOGEE/Cxj30Mb7zxxpges6enBx/5yEdQU1MDQRDwvve9D2+99Ra+9rWvjfgzMdF/L772ta9BEIRR34+IKEMu9QKIaGaqq6vDSy+9hKamplIv5ZjcdtttOPfcc6FpGl5//XXceuutWL9+PbZv345FixaVenkT7uKLL8ZLL72Eurq6Ui8lzwc/+EF89rOfhWma2L9/P775zW/i0ksvxSOPPIKLL754yPueeuqpeOmll7B06dJJWu3Ei8ViOPPMMxGLxfBv//ZvOPnkk5FMJrFnzx489NBD2L59O1asWDHqx/3GN76B3//+97j77rvR1NSEiooKvPHGG7j11luxYcMGNDY2jsv6j+XvxT/+4z/i7/7u78ZlHUQ0MzFgIqKScLlcOPPMM0u9jCElEgl4PJ4hj1m0aFH29zjnnHMQDAZxzTXX4P7778ett946GcvMGsl6x1t1dTWqq6sn9TlHora2Nvu+nHXWWVizZg0WLlyIH/zgB0UDJk3TIAgCysrKpvxnc7QefPBBNDc345lnnsG5556b97ObbroJpmmO6XF37tyJpqYmXHXVVdnbxpqtGsqx/L2YM2cO5syZM84rIqKZhCV5RFQShUpsMqUzu3btwhVXXIFAIIDa2lpcd9116Ovry7u/ZVn48Y9/jJUrV8LtdqO8vBwf/OAHsX///rzjnnzySVx22WWYM2cOFEXBwoUL8YlPfAJdXV15x2Wee9u2bfjgBz+I8vLyMV3NXrVqFQCgo6Mj7/a9e/fiyiuvRE1NDVwuF0488UT86Ec/GnT/Xbt24cILL4TH40F1dTVuuOEGPProo4NKxDZs2IDly5fjueeew1lnnQWPx4PrrrsOABCJRPC5z30O8+fPh9PpRH19PT7zmc8gHo/nPdeDDz6I1atXIxAIwOPxYMGCBdnHAADTNPHNb34TS5YsgdvtRjAYxIoVK3DnnXdmjylWknf33Xfj5JNPhqIoqKiowPvf/37s3r0775hrr70WPp8Pzc3NeO973wufz4eGhgZ89rOfRTqdHvmLPgJNTU2orq7GwYMHAeTK7v73f/8Xn/3sZ1FfXw+Xy4Xm5uaiJXkvv/wyLr30UlRWVkJRFDQ1NeEzn/lM3jEjfZ+Pdsopp+Ccc84ZdLthGKivr8cHPvCB7G133XUXTj75ZPh8Pvj9fpxwwgn40pe+NOTjd3d3A0DRTKAo5p8OPProo1i5ciVcLhfmz5+P7373u3mlbZn/fp966ins3r07W/54zz334PLLLwcAnHvuuXm3H4uj/148/PDDEAQBTz/99KBj77rrLgiCkA3cCpXkNTY24pJLLsFjjz2GU089FW63GyeccALuvvvuQY/3wgsvYM2aNVAUBfX19fjKV76Cn//851OuFJWIJg4DJiKacv7hH/4Bixcvxu9+9zv8+7//O371q1/hxhtvzDvmE5/4BD7zmc/g/PPPx8MPP4wf//jH2LVrF84666y8YGXfvn1Ys2YN7rrrLjzxxBO45ZZb8PLLL+Pss8+GpmmDnvsDH/gAFi5ciAcffBA/+clPRr32d999FwCwePHi7G1vvfUWTj/9dOzcuRPf+9738Mc//hEXX3wxPvWpT+Vlodra2rB+/Xq88847uOuuu3DfffchGo3iX/7lXwo+V1tbGz760Y/iyiuvxJ/+9Cdcf/31SCQSWL9+Pe6991586lOfwp///Gd84QtfwD333IO///u/h2VZAICXXnoJH/7wh7FgwQI88MADePTRR3HLLbdA1/Xs4//Hf/wHvva1r+GKK67Ao48+it/85jf4+Mc/jnA4PORrcPvtt+PjH/84li1bhoceegh33nkn3njjDaxZswZ79+7NO1bTNPz93/89zjvvPPzhD3/Addddh//8z//EHXfckXfctddee0wnqL29veju7h6UDfviF7+IQ4cO4Sc/+QkeeeQR1NTUFLz/448/jnPOOQeHDh3C97//ffz5z3/GzTffnPdZG+n7XMimTZvwwgsvDHp9nnjiCbS2tmLTpk0AgAceeADXX3891q9fj9///vd4+OGHceONNw4Kho+2Zs0aAMDVV1+Nhx9+OBtAFfL000/jsssug9/vxwMPPIDvfOc7+O1vf4vNmzdnj8mUyJ1yyilYsGABXnrpJbz00ks499xzcdtttwEAfvSjH2VvH64McrQuueQS1NTU5K0p45577sGpp546bInhjh078NnPfhY33ngj/vCHP2DFihX4+Mc/jueeey57zBtvvIELLrgAiUQC9957L37yk59g27Zt+Na3vjWuvw8RTXEWEdE427x5swXAeuWVV4oe8+6771oArM2bN2dv++pXv2oBsP7jP/4j79jrr7/eUhTFMk3TsizLeumllywA1ve+97284w4fPmy53W7r85//fMHnNE3T0jTNOnjwoAXA+sMf/jDouW+55ZYR/Y5/+ctfLADWb37zG0vTNCuRSFgvvviitWTJEmvp0qVWb29v9tiNGzdac+bMsfr6+vIe41/+5V8sRVGsnp4ey7Is69/+7d8sQRCsXbt25R23ceNGC4D1l7/8JXvb+vXrLQDW008/nXfs7bffbomiOOi1/3//7/9ZAKw//elPlmVZ1ne/+10LgBUOh4v+jpdccom1cuXKIV+HzHv97rvvWpZlWb29vZbb7bbe+9735h136NAhy+VyWVdeeWX2tmuuucYCYP32t7/NO/a9732vtWTJkrzbrrvuOkuSJOvAgQNDrseyLAuAdf3111uaplmqqlq7d++2LrroIguA9aMf/ciyrNz7t27dukH3z/xs4Ovd1NRkNTU1WclksujzjvR9LqSrq8tyOp3Wl770pbzbP/ShD1m1tbWWpmnZxwoGg8O+BoV8/etft5xOpwXAAmDNnz/f+uQnP2nt2LEj77jVq1dbs2fPzvtdI5GIVVFRYR192rB+/Xpr2bJlebc9+OCDg16/oYz178VNN91kud3uvM/wW2+9ZQGwfvjDH2Zvy/y3PdC8efMsRVGsgwcPZm9LJpNWRUWF9YlPfCJ72+WXX255vV6rs7Mze5thGNbSpUvzPvdEdHw7bjJMzz33HC699FLMnj0bgiDg4YcfHvVjWJaF7373u1i8eDFcLhcaGhqyV8qIaPL8/d//fd73K1asQCqVQigUAgD88Y9/hCAI+OhHPwpd17Nfs2bNwsknn5xXShUKhfDJT34SDQ0NkGUZDocD8+bNA4BBJWKAnd0ajQ9/+MNwOBzweDxYu3YtIpEIHn30UQSDQQBAKpXC008/jfe///3weDx5633ve9+LVCqFrVu3AgC2bNmC5cuXDxo2cMUVVxR87vLycrznPe/Ju+2Pf/wjli9fjpUrV+Y918aNG/PKzE4//XQAwIc+9CH89re/RUtLy6DHP+OMM7Bjxw5cf/31ePzxxxGJRIZ9PV566SUkk0lce+21ebc3NDTgPe95z6ASKkEQcOmll+bdtmLFimzpXMYvfvEL6Lqefe+G8+Mf/xgOhwNOpxMnnngi/vrXv+LrX/86rr/++rzjRvJ+79mzB/v27cPHP/5xKIpS8JjRvM+FVFZW4tJLL8W9996b7Sfq7e3FH/7wB1x99dWQZbvl+IwzzkA4HMYVV1yBP/zhD4NKS4fyla98BYcOHcLdd9+NT3ziE/D5fPjJT36C0047Db/+9a8BAPF4HK+88go+8IEP5P2ufr9/0PtUatdddx2SySR+85vfZG/bvHkzXC4XrrzyymHvv3LlSsydOzf7vaIoWLx4cd5nb8uWLXjPe96Dqqqq7G2iKOJDH/rQOP0WRDQdHDcBUzwex8knn4z//u//HvNjfPrTn8bPf/5zfPe738Xbb7+NRx55BGecccY4rpKIRqKysjLve5fLBQBIJpMA7P4gy7JQW1sLh8OR97V169bsSaRpmrjwwgvx0EMP4fOf/zyefvpp/O1vf8ueuGYeb6DRTnu744478Morr2DLli348pe/jI6ODrzvfe/L9uB0d3dD13X88Ic/HLTW9773vQCQXW93dzdqa2sHPUeh24qttaOjA2+88cag5/L7/bAsK/tc69atw8MPPwxd13H11Vdjzpw5WL58efbEGbDL1b773e9i69atuOiii1BZWYnzzjtvyPHPQ/XKzJ49e1ApmMfjGRSEuFwupFKpos8xEh/60Ifwyiuv4NVXX8U777yD7u5ufOUrXxl03Eje787OTgAYcnDAaN7nYq677jq0tLTgySefBAD8+te/Rjqdzgs+P/axj+Huu+/GwYMH8Q//8A+oqanB6tWrs/cZTm1tLTZt2oSf/OQneOONN7BlyxY4nU58+tOfBmAHaaZpYtasWYPuW+i2Ulq2bBlOP/30bFmeYRi4//77cdlll6GiomLY+x/9dwawP3sD/y6M9r9JIjo+HTdT8i666CJcdNFFRX+uqipuvvlm/PKXv0Q4HMby5ctxxx13YMOGDQDsK8133XUXdu7ciSVLlkzSqoloLKqqqiAIAp5//vlsMDVQ5radO3dix44duOeee3DNNddkf97c3Fz0sUe7X8uCBQuygx7WrVsHt9uNm2++GT/84Q/xuc99DuXl5ZAkCR/72Mdwww03FHyM+fPnA7BP4I4eFgEA7e3tI15rVVUV3G53web1zM8zLrvsMlx22WVIp9PYunUrbr/9dlx55ZVobGzEmjVrIMsybrrpJtx0000Ih8N46qmn8KUvfQkbN27E4cOHC07ky5yEtrW1DfpZa2tr3vNPpOrq6uz7MpSRvN+ZvqcjR44UPWY073MxGzduxOzZs7F582Zs3LgRmzdvxurVqwdlHDdt2oRNmzYhHo/jueeew1e/+lVccskl2LNnz4gzcBnr1q3DhRdeiIcffhihUAjl5eUQBKHgZ67Y57CUNm3ahOuvvx67d+/G/v370dbWlu33Gg+j/W+SiI5Px02GaTibNm3Ciy++iAceeABvvPEGLr/8cvzd3/1dtsH2kUcewYIFC/DHP/4R8+fPR2NjI/7xH/8RPT09JV45ER3tkksugWVZaGlpwapVqwZ9nXTSSQByJ8NHB1U//elPJ2xtn//857Fw4UJ8+9vfRjQahcfjwbnnnovXX38dK1asKLjeTJCxfv167Ny5E2+99VbeYz7wwAMjfv5LLrkE+/btQ2VlZcHnKrQvjsvlwvr167ODFl5//fVBxwSDQXzwgx/EDTfcgJ6enqLDF9asWQO32437778/7/YjR47gmWeewXnnnTfi32WqWLx4MZqamnD33XcXnd43mve5mEzA9fDDD+P555/Hq6++mje18GherxcXXXQRvvzlL0NVVezatavosR0dHQVHhxuGgb1798Lj8SAYDMLr9eKMM87AQw89lJfli0ajeOSRR4Zcf8bRGeGJdMUVV0BRFNxzzz245557UF9fjwsvvHDcHn/9+vV45pln8rKDpmniwQcfHLfnIKKp77jJMA1l3759+PWvf40jR45g9uzZAIDPfe5zeOyxx7B582bcdttt2L9/Pw4ePIgHH3wQ9913HwzDwI033ogPfvCDeOaZZ0r8GxBNT88880zBE+tMidJYrV27Fv/0T/+ETZs24dVXX8W6devg9XrR1taGF154ASeddBL++Z//GSeccAKamprw7//+77AsCxUVFXjkkUdGXL40Fg6HA7fddhs+9KEP4c4778TNN9+MO++8E2effTbOOecc/PM//zMaGxsRjUbR3NyMRx55JPs35jOf+QzuvvtuXHTRRfj617+O2tpa/OpXv8Lbb78NYPDo50I+85nP4He/+x3WrVuHG2+8EStWrIBpmjh06BCeeOIJfPazn8Xq1atxyy234MiRIzjvvPMwZ84chMNh3HnnnXA4HFi/fj0A4NJLL8Xy5cuxatWq7EjuH/zgB5g3b17RTXmDwSC+8pWv4Etf+hKuvvpqXHHFFeju7satt94KRVHw1a9+dUyv68c//nHce++92Ldv36izKOPhRz/6ES699FKceeaZuPHGGzF37lwcOnQIjz/+OH75y18CwIjf56Fcd911uOOOO3DllVfC7Xbjwx/+cN7P/7//7/+D2+3G2rVrUVdXh/b2dtx+++0IBALZvrRC/vd//xc//elPceWVV+L0009HIBDAkSNH8POf/xy7du3CLbfcAqfTCcDejPbv/u7vcMEFF+Czn/0sDMPAHXfcAa/XO6KLiMuXLwcA/OxnP4Pf74eiKJg/f/6wAeNY/l4Eg0G8//3vxz333INwOIzPfe5zI/rvZKS+/OUv45FHHsF5552HL3/5y3C73fjJT36SnUo4ns9FRFPXjAiYtm3bBsuy8sb8AkA6nc7+ATdNE+l0Gvfdd1/2uF/84hc47bTT8M4777BMj2gMvvCFLxS8PTN6+1j89Kc/xZlnnomf/vSn+PGPfwzTNDF79mysXbs223vocDjwyCOP4NOf/jQ+8YlPQJZlnH/++Xjqqafymr3H2+WXX47Vq1fj+9//Pv71X/8VS5cuxbZt2/CNb3wDN998M0KhEILBIBYtWpR3Mjh79mxs2bIFn/nMZ/DJT34SHo8H73//+/H1r38d11xzTXaQxFC8Xi+ef/55fPvb38bPfvYzvPvuu3C73Zg7dy7OP//8bIZp9erVePXVV/GFL3wBnZ2dCAaDWLVqFZ555hksW7YMgL2Pzu9+9zv8/Oc/RyQSwaxZs3DBBRfgK1/5ChwOR9E1fPGLX0RNTQ3+67/+C7/5zW/gdruxYcMG3HbbbUUDreEYhgHDMLJj0Sfbxo0b8dxzz+HrX/86PvWpTyGVSmHOnDl5A0pG+j4PZfHixTjrrLPw17/+FVdddRUCgUDez8855xzcc889+O1vf4ve3l5UVVXh7LPPxn333TfkBsIXX3wx2tvb8ac//Ql33XUXent74ff7sWLFCvzv//4vPvrRj2aPveCCC/Dwww/j5ptvxoc//GHMmjUL119/PZLJ5Ig2Y54/fz5+8IMf4M4778SGDRtgGAY2b948aBDI0cb692LTpk3Z3rvhnmO0Tj75ZDz55JP43Oc+h6uvvhrl5eX42Mc+hvXr1+MLX/jCoPeHiI5PglWqf30mkCAI+P3vf4/3ve99AIDf/OY3uOqqq7Br1y5IkpR3rM/nw6xZs/DVr34Vt912W96+LMlkEh6PB0888QQuuOCCyfwViIiy/umf/gm//vWv0d3dnc0CEE22r33ta7j11ltLFrROJRdeeCEOHDiAPXv2lHopRDQJZkSG6ZRTToFhGAiFQgV3UgfsEh9d17Fv3z40NTUBQPYPYSnKP4hoZvr617+O2bNnY8GCBYjFYvjjH/+In//857j55psZLBGVwE033YRTTjkFDQ0N6OnpwS9/+Us8+eST+MUvflHqpRHRJDluAqZYLJY3+erdd9/F9u3bUVFRgcWLF+Oqq67C1Vdfje9973s45ZRT0NXVhWeeeQYnnXQS3vve9+L888/Hqaeeiuuuuw4/+MEPYJombrjhBlxwwQWDSvmIiCaKw+HAd77zHRw5cgS6rmPRokX4/ve/nx37TESTyzAM3HLLLWhvb4cgCFi6dOmgMkYiOr4dNyV5zz77LM4999xBt19zzTW45557oGkavvnNb+K+++5DS0sLKisrsWbNGtx6663ZiVqtra3413/9VzzxxBPZ6UPf+973RrSfAxERERERHX+Om4CJiIiIiIhovHEeJhERERERUREMmIiIiIiIiIqY1kMfTNNEa2sr/H4/BEEo9XKIiIiIiKhELMtCNBrF7Nmzx3Vj6ZIGTLqu42tf+xp++ctfor29HXV1dbj22mtx8803j+iXbG1tRUNDwySslIiIiIiIpoPDhw9jzpw54/Z4JQ2Y7rjjDvzkJz/Bvffei2XLluHVV1/Fpk2bEAgERjRC1+/3A7BflLKysoleLhERERERTVGRSAQNDQ3ZGGG8lDRgeumll3DZZZfh4osvBgA0Njbi17/+NV599dUR3T9ThldWVsaAiYiIiIiIxr1Vp6RDH84++2w8/fTT2LNnDwBgx44deOGFF/De97634PHpdBqRSCTvi4iIiIiIaKKUNMP0hS98AX19fTjhhBMgSRIMw8C3vvUtXHHFFQWPv/3223HrrbdO8iqJiIiIiGimKmmG6Te/+Q3uv/9+/OpXv8K2bdtw77334rvf/S7uvffegsd/8YtfRF9fX/br8OHDk7xiIiIiIiKaSQTLsqxSPXlDQwP+/d//HTfccEP2tm9+85u4//778fbbbw97/0gkgkAggL6+PvYwERERERHNYBMVG5Q0w5RIJAaND5ckCaZplmhFREREREREOSXtYbr00kvxrW99C3PnzsWyZcvw+uuv4/vf/z6uu+66Ui6LiIiIiIgIQIlL8qLRKL7yla/g97//PUKhEGbPno0rrrgCt9xyC5xO57D3Z0keEREREREBExcblDRgOlYMmIiIiIiICDhOe5iIiIiIiIimMgZMRERERERERTBgIiIiIiIiKoIBExERERERUREMmIiIiIiIiIoo6T5MRERERESlYpoWWsJJxFUdXqeM+qAboiiUelk0xTBgIiIiIqIZpzkUxeM7O7CvM4aUbkCRJTRV+7BxeS0W1vhLvTyaQhgwEREREdGM0hyKYvOLB9ATV1EXUOBxupFQdexs7UNrXxKb1jYyaKIs9jARERER0YxhmhYe39mBnriKRTU++BUHJFGAX3FgUY0PPXEVT+zqgGlapV4qTREMmIiIiIhoxmgJJ7GvM4a6gAJByO9XEgQBdQEFzaEYWsLJEq2QphoGTEREREQ0Y8RVHSndgMdZuDPF7ZSQ1g3EVX2SV0ZTFQMmIiIiIpoxvE4ZiiwhUSQgSqoGXLIEb5GAimYeBkxERERENGPUB91oqvahrS8Fy8rvU7IsC219KSys8aE+6C7RCmmqYcBERERERDOGKArYuLwWFV4n9oZiiKY06KaJaErD3lAMFV4nLlxWy/2YKIsBExERERHNKAtr/Ni0thHLZwcQTmg40BVHOKHhpPoAR4rTICzOJCIiIqIZZ2GNHws2+NASTiKu6vA6ZdQH3cws0SAMmIiIiIhoRhJFAQ0VnlIvg6Y4luQREREREREVwYCJiIiIiIioCAZMRERERERERTBgIiIiIiIiKoIBExERERERUREMmIiIiIiIiIpgwERERERERFQEAyYiIiIiIqIiGDAREREREREVwYCJiIiIiIioCAZMRERERERERTBgIiIiIiIiKoIBExERERERUREMmIiIiIiIiIpgwERERERERFQEAyYiIiIiIqIiGDAREREREREVwYCJiIiIiIioCAZMRERERERERTBgIiIiIiIiKoIBExERERERUREMmIiIiIiIiIpgwERERERERFQEAyYiIiIiIqIiGDAREREREREVwYCJiIiIiIioCAZMRERERERERZQ0YGpsbIQgCIO+brjhhlIui4iIiIiICAAgl/LJX3nlFRiGkf1+586duOCCC3D55ZeXcFVERERERES2kgZM1dXVed9/+9vfRlNTE9avX1+iFREREREREeWUNGAaSFVV3H///bjpppsgCELBY9LpNNLpdPb7SCQyWcsjIiIiIqIZaMoMfXj44YcRDodx7bXXFj3m9ttvRyAQyH41NDRM3gKJiIiIiGjGESzLskq9CADYuHEjnE4nHnnkkaLHFMowNTQ0oK+vD2VlZZOxTCIiIprhTNNCSziJuKrD65RRH3RDFAtXxxDR5IlEIggEAuMeG0yJkryDBw/iqaeewkMPPTTkcS6XCy6Xa5JWRURERJSvORTF4zs7sK8zhpRuQJElNFX7sHF5LRbW+Eu9PCKaAFMiYNq8eTNqampw8cUXl3opRERERAU1h6LY/OIB9MRV1AUUeJxuJFQdO1v70NqXxKa1jQyaiI5DJe9hMk0TmzdvxjXXXANZnhLxGxEREVEe07Tw+M4O9MRVLKrxwa84IIkC/IoDi2p86ImreGJXB0xzSnQ6ENE4KnnA9NRTT+HQoUO47rrrSr0UIiIiooJawkns64yhLqAMmuYrCALqAgqaQzG0hJMlWiERTZSSp3QuvPBCTJG5E0REREQFxVUdKd2Ax+ku+HO3U0JHJIW4qk/yyohoopU8w0REREQ01XmdMhRZQqJIQJRUDbhkCV5nya9FE9E4Y8BERERENIz6oBtN1T609aUGVcZYloW2vhQW1vhQHyycgSKi6YsBExEREdEwRFHAxuW1qPA6sTcUQzSlQTdNRFMa9oZiqPA6ceGyWu7HRHQcYsBERERENAILa/zYtLYRy2cHEE5oONAVRzih4aT6AEeKEx3HWGhLRERENEILa/xYsMGHlnAScVWH1ymjPuhmZonoOMaAiYiIiGgURFFAQ4Wn1MsgoknCkjwiIiIiIqIiGDAREREREREVwYCJiIiIiIioCAZMRERERERERTBgIiIiIiIiKoIBExERERERUREMmIiIiIiIiIpgwERERERERFQEAyYiIiIiIqIiGDAREREREREVwYCJiIiIiIioCAZMRERERERERTBgIiIiIiIiKoIBExERERERUREMmIiIiIiIiIpgwERERERERFQEAyYiIiIiIqIiGDAREREREREVwYCJiIiIiIioCAZMRERERERERTBgIiIiIiIiKoIBExERERERUREMmIiIiIiIiIpgwERERERERFQEAyYiIiIiIqIiGDAREREREREVwYCJiIiIiIioCAZMRERERERERTBgIiIiIiIiKoIBExERERERUREMmIiIiIiIiIpgwERERERERFQEAyYiIiIiIqIiGDAREREREREVwYCJiIiIiIioCAZMRERERERERTBgIiIiIiIiKoIBExERERERURElD5haWlrw0Y9+FJWVlfB4PFi5ciVee+21Ui+LiIiIiIgIcimfvLe3F2vXrsW5556LP//5z6ipqcG+ffsQDAZLuSwiIiIiIiIAJQ6Y7rjjDjQ0NGDz5s3Z2xobG0u3ICIiIiIiogFKWpL3f//3f1i1ahUuv/xy1NTU4JRTTsH//M//FD0+nU4jEonkfREREREREU2UkgZM+/fvx1133YVFixbh8ccfxyc/+Ul86lOfwn333Vfw+Ntvvx2BQCD71dDQMMkrJiIiIiKimUSwLMsq1ZM7nU6sWrUKf/3rX7O3fepTn8Irr7yCl156adDx6XQa6XQ6+30kEkFDQwP6+vpQVlY2KWsmIiIiIqKpJxKJIBAIjHtsUNIMU11dHZYuXZp324knnohDhw4VPN7lcqGsrCzvi4iIiIiIaKKUNGBau3Yt3nnnnbzb9uzZg3nz5pVoRURERERERDklDZhuvPFGbN26Fbfddhuam5vxq1/9Cj/72c9www03lHJZREREREREAEocMJ1++un4/e9/j1//+tdYvnw5vvGNb+AHP/gBrrrqqlIui4iIiIiICECJhz4cq4lq7CIiIiIiounluBz6QERERERENJUxYCIiIiIiIiqCARMREREREVERDJiIiIiIiIiKYMBERERERERUBAMmIiIiIiKiIhgwERERERERFcGAiYiIiIiIqAgGTEREREREREUwYCIiIiIiIiqCARMREREREVERcqkXQERERFSMaVpoCScRV3V4nTLqg26IolDqZRHRDMKAiYiIiKak5lAUj+/swL7OGFK6AUWW0FTtw8bltVhY4y/18ohohmDARERERFNOcyiKzS8eQE9cRV1AgcfpRkLVsbO1D619SWxa28igiYgmBXuYiIiIaEoxTQuP7+xAT1zFohof/IoDkijArziwqMaHnriKJ3Z1wDStUi+ViGYABkxEREQ0pbSEk9jXGUNdQIEg5PcrCYKAuoCC5lAMLeFkiVZIRDMJAyYiIiKaUuKqjpRuwOMs3DngdkpI6wbiqj7JKyOimYgBExEREU0pXqcMRZaQKBIQJVUDLlmCt0hARUQ0nhgwERER0ZRSH3SjqdqHtr4ULCu/T8myLLT1pbCwxof6oLtEKySimYQBExEREU0poihg4/JaVHid2BuKIZrSoJsmoikNe0MxVHiduHBZLfdjIqJJwYCJiIiIppyFNX5sWtuI5bMDCCc0HOiKI5zQcFJ9gCPFiWhSsfiXiIiIpqSFNX4s2OBDSziJuKrD65RRH3Qzs0REk4oBExEREU1ZoiigocJT6mUQ0QzGkjwiIiIiIqIimGEiIiKawkzTYkkaEVEJMWAiIiKaoppDUTy+swP7OmNI6QYUWUJTtQ8bl9dy6AER0SRhwERERFREKbM7zaEoNr94AD1xFXUBBR6nGwlVx87WPrT2JTkpjohokjBgIiIiKqCU2R3TtPD4zg70xFUsqvFBEOwgza844HPJ2BuK4YldHVhQ5WN5HhHRBOPQByIioqNksjs7W/sQ9DiwoMqHoMeBna192PziATSHohP6/C3hJPZ1xlAXULLBUoYgCKgLKGgOxdASTk7oOoiIiAETERFRnqOzO37FAUkU4FccWFTjQ09cxRO7OmCa1oStIa7qSOkGPM7ChSBup4S0biCu6hO2BiIisjFgIiIiGmAqZHe8ThmKLCFRJCBKqgZcsgRvkYCKiIjGDwMmIiKiAaZCdqc+6EZTtQ9tfSlYVn4my7IstPWlsLDGh/qge8LWQERENgZMREREA0yF7I4oCti4vBYVXif2hmKIpjTopoloSsPeUAwVXicuXFbLgQ9ERJOAARMREdEAUyW7s7DGj01rG7F8dgDhhIYDXXGEExpOqg9wpDgR0SRi8TMREdEAmexOa18Se0N2L5PbKSGpGmjrS01qdmdhjR8LNvhKthcUERExYCIiIhokk93J7MPUEUnBJUs4qT6AC5dN/D5MA4migIYKz6Q9HxER5WPAREREVACzO0REBDBgIiIiKorZHSIi4tAHIiIiIiKiIhgwERERERERFcGAiYiIiIiIqAgGTEREREREREUwYCIiIiIiIiqCARMREREREVERJQ2Yvva1r0EQhLyvWbNmlXJJREREREREWSXfh2nZsmV46qmnst9LklTC1RAREREREeWUPGCSZZlZJSIiIiIimpJK3sO0d+9ezJ49G/Pnz8dHPvIR7N+/v+ix6XQakUgk74uIiIiIiGiilDRgWr16Ne677z48/vjj+J//+R+0t7fjrLPOQnd3d8Hjb7/9dgQCgexXQ0PDJK+YiIiIiIhmEsGyLKvUi8iIx+NoamrC5z//edx0002Dfp5Op5FOp7PfRyIRNDQ0oK+vD2VlZZO5VCIiIiIimkIikQgCgcC4xwYl72EayOv14qSTTsLevXsL/tzlcsHlck3yqoiIiIiIaKYqeQ/TQOl0Grt370ZdXV2pl0JERERERFTagOlzn/sctmzZgnfffRcvv/wyPvjBDyISieCaa64p5bKIiIiIiIgAlLgk78iRI7jiiivQ1dWF6upqnHnmmdi6dSvmzZtXymUREREREREBKHHA9MADD5Ty6YmIiIiIiIY0pXqYiIiIiIiIphIGTEREREREREUwYCIiIiIiIiqCARMREREREVERDJiIiIiIiIiKYMBERERERERUREnHihMRERGVimlaaAknEVd1eJ0y6oNuiKJQ6mUR0RTDgImIiIhmnOZQFI/v7MC+zhhSugFFltBU7cPG5bVYWOMv9fKIaAphwEREREQzSnMois0vHkBPXEVdQIHH6UZC1bGztQ+tfUlsWtvIoImIstjDRERERDOGaVp4fGcHeuIqFtX44FcckEQBfsWBRTU+9MRVPLGrA6ZplXqpRDRFMGAiIiKiGaMlnMS+zhjqAgoEIb9fSRAE1AUUNIdiaAknS7RCIppqGDARERHRjBFXdaR0Ax5n4a4Et1NCWjcQV/VJXhkRTVUMmIiIiGjG8DplKLKERJGAKKkacMkSvEUCKiKaeRgwERER0YxRH3SjqdqHtr4ULCu/T8myLLT1pbCwxof6oLtEKySiqYYBExEREc0Yoihg4/JaVHid2BuKIZrSoJsmoikNe0MxVHiduHBZLfdjIqIsBkxEREQ0oyys8WPT2kYsnx1AOKHhQFcc4YSGk+oDHClORIOwQJeIiMaVaVpoCScRV3V4nTLqg25eracpZ2GNHws2+PhZJaJhMWAiIqJx0xyK4vGdHdjXGUNKN6DIEpqqfdi4vJZX7WnKEUUBDRWeUi+DiKY4BkxERDQumkNRbH7xAHriKuoCCjxONxKqjp2tfWjtS7LUiYiIpiX2MBER0TEzTQuP7+xAT1zFohof/IoDkijArziwqMaHnriKJ3Z1wDSt4R+MiIhoCmHAREREx6wlnMS+zhjqAgoEIb8HRBAE1AUUNIdiaAknS7RCIiKisWHARERExyyu6kjpBjxFNvt0OyWkdQPxIpuFEhERTVUMmIiI6Jh5nTIUWUKiSECUVA24ZAneIgEVERHRVMWAiYiIjll90I2mah/a+lKwrPw+Jcuy0NaXwsIaH+qD7hKtkIiIaGwYMBER0TETRQEbl9eiwuvE3lAM0ZQG3TQRTWnYG4qhwuvEhctquccNERFNOwyYiIhoXCys8WPT2kYsnx1AOKHhQFcc4YSGk+oDHClORETTFovJiYho3Cys8WPBBh9awknEVR1ep4z6oJuZJSIimrYYMBER0bgSRQENFZ5SL4OIiGhcsCSPiIiIiIioCAZMRERERERERTBgIiIiIiIiKoI9TERERCNgmhaHWRARzUAMmIiIiIbRHIri8Z0d2NcZQ0o3oMgSmqp92Li8luPSiYiOcwyYiIiIhtAcimLziwfQE1dRF1DgcbqRUHXsbO1Da1+Se0wRER3n2MNERERUhGlaeHxnB3riKhbV+OBXHJBEAX7FgUU1PvTEVTyxqwOmaZV6qURENEEYMBERERXREk5iX2cMdQEFgpDfryQIAuoCCppDMbSEkyVaIRERTTQGTEREREXEVR0p3YDHWbiC3e2UkNYNxFV9kldGRESThQETERFREV6nDEWWkCgSECVVAy5ZgrdIQEVERNMfAyYiIqIi6oNuNFX70NaXgmXl9ylZloW2vhQW1vhQH3SXaIVERDTRGDAREREVIYoCNi6vRYXXib2hGKIpDbppIprSsDcUQ4XXiQuX1XI/JiKi4xgDJiIioiEsrPFj09pGLJ8dQDih4UBXHOGEhpPqAxwpTkQ0AxxT0XVzczP27duHdevWwe12w7KsQVOEiIiIpruFNX4s2OBDSziJuKrD65RRH3Qzs0RENAOMKWDq7u7Ghz/8YTzzzDMQBAF79+7FggUL8I//+I8IBoP43ve+N97rJCIiKilRFNBQ4Sn1MoiIaJKNqSTvxhtvhCzLOHToEDye3D8eH/7wh/HYY4+N2+KIiIjGyjQtHO5J4O32CA73JLi5LBERjcmYMkxPPPEEHn/8ccyZMyfv9kWLFuHgwYNjWsjtt9+OL33pS/j0pz+NH/zgB2N6DCIiIgBoDkXx+M4O7OuMIaUbUGQJTdU+bFxey54jIiIalTEFTPF4PC+zlNHV1QWXyzXqx3vllVfws5/9DCtWrBjLcoiIiLKaQ1FsfvEAeuIq6gIKPE43EqqOna19aO1LclADERGNyphK8tatW4f77rsv+70gCDBNE9/5zndw7rnnjuqxYrEYrrrqKvzP//wPysvLx7IcIiIiAHYZ3uM7O9ATV7Goxge/4oAkCvArDiyq8aEnruKJXR0szyMiohEbU4bpO9/5DjZs2IBXX30Vqqri85//PHbt2oWenh68+OKLo3qsG264ARdffDHOP/98fPOb3xzy2HQ6jXQ6nf0+EomMZflERHScagknsa8zhrqAMmhqqyAIqAsoaA7F0BJOcoADERGNyJgyTEuXLsUbb7yBM844AxdccAHi8Tg+8IEP4PXXX0dTU9OIH+eBBx7Atm3bcPvtt4/o+Ntvvx2BQCD71dDQMJblExHRcSqu6kjpBjzOwtcD3U4Jad1AXNUneWVERDRdjXkfplmzZuHWW28d8xMfPnwYn/70p/HEE09AUZQR3eeLX/wibrrppuz3kUiEQRMREWV5nTIUWUJC1eFXHIN+nlQNuGQJ3iIBFRER0dHG9C/G5s2b4fP5cPnll+fd/uCDDyKRSOCaa64Z9jFee+01hEIhnHbaadnbDMPAc889h//+7/9GOp2GJEl593G5XGMaKkFERDNDfdCNpmofdrb2weeS88ryLMtCW18KJ9UHUB90l3CVREQ0nYypJO/b3/42qqqqBt1eU1OD2267bUSPcd555+HNN9/E9u3bs1+rVq3CVVddhe3btw8KloiIqDDuN5QjigI2Lq9FhdeJvaEYoikNumkimtKwNxRDhdeJC5fVQhSF4R+MiIgIY8wwHTx4EPPnzx90+7x583Do0KERPYbf78fy5cvzbvN6vaisrBx0OxERFcb9hgZbWOPHprWN2delI5KCS5ZwUn0AFy6bua8LEdG4U1UgkQCCwVKvZEKNKWCqqanBG2+8gcbGxrzbd+zYgcrKyvFYFxERDYP7DRW3sMaPBRt8aAknEVd1eJ0y6oNuZpaIiI6FZQHJJBCLAfE4oGmAJDFgKuQjH/kIPvWpT8Hv92PdunUAgC1btuDTn/40PvKRj4x5Mc8+++yY70tENN2ZpjXiE/yj9xvK9Or4FQd8Lhl7QzE8sasDC6p8MzJIGM1rSUREQzAMOzjKfJlmqVc06cYUMH3zm9/EwYMHcd5550GW7YcwTRNXX331iHuYiIgoZ7SlddxvqDiWKRIRHSNVtYOjWMzOKM1wYwqYnE4nfvOb3+Ab3/gGduzYAbfbjZNOOgnz5s0b7/URER33xlJal9tvqPC0N7dTQkckNeP2G2KZIhHRGGRK7TJBkqaVekVTyjFtRLF48WIsXrx4vNZCRDTjjLW0jvsNDcYyRSKiUTDNXIA0Q0vtRmrE/5LedNNN+MY3vgGv15u3eWwh3//+9495YUREM0Gh0jrLshBN6VANEz6XhL0d0UGlddxvaDCWKRIRDUPTcgFSMmlnlo5FayvwwgvAm28C998POAZfwDsejDhgev3116H1p+e2bds26B+jjGK3ExHRYEeX1vXEVTSHYuhNqNANE6IoQACwuz2Sd5Kf2W+otS+JvSE7SHA7JSRVA219qRm53xDLFImIChg41U5Vj+2xNA14/XVgyxbgueeAPXtyP7v+emD9+mN7/ClqxAHTX/7yl+z/5zQ7IqLxMbC0TjMsbD8cRlLV4VMccCgy4mkd4YSGR3e0YUGVN6//hvsN5WOZIhERcqV2mS/DOLbH6+wEnn8eePZZ4MUX7eCrkKefZsCUoes6FEXB9u3bucEsEdExypTWvdkSRl9SQ1LVUeF1QhAEWJYFVTcxr9KDtG4W7L/hfkM5LFMkohlL0/Kn2h1LqZ1h2CV2W7bYX7t2FT5OEICTTwY2bAA++lHglFPG/pxT3KgDJlmWMW/ePBjHGq0SEZXYSPfqmcg9fTKldW+3R7CnIwq3Q0IkqcPlEBBPG3A7JSys8cEhiUX7b0RRYE8OWKZIRDNMKmUHSLHYsZfa9fbavUhbttjZpHC48HGBAHDOOcC6dfb/VlTYG9c2NR3b809xY6pLuPnmm/HFL34R999/PyoqKsZ7TUREE26ke/VMxp4+B7sT2BeKoS+poTeuQRRTcEoi5lZ6sLIhiAqvC7ppsv9mBFimSETHLdMEEolcP9KxJC9ME9i9O9eLtGNH8Sl5S5faAdK6dcDKlXaANMOMKWD6r//6LzQ3N2P27NmYN28evF5v3s+3bds2LosjIpoII92rZzL29Hl6dwdu//PbCCdUeJwyZFGAaVlI6yY6Imn0JTVUeF3svxkFlikS0XFD13MBUiJxbKV20ajdg5TJInV2Fj7O6wXOPjuXRaqtHftzHifG9C/v+973vmx9PRHRdDLSvXoaK7wTvqePrpu458UDiKY0NFa40R5JI64a8DgleJwS+pI6th8OY265h/03o8QyRSKatjKldvE4kE6P/XEsC9i7N5dFeu214lmpRYtyWaRTTwWczrE/73FoVAFTIpHAv/3bv+Hhhx+Gpmk477zz8MMf/hBVVVUTtT4ionF19F49A/c8ckoiZpW50ByKYdvh3gnf02fb4V4c6I6j0uuEJEmo8LqgGikkNRNOWYTiENETV/HqwV401fjYf0NEdDyyrPypdvoxlF7H48DWrbkgqa2t8HFuN3DmmfZUu3XrgPr6sT/nDDCqgOmrX/0q7rnnHlx11VVwu9341a9+hX/+53/Ggw8+OFHrIyIaVwP36umJp7EvFEdPQoVumpBFEUG3A05ZRHdcnfA9fbrjKjTDhNspZR9zVpmCnngaSc2EYVrQDQu1AWVcyv+IiGiK0PXcVLtjKbWzLODAgVyA9Le/2RPzCmlstEvs1q8HzjgDcLnGuvocWQZ8vmN/nCluVAHTQw89hF/84hf4yEc+AgC46qqrsHbtWhiGAWkGNoAR0fST2aunNZzA3lAMSdWAT5HhkGRohom2viREQUBSNSZ8T59KrxMOSURSNeBXRAB20DTb4Yaqm4ikNCRVA1ec0cBgiYhoukulckHSsZTapdPAyy/bAdKWLcChQ4WPczrtwCiTRWpsHPtzZggC4PHYX17vjCndG9W/9IcPH8Y555yT/f6MM86ALMtobW1FQ0PDuC+OiGi81QfdWFDtxf9tb4Vhmqj0ubIld05JhCyJkEQBrb1JLKjyYldbZML29Dm1oRyNlV7sCUXhdUoQRTtoEgQBDklAXDWwpNaPVXM5jZSIaNqxrPypdsdSanfkSC6LtHWrHXwVMnu2HRxt2ACsXm0HNsfK5coFSG63HTTNMKMKmAzDgPOoSFKWZejH8gEgIppEoijg5IYgfvfaEZgWoBomHJIIzTARS+nwOGUsqvFif1ccHzi1Hm2R1ITt6SPLIq5d24jb//w2DvUmUel1Zp+jO66iTHHgmrMaIcviOL4CREQ0YTKldpmvsZbaqSqwbVtu89h9+wofJ8vAaafZWaT16+39kI41oJGkXIDk8djPMcON6hWwLAvXXnstXANqHlOpFD75yU/mjRZ/6KGHxm+FRETjrNrvQkOFB6puIpzUEEvrkEURNWUKmqp9KHPLONAVR5XfNeF7+px3oj2u9Z4XD+BAdxw9cRUOScSSWj+uOasx+3MiIpqi0ulcqV2xzM9IdHTkyuxefNHOThVSXZ3LIp111rH3EAkCoCi5AElRju3xjkOjCpiuueaaQbd99KMfHbfFEBFNBq9TRpXPhYBbBiBkJ+T5Fbv0LprSsv1JDRWeCd/T57wTa7F+UTW2He5Fd1xFpdeJUxvKmVkiIpqKMqV2mSBprJVWum5vGJsJknbvLnycKAInn2wHSOvXAyeccOxZJIcjP4sk8t+boYwqYNq8efNErYOIaNLUB91oqvZhZ2tf3h5LQOH+pMnY00eWRZwxv3JCn4OIiMbIMPKn2pnm2B6np8cOkJ57DnjhBaCvr/Bx5eX25rEbNgBr19rfHwtRtPuPMgHSDBnWMF5YlEhEM44oCti4vBatfckJ608aKdO0JjR7RUREYzQepXamCezcmcsivflm8b6m5ctzvUjLl9u9RMfC5coFSDN0WMN4YcBERCVVqoBhYY1/QvqTRvP7NIei2edP6fYY86ZqHzYuH5/+KCIiGgXLApLJ3FS7YvsZDaevz+5B2rIFeP55oLu78HF+v5092rDB3h+pqmrMSwdgB1iZAMnrPfaAi7IYMBFRyZQ6YFhY4x/X/qTR/D7NoSg2v3gAPXEVdQEFHqcbCVXHztY+tPYluVEtEdFkyJTaZb7GUmpnWcA77+Qm2m3fbj9uIUuW5LJIK1ce2wQ6QbAzR5kAaTw2oqWCGDARUUlMlYBhvPqTRvP7mKaFx3d2oCeu5vVQ+RUHfC4Ze0MxPLGrAwuqfCzPIyIab6qaK7VLJsf2GLGYvR9SJkjq6Ch8nMcDrFljZ5HWrQNmzRrzsgHYwxq83tyeSBzWMCkYMBHRpDveAoaR/j6NFV60RVLY1xnDGy1hzA648wZOAPamtXUBBc2hGFrCyQkfNkFEdNzLlNplgqSxlNpZFrB/f64X6dVXiz/O/Pm5LNKqVcc2YEEU7aArk0VyOMb+WDRmDJiIaNK1hJPY12kPWzgeAoaR/D7bDvXiPx5/B12xNEKxFN4NxdGX0LCo1ocKb34ZhdspoSOSQlzlpuBERGNimrkAaayldskk8Le/5bJIR44UPs7lAs44I5dFmjv3mJYORckFSIrCYQ1TAAMmIpp0cVVHSjfgcboL/ny6BQzD/T4pzcCejihSmoHFtX74XDLawim099m9UysbgnlBU1I1svtAERHRCGVK7eJxO9gpNo1uKIcO5bJIL79sT8orpL4+ty/SGWfY5XFjJcv5eyJxWMOUw3+NiWjSeZ0yXJKIUCQFhyzmbRoLTL+AweuUocgSEqoOv5JfLmFZFt5pj0I3LCys9sGvOGBZFmr8CkLRFBJpHfs64yj3OCEIQsF9oEqJY8+PHV9Dogk0cKqdqo7+/qpql9dt2QI8+yxw4EDh4xwO4LTTclmkBQvGnvnJDGvIBEgc1jDlTY+zESI6riQ1HV0xFfs6Y3A7RTgkCRUeJ5pqvCj3OKdUwDASAzfC9bnkvLK8SFJDW18KdUEFZW47mBIEAQtrfIildUSSGjoiKYQTGmRJmPR9oIZS6imGR5uOgcdUew2Jpr1MqV3mq9g0uqG0teWySC+9ZG9EW0htba4X6cwzAZ9v7Ot2OnMBksfDMrtphgETEU2q5lAU9/71IADAr8jQDQuiAHREkuiOp1FTpmBuhWdKBAwjNdRGuM2dMciSgCW1ZXmBVIXXiZUNQezpiOBIbxLvdsdR7XMd8z5Q42WqTDEcuJ7pFnhMtdeQaNrStPypdqMttdM0e9R3phdpz57Cx4kicMopuSzSkiVjD2wywxoyE+2OZXw4lRzfPSKaNAOnyZ0yN4jehIbmUAy9CRWCICCa0lFbBlyzZvqdSBbbCHfp7DIoDgmKY/Do1wqvE0vryhB0O3HF6rloqvZNiazJVJtiOB0Dj6n2GhJNO6mUHSDFYmMrtevstDeN3bLF3kQ2Gi18XGWlHRytW2dvIhsIjH3NipLLIh1LTxNNOQyYiGjSHD1NrsLrxOmN5YimdKiGCVU3oBsW3M7p2fBaaCPcujIFP31uf8FyPcuy0B5J4+SGINYtqp4yJ85TaYrhdA08ptJrSDQtmKZdGpfpRxptqZ1hAG++mcsi7dpV+DhBAFassAOk9euBZcvGvpeRLOeX2XFYw3GLARMRTZpC0+QEQcj29uimiQNd8VFPx5tKvS2FNsItVq43lfqVBjr6fbIsKxvUOiURbqeItG5MyhTD0QQe9UH3oM9B5jEm+7NxvE2CJJoQup4LkBKJ0Zfa9fYCL7xgB0jPPw+Ew4WPCwSAc86xg6RzzgEqKsa2XkHI3xPpWPZXommFARMRTZqhpskBY5uONx16W4qV602VfqWjDXyfNMPKlk3qhglZEuF1Sij3OidliuFIA4/d7RH83/bWvM9B0OMALCCc1Cb9szERn3Wi40Km1C4eLz6yuxjLAnbvzmWRduwovr/S0qW5LNKKFWPvIcoMa/B67TI7DmuYkfiXmogmzVDT5DLjtJfPLoNlWXi7PTJsRmA69bYUKtebCv1KhWTep637u9GbUJHSDPgUBxyKDE03cSSchG5aSKpjmE41SiMJPNK6iUd3tEE1zOznoDWcwJNvdQAATm8sx4Iq36R+NkbyWZ9OkyCJxsyy8kvt9FFmVaNR4K9/tQOk556ze5MK8XrtHqRMP1Jt7djWK0n5WSQOayAwYCKiSTTUNLm2vhQkUUB3XMUPnto7bEZgOva2FCrXm4pEUcAFy2rwxFvt6IylMavMBYckQDNMxNI6qn1OlLkdeGp3BxbWTOzrO1zg0RpOIq2bkEUTi2t92b2s2vvScEoCIAhoj6Qxp9wzqZ+N4T7rU7EUk2jc6Hpuqt1oS+0sC2huzmWRtm0rHmQtXJjLIp166thL5NzuXICkKGN7DDquMWAioklVrDxtdkBBRzRt71k0gmwRm+onltsho9rvgiwKiKsGEqoKSRRRU6agqdoLhyROyus7XODhckjQTQuzg7nPQTSloyehwt/fG9cTVxFN6ShzOyb1szHdSjGJjkk6ncsipVKju28iAWzdmssitbYWPk5RgDVrclmkOXPGtlaHIxcgeTxjH/pAMwYDJiKadEeXp7kdEh7Z0YrWvtSIskWmaWFfZwydsRR8LhmWZQ0KmthUf2ziqg6nLOLMBZVIqEZ24INfsbM8umlO2us7VOCxsMaHh7e3wDOgF0g1TOimCYdk3xZL2wMrMibzszGdSjGJRuVYS+0OHMgFSC+/bO+VVMjcubnNY884A3C5Rr/WzLCGTIDEYQ00SgyYiGhMjnUy3cDytMM9CezvjI8oW5TWDTy+swNvHAljX2ccreEUav0Kmmq8qPDm/iGdyKb6qTSVb6JkeoeSmpGdYjjQZA8tKBZ4tISTeGxnO+JpDYAA1TCR1gxIgl1CCACyKMIp5a4gT/bap0spJtGwDCN/ql2xgQuFpNPA3/6WC5IOHix8nMMBrF6dyyLNnz+2tbpcuSCJwxroGDFgIqJRG+/JdCOehNYWwZY9neiJq5gdVNCX1NDWl8SR3jhCMbuJvqHcPjGdqKb66TCVbzxMxaEFhQKP+qAbQbcDL+zrgghANy3IooCkaiCR1uF0SKgtU+BX5JKunWjaSqdz/UijLbVrabGDoy1b7JK7ZLLwcXV1uSzS6tV2kDNamWENmSwShzXQOOKniYhGZeBkulllLvhMGZGUhr8d6EZLOIHrzp5fNHAolpkZySQ0pyTi1QO9eUMeasoUvNsVR0LVoZsqwnEVcys98LocmFvhGfem+uk0le9YTZehBfu7YgjF0kiqBiQBKPM4IEBAJKWjL6nBr1iYVeaCYVlIpvUptXaiKcmy7MAmk0kqVipXiKbZQxoyWaS9ewsfJ8v2kIb16+0s0qJFo88ACYLd05QJkDisgSYQAyYiGrGBk+kqvU683T5gfx5RQFtfCm6HhC9fvHTQyehQmZkFVb5hsxkNFW50RlLZsr2euIp3u+JwySIEUUZKNZDUTBzpTaIuALznhJpxDV6m41S+YzXVhxZk3hPDtLB+cRX2dybQk1BhmAb8igyHJKLK54RlAQe64lNq7URTimHYwVHmazSldh0d9qaxzz0HvPiiHWgVUl2dm2h31lmAfwz/DTocuQCJwxpoEjFgIqIRy0ymcztE7DjSh6Sq5/bnMSz0xlU883YIG06owTmLqrP3G0lmZrhsxqrGCjz8ut3cb1n2ZqpJVcesgH1VMaUZCCc1rGwIQtVNvNMexblLasYteJmpU/mm8tCCge+JX3GgwutCNKVnB1QAFsIJDVesnosyt2NKrZ2o5FQ1l0UqVipXiGHYG8ZmskhvvVX4OEEAVq7M9SItXTr6AEcU8/dEcgyuQCCaDAyYiGjE4qqOpKajN64hqeqo8DqzwYNLFlDtd+JIbxJP7+7A2qaq7ES7kWRmPrm+qWg24/ylNQgnNKQ1Ex2RJLxOGb0JFT7FkX08URDgEEUIggC/4sDejuiIgpeRDnAYaZ/VcJPXpuPAiIkeWjDW1+To90QQhLwBFbppIhRNo8ztwAmzyiZs/UTTQqbULtOPNJpSu54eOzh6/nnghReAcLjwccEgcM45dhZp7VqgomL063S57OAosycShzXQFFDSgOmuu+7CXXfdhQMHDgAAli1bhltuuQUXXXRRKZdFREV4nTJME+iMpeEfEKxk6KYFr0tGW18qG6yMJjNTKJuRVA08uasDzaEoDvcksLtNR7XfhURazzbyJ1QdLeEkJEHArpa+7Mn27rbIkCf6oxngMJI+q+Emr82UgRGjcSyvyXi8J8OZjgEuUZZh5I/+HmmpnWkCO3fmBja8+WbxzWeXLcv1Iq1YYQ9fGA1JypXZeb2jvz/RJChpwDRnzhx8+9vfxsKFCwEA9957Ly677DK8/vrrWLZsWSmXRkQF1AfdqAu4sf1IGOWe/BNUy7IQS9nBjCQI2UzLaDMzA7MZzaEo7n0pV8q3qrEc2w71oiWchKqbcDslCALQGrYnN9UEXfArDsTTOsIJDY++2YYF1d6CJ96jHeBwrFPjZtLAiJE61tdkoif5McClaUlVc71IyWTxQOdofX12D9Jzz9lf3d2Fj/P5gLPPtoOkc86xe5NGQxDsMd+ZAGks+yoRTbKSBkyXXnpp3vff+ta3cNddd2Hr1q0MmIimIFEUcP7SGjz7Tgfawkn4FIc9dEEA4mkDbqeE2QEFgJC9qj+WLIBpWjjcm8D9Ww/iSG8CK+oDEEURfsWBVY0V2HWkD3tCMRzuTcAlCZBFEfXl7mx/k6qbmFfpQVozCg5iOLpMEEC296XW70J7JDXofscyNe54GBgx3pmW8XhNJnKSHwNcmlYGTrVT1ZHdx7KAd97JZZFef93OSBWyeHEui3TKKaPvJXI68/dE4rAGmmamTA+TYRh48MEHEY/HsWbNmoLHpNNppNPp7PeRSGSylkdE/Wr8Cip9LuzpiKIvpUMA4HJImFPuxvLZZeiOa3lX9UebBchc1X/jSBhvtvbB7ZCg6Raaaux9OfaH4khqBnwuGeGkhpRlYXbAAcUhIa0biKV0uJ0yFtb44ZCEgoMYBpYJ9iY0NIcGTPuTRHidUjaTNfB+Y50aN90HRkxEpmW8XpOJmOR3PAS4dJwzzfypdsUCnaPFYvZ+SFu22F8dHYWP83iANWtyQVJd3ejWlxnWkCm147AGmuZKHjC9+eabWLNmDVKpFHw+H37/+99j6dKlBY+9/fbbceutt07yCokoI1Mi53HJmB10I6nqkCURumkhqRo42J3E3Mr8/Y9GkwUYeFXf7ZTgdkjwuiSEoil0xuyLJZZlwafImKPIsLotRNM6uuIqNNOCxymjpkxBU7UPFV4ndNMsOIghUyaY0iS82TJ42l84oaEzlsbu9sE9UGOZGjdeAyNKYaIyLeP5moz3JL/pHuDScUrTcgMbRlpqZ1nA/v25LNKrrxYf9jB/vh0cbdgArFplZ4VGQ1FyQRKHNdBxpuQB05IlS7B9+3aEw2H87ne/wzXXXIMtW7YUDJq++MUv4qabbsp+H4lE0NDQMJnLJZoRCpVfAchedT+lIYjehIp9oTh6EipEw0A0paO2DLjmrHmDTqBHkgU4+qp+NKXDIYkQBREVXgnNnTHAAhb2X/FP60b/FX8JqmGh3OPEwmovXA4JsijAsqyiTf9epwyXJOKd9kjBaX+WIqEzauDVAz04/4Rc8Hf067K4xl/0ZwNP2DNlifG0BkDIjr32K3bGbaoOJ5jITMt4D2wYz0l+0znAnWgcgjHJUik7QIrFRl5ql0oBL7+cyyIdOVL4OJcLWL06l0WaO3d0a5Pl/CwShzXQcazkAZPT6cwOfVi1ahVeeeUV3HnnnfjpT3866FiXywUXmwOJJlSx8qsVDYG8q+4VXhfKG53Z3h9VN6EbJtyOwn9WhssCHH1V36/IKPc40RlNweuUshdTVd2EUxYRS+moKXMBFnCwJ46WcBLRlA5RAGRJRLnHAVkUsaapclDTf33QjWq/gpff7UGN3zWoTDCeNlAXVNAZSWezCEOVpQEYsmStPuhG0O3AC/u6IMKeJmiv0Ymmai+64+qUHE4wkZmWiR7YcCwmY/redMQhGJPANPOn2o201O7w4VyA9PLLwID2hTz19XaAtGEDcMYZdj/RSGWGNWQCJJ6P0Qwy5f7aW5aV16dERJNnqPKrXW19iKV0zB5wAjtw3xvdNHGgKz7kVfehsgCF9tRZWONDLK2jJ6HCNC0IgoWkZiCWzvUp9SVV7G6PIKkZKFNkBDxOJFUD+7vi8CsOLJnlH3QFXBQFrGosx2M72xBNaYAAOCQRmmH290BJWFLrR19SQ1zVh3xddrfbvZSGaRUtWQOAUCyNpGpAEoAyjwMCBLSGkzjSm8DJDcEpOZxgIjMtEzmw4VhN5WCuVDgEYwLpei5ASiRGVmqnqsBrr+WCpP37Cx/ncNjldZks0oIFoyuVczpzAZLHwzI7mrFKGjB96UtfwkUXXYSGhgZEo1E88MADePbZZ/HYY4+VcllEM9Jw5Vc7joTRFVMRT2socw+ubT/Wq+6FrupXeJ1Y2RDErtY+9CZUWCagGxZqA3afUrnHgX2hGDxOCbIoAhAQSWqQRBELqryQJRHvtEdx7pKaQSfeJ9aVYfEsP3rjKuKqgXhahySK/T1QXjgkESnNhMch4ZEdbeiOqZhV5kJaN2FZ9h5QC6u9eHxXByAAG5fWQuyf/DSwZO3xne2wYAdU6xdXYX9nAj0JFYZpQHGIsCygxu/CgirfqF+ziR5OMNGZlokY2DAepnIwVwocgjEBUqlcP9JILxK3t+d6kf76Vzu4KqSmJteLtGaNPQZ8pEQxf08kecpdVycqiZL+l9DR0YGPfexjaGtrQyAQwIoVK/DYY4/hggsuKOWyiGak4cqvFlR50RlNY39XHCfPcYz7VfdiV/UrvE6ctaACvf1ZprMXViLgsXuOIkkN3fE0HJKEeZUKltT6oZlWtj8oltaLlozVB904paEcb7b04aQyV979AGBvKIaT6gOwALx+uBe9cRUHuuPQTROyKKLC40RtwAXDsgALiKUNlLlzo3IzJWtvHOkDBPv5/IoDFV5XtozRKYkA7CETYylrm+jhBJORaRnvgQ3jZaoGc6XAIRjjwLLyp9rpI8jK6jqwfXsui/TOO4WPE0V71Pf69fbXkiWjywQpih0cZYY1ENEgJQ2YfvGLX5Ty6YlogOHKrzwuGVU+F7z9V5TH+6r7cFf1l80OAABCMRWSJMLtlNCbUNGX1FDlc6GpOnPlO1fOMlTJ2MDn64ims88XS+t5v8877VHsaY/CIQnwux1wSDI0w0QomkIoloKqG3DKElTDHPQcbqeEhGY/t6c/CzOwjBGwSxlD0fSYytomejjBZGVaxnNgw3iaqsHcZOMQjDHS9VwWaaSldt3duSzSiy8CxbZPqaiwN43dsAFYuxYIBEa+LlnOL7PjsAaiYTHXSkQARlZ+VeVz4QOn1mPH4b4Jueo+3FV9AHk/000LFV4XZgVc2N9pT+wbmAGaFXANWTI23PMtqPLht68c6X8eJ1yyfWLhkiU4vSI6IinE0gYqJLE/WzT4NfM4ZEDAhJS1TcZwgpmeaZmqwdxk4hCMUUinc/1IqdTwx5smsHNnLov05puFjxME4KSTcr1Iy5ePfPNXQcgFR17v6MeFExEDJiKyjbT86qymKpzVVDVhV92Hu6o/8Gceh4TNL76Lp3aH4DwqA9QRSeJwbwIXLK0dsmRsqOc73JNAZzSFuoCCvqQGpyxmXxdBEBB0O9ATV2FYgM+Vf5U285qtmGOX9e1qjYx7WdtkDSdgpmVm4xCMIVhW/lS7kZTahcN29mjLFuD554GensLHlZUBZ59tB0nnnANUVo58XS5XLkByuzmsgegYMWAiIgCjL78a7VX30ezfUuiqfqE9kABAQP9jHH1C0F+eN5LThGJZhLiqI22YWDKrDG+29KEnrsKnyLmJemkDPsWBuRUeNHfGC75mG5fPAgC09aXGvaxtMocTMNMyc3EIxlEMI3+qnTm4HDePZQFvv53LIm3fXvw+J5xgl9mtWwecfPLIhy5IUv6eSBzWQDSuBMsaSVHt1BSJRBAIBNDX14eysrJSL4fouDBwr5W0bpfaLKzxHVP51bHu3zLU3lC/39YCwEJbXxq9A0vyvE7MKnMBEHDjBYvHdLJ/uCeB/3xyD4IeBzTDQnMolvccXpeEco8T157VmC1TLPaaTcTrWuj1Ge/HHg1uanp8myqfs5JIp3P9SCMptYvF7El2W7bYPUmhUOHjPB7grLNyQVJt7cjWIwi5YQ0eD4c1EPWbqNiAARMRDTKWE99i9xm8f4uMhJobrDDc/i1D3V8QgFhKx4o5QYgC8qbP+RUZhmXhQFcc/3reIpwwa/R/I0zTwl3P7sPO1j4sqrFH82aewyEKaI+ksGJOEJ9c3wQAw75mExlQlDpY4aamM0OpP2eTxrKAZDKXSdK04Y9vbs4FSK+9Vrw8r6kp14t02mkj7ylyOPKzSCPtYSKaQSYqNmDOlogGGUlJ3MATpWInyxcsq8GTu0JF92/Z0xHFg68ewWUrZ8OvOAadfGX2fym0B9KiGt+gvaEGTp8DgGRaP6Zm9EKlSB6XBEG1S+wqfa5hyxQn6wSzlCVz3NT02EynIOS4Ls00jPzR38OV2iUSwNatuSCptbXwcYoCrF6dC5IaGka2HlG0+48yARKHNRCVDAMmIhrWUNkDAEVPlveEooindcyt8Azav6U3oaEzmsau1gje6Yii3O1AtV/BqsZynFhXhvqgGy3hZNE9kJpqvBO+NxRwbFPiZkLWhZuaHpuZ8BmZ0lQ1l0VKJoc//uDBXC/S3/5m37+QhoZcmd0ZZ4y8ZM7lygVIHNZANGUwYCKiIQ2VPWgJJ6A4pKIny9sO9aIzmsaS2vwTv564iu2Hw0ikdUgi4HZIONSTwMvv9uCxnW1YPMuPUxrK4VOkonsgRdMaTqoPTOjeUBljmRI3U7Iu3NR07GbKZ2RKyZTaZfqRhiu1S6eBV17JZZEOHCh8nMMBrFplB0nr1wONjSMLdiQpFyB5vdwTiWiKYsBEREUNlz3YcSSMrmgaZ8yvLHqyfLA7gc5oGnX9WR7LsocnJFUdPkVCJGVhf2cMhmmhxu9CNKWhN6HijSNhHOpJIKkbqPC6B+2B1BNX8U5HFHPLPfiH0+YM2htq+ewynNwQhKqb+Nu73fApMvyuwWV/IzWaUqSZlHXhpqZjM5M+IyVnGPmjv4crtWtpyW0eu3Vr8cxTXZ2dQVq/HjjzTDvgGY4g2JmjTIDkco3+9yGiSceAiYiKGi57UO5xornDDnYKqfa74HFKaO1LYlb/Y0RTOnoTKnwuGdGUBsOwoAsWKr1O+zkEIJ420FghI5xQ4RAFRNP6oD2QvC4JbeEUTptXPmhvqM5oGjsOh3HPXw/gUHcCSc2A2ylhboUHpzSUT3i507FmXaZTTws3NR0bZuYmmKrmT7Ubar6VpgHbtuWySHv3Fj5OkoBTT7UDpPXrgUWLRpZFcjjs4CizJxKHNRBNO/wXjIiKGi574FdkQACiKQ3l3sENySnNREOFB15nrmQuqelIaQY03YAsiTBhwq/k+o8ckoh4WkdSN+By2FklWRQG74GUMiBLAlY1VuQNXWgORfHYznYc6t901jBN+BUZac3E4Z4E0po54eVOmdfN7VAQSWp5k/sEQRgy6zLdelq4qenYMDM3AQZOtSvWW5QRCtnB0XPP2ZvIxmKFj6uqymWRzjrL3kx2OKJoZ5AyWSTH4AsJRDS9MGAimmYmM/swXPZAFgUE3E70JFQ0HDXYIXOyfOrccpx/Yi2efMsOAnoTaRimhcoyF+oCCt5us3uUMjTDhCSK8DgkOGURqm5gUa0f3TEVvQkVsbQOWRQR9DpQ7nHixAHjwgdO1dN1E7phodLngiAI8Lks9MRVaIaBwz0J/HLrIWxa24g55Z5xf/28ThmqbmLr/m7EVWPQsAqHJBbMumR6WrpjKsoUGWWKA6Zp4c2WqdvTwk1Nx4aZuXFgmvlT7Qyj+LGGAbzxRm5gw1tvFT5OEICVK3NB0oknjiwjpCi5AElROKyB6DjDv8RE08hkZx+Gyx60R9JYs6ACSc0c8mR5YY0fC2vsoQnRtIaHt7XgUE8SVV4XZCkOzbDgkgVYloVYSkdNmYK6gIJ3u+JoS+mo8jqxoMqLaEpHWjeQ1ky0R5JYUO1FXVlu+lSmzKlMkXGgOw6fIueV8cmSgObOODxOCftCMbT2JbGiPjjur19Ss8sC2yMpzCpzwS87s8MqIikV5V4X1iyozMu6ZIK9Qz0J6LqZNxWw3O1AXNWnbE/LsUwSnKmYmRsjTcuV2iWTQ5fa9fQAL7xgB0gvvACEw4WPCwaBc86xA6S1a4GKiuHXIcv5eyJxWAPRcY0BE9E0UYqJWiPJHlyxei4ADHuyPHBognyaiB/9pRl7Q1HIooBIUoNfkRBP271GTdVeCIIAj1NGtd+F9kgaoiggrRt4pz2Ktr4UZEmA2ynjp8/tzwY8mTKnMsUB3TThkHJ/4pKqge6YiqRmoMLrgClZ8DikcX/9TNPCk7tCKFMcMEwLsbQBl25BEO1yw86oClkUcf6J+VmXzAj1zmgKumH1lx/aUwE7Y2lIooBth3qnbE/LWCYJzmTMzI1CKmUHSLHY0KV2pmlnjjK9SDt2FA+oli3LZZFWrBg+4MkMa8gESBzWQDSjMGAimgYma6KWaVo40pvA/q44AGB+lRcLqnwjyh6M9GS5ORTFk2912MMZYioiSQ1JzUAsLaGhwo0ltX7IooAdR8Ioc8u4+OQ6dEXT2H44jD0dUeiGhbqggiW1ZVAcYl7AkylzMk0Lsmj3OrlkCZZloSeehmqYcEkiZFGEKQBBjxN+ZWSv30hLITNZrkW1PnTF0th+KIzOqF2GKIkCfC4JbqcEl0PE4Z5E9vEiCQ2HuhMwTDNbRgjkpgJ2x9I43JNANDXMGOQSOq43NZ0AzMwVYZr5U+2GKrWLROwepEw/UldX4eN8Pjt7tH69nU2qqRl+HU5nLkDyeFhmRzSDMWAimgYmY6JWcyiKX718CFv3d6MvocESgKDbiTPnV+DKM+finzc0DRkwjORkeWCWbG6FB0tq/QhFU9jXGUNCNVHuceBIbxJdsTQAAZYF/G1/D+ZXeVDudmBuhQcLq30oc+eGRAwMGP/pnAVoqvbhzZY+lLsd6Iyl4fSKUHUTSc0ALMDjkpDWTdSWKdkhDMO9fqMphcxkuVKaiHe74nBIAurL3RAFAaZlIa3qONAdx38+uQeiIGQfzyULiKQ0VGSmBR71HrscEqIpHbE0hwAcT5iZ66fruQApkSieGbIsYM+eXBZp27biAdXixbks0imnDD98ITOsITPRTuYpEhHZ+NeAaBoY7USt0Q6GaA5F8YOn9mLH4TAkAaj0OyFAQDih4cndHQjF0vjM+YuO6Yp3sSzZ7KAHdQE39nRE4XfJ6Iyl4XFKmF/pRU2ZgqRm4NWDvTjUncApc4MIePKn8Q0MeNoiqWyZU1zVIYkCumNpWLAn9rlkEaIgwDOg7K/Q63f0azOaUkivU4ZLEvFOexRJ1cjLFgFA2LTQHlWx40gfNiyuxmyX/XjvtEeQVA1EJb1gT0taM+FxSvAp/LN9vJmxmblUKtePlE4XPy4eB156Kbc3Unt74ePcbmDNGjtAWrcOmD17+DUoSi6L5Ga/GBEVxn95iaaB0UzUGu1gCNO08NjOduxpj8IpCXkn+LVlIrrjKvZ0RPH4znYs2DD2kr/hsmRuh4hn93RBEAC/IiGWNlARTqGpxov6oBvvtEfRGk5hTrln0P0HBjwnzCrLljm9frgXh3oSiCY1iALgdUmYU+FBU7UXFd5cD0KxiWRjKYWsD7pR7Xfh5Xd7UO3PzxaZponOaBpOSYSzf/CWJArwKw4sqvFjT0cMSc1Ad1yFP2+Eug5ZFtFQ7obfNTVHFE/k9MbptC8VDcGy8qfa6UWypZYFHDiQyyL97W/2sIdCGhtz+yKdfrpdRjcUWc4vs+OwBiIaAQZMRNPASCdqJVUD9740usEQLeEk3mzpg2FZ8A8odQPsQMavyIimdLxxpO+YSv6GypL1xFXsbI0imtJQH1RQ4XVlp8pF0xoW1vjg7c8+RVM6ytz5QcPRAc/AMqdoSkMkpeFPb7bjYHccK+oDEAeMCR5qItlYSiFFUcCq+RV4bFc7YikDgiBkA5/euArTAmrLXDAtC6phZh+vrL/k8FBPAmWKjKRmZkeoV/tdkEURp84tn5JT04YK0hdUHVu52XTbl4qOouu5LNJQpXaplB0YZbJIhw4VPs7pBFavzmWR5s0b+vkFIX9PpOECKiKiAhgwEU0DI5modf7SGjy5a/SDIeKqjoSqA7DgkAbvN5K5LaHpx7SJZrEsmWma2NnSh964arcQOCWIgpAddtATV9HRl0Kl14H9XQl0RJL9v5cdOA43glkUBdQHPbjyjLm4a8s+vH44jLqAgmq/CynNHHIi2cAgz7IsRFN63ia0xUr5TpxVhsW1fvTGVcRVI7d3lMcJC4DLIULVLTgHvN6CIGDJLH+2JHFhjQ+SKMAw7eet9Lmm5NS0oUoWd7dHUON3IZzQxhTslGIyJI2DdDrXj5RKFT/u8OHcsIatW4sfW1+fyyKtXj186ZzLlQuQ3G4OayCiY8aAiWiaGG6ilkuWxjQYwuuU4XHKAITsVLmBtP4siMchH9MmmoWyZD1xFbta+7AvFIVqmDAtoDOmokYQ4XZK9oazioy2SAqyKCCpGvjbgV4E3DFU+ZyoD7qR1MxBAc/RWQlVN5HWTOimie6YioPdCXicEhoqPDh1bnnRiWSZIK81nEB7Xxo9CTVvE9pZAVfBUr76oBunNJTjzZYwTipToJl2cGRZFrbu70YkoWF2uQf+o/qRFIeExbV+LKiyJ+wlVB0uWcKKOcEpOTVtqJJFVTexZU8n3A4JaxdWZXu1RhrsTNZkSBoHlpU/1a5YqZ2qAq+9liu127ev8HGyDJx2Wi5IamoaOuiRpPw9kTisgYjGGf+qEJXAWHsyhpqo9XZ7BEnNgM+Q0RVLZ7Mgww02qCtTMLfCg7fbouiJpTEr4M7ex7IsRJM6DMvCrIBdRmaa1phPUE9uCGBXWx92HAmjwuPEnlAMvXEVmmnB65IgCCKiKR2GmURdwA23U4JuWOiOqXBIAuZV2kFGV3/QE4qk8Z4TanDF6rnZk++jsxIpTcJrB3sQTmoo9zhwWmM5DMNCa18SXqeM80+0A5FC70l90I2gx4En3+qAUxLgdzuyeyN1RJI43JvABUtrB2W2BmYEO6LpbEYwkdZhAjAsYEGVZ1B/077OGOZXeXHl6gYIgoCkZoy5Z2cy+n6KlSxaloV9nXGIgpA9z830ao002JmMyZB0DAwjf6qdaRY+rr09V2b317/axxZSXZ0LkM46yx4DPhS3OxckKcrQxxIRHSMGTESTbCw9GSM5+e2KpnGwO449HVEIArJZkKYae8BBocEGzaEoHtvZjrfaIoirOuJpHX1JHbUBFxSHjK5oGvG0Dp/LgXe7Erjzqb1j6h8Z+DvHUjo6oym81RqFZVkoU2T4XDIqfU44JQltfUkkVAOhWAr1AQUdkRRU3cSsMjdOm1eOco8T0ZSOtG6gJZxEhdeFBVW+7Os0MCsBALvbemGYFuaWu9Gb0HCwO4FV88oxK6BgbyiGp3Z3AACefGvwe3LB0log03Jx9BVuQQBgoVgIUiwjeM7CKnRE0+iOa3DK9p5MbeEkdrZEoBkWLAv4r6ebs6/zWIKByer7iaY19CTScMoiLCtXJhlN6ehNqAh6HEioel6v1kiDndFOhqRJkE7n+pGKlc/pOrB9ux0gbdkCvPNO4eNEEVi5MteLdOKJQ2eRHI78LJI4uHyYiGiiMGAimkRj6ckYyclvcyiKP73ZBt20oBsWqv1O6KaVHZqwoj6AI+Ek5ld5s1mi/V0x/OCpvdjTHoVhWXA7RGi6ndU41J2ExynBtICg14nT5gYxO+gZU//I0b/z7KAb7X1JPLe3E16XhBUNQXREUuiMplGmiKgLuBGKppBIG2jvSyGW1lHhc+KM+ZXZyXb20AcHFIddhpg58T46KxFJauhNqPApDoiiCJ8ioyeuZgdH1AUUbDvUi3fa7ZLAo9+TPR1RxFUdpzeWo60vjd6Emu1Hqi1TMKvMhd6EVvTEv1hGcH9XLPueNodiONyTgEMWccrcwJhf52P5jI1FcyiKh7e1YF8ojgNdCSgOCeUeJxbW+GBaFnTDhFMWIIliXq8WMLJgZzSTIWmCWBaQTOYyScUm1XV3A88/Dzz7rL2JbCRS+Ljy8ty+SGvXAsFg8efODGvIBEgc1kBEJcR/aYgmyVh6MkZy8rugyofHd3agN6HhjMYK7DjSh3BCg0+REfQ40BpO4rFdHShTZFgWcOdTe7Ggyot9XTHsOBweUGrmRIXXiZ64iqRqIOB2YnbQhZUN5dmpcqPtHyn2O7scEsoUByzLQiiaRlOND7G0jp64Cp8iY3ZQQSiShs8lw4KA9YurUelzDXr8o0+8j85KqIYJ3TDh6O8Vckgi4ulcxkNxiDjck0C134VT55YPek+2HepFZzSN80+sxZxyz6ChD4Zl4UBXfMgT/0J77GQCqSO9Cdz9wgEIAvKm9/lcMmr9LjR3xvDgq0fwbxcugSwPf0V9svp+Mp/L7pjaP9RBhSKL6IzaAe7Cai9kUSjaqzWSYGekkyGn4tTAac0w8kd/Fyq1M01g585cFunNN4s/3kkn5YKk5cuHHuPNYQ1ENEUxYCKaJKPtyRjpye8lK8Ts4/oVB1Y2BNEciqE3oSKh6oim7JP5xbVBLKotQ0LV8bcDPXjjSB88LgmVvtx6FIeMuoCElt4EOmNpnDI3mDeCu9haR/s7OyURsiRCFOyR4ktq/VjZEMS+UBw9CRUpTYcgCDh1XjlC0TQUWUQkqWWDFZ/L3qepN6FCNy14HPZJ2NFZiczzaIYFl2wPtRiY8eiMppFQDcwe0LeV/3u67V6paAqzg57B48zT+pizHKIo2FmwlIamal/2de6Jq9n3L6UZONidgGVZ+NDpDcNmhiaj72fg53JxrQ/Vfie2Hw4jltbhdUmIpXQc7InDsKyCvVojDXZGMhlyKk4NnJZUNZdFSiYLHxMO29mjLVvsbFJPT+HjysqAs8+2A6Szzwaqqoo/L4c1ENE0wb9ORJNktD0ZIz353d8Vz3vcCq8TpzeWI5LU8PrhMGDZ48Kr/Eq28b7c7UBKM6A4Bp9sCoIAj0tGd1xDWi/cyD3S/pFiv7NfkVHucSIUSUEQ7P2IqnwulDc6EUlqaO6MYensMnzu/CX49mNv44V9XRAB6KZln4gb9uCJlGagwuvC/21vxd+dNAsLqnx5WYnM83RGU3B4HIildNSUKfArcvbE3eOUUO0fnL0CgGq/y+4x6kuh7qigajyyHEe/Pj1xFdsPh5FUdfgUB7wuCd2xNN5qi2DziweGLKczTQv7OmMIxVJ2Zs6yhtzgd6yO/lxWeF15wa5hmeiMqlizoAIJzczr1RptsDPcZMipNjVw2siU2mX6kQqV2lkW8PbbuSzS9u3FBzuccEKuF2nlyuKBjyDYAxoyARKHNRDRNMGAiWiSjLYnY6QBFgC4JBEdkSScspQ3HS+tm/ApDpgW8vtIRAGSKCClmVB1Ey5HfpmMJIgQBCClGQWf++i1FhpKAQDhhIreWBo7kjoqPA6Ue50o698cd2GNDz3xNKIpA72JNAzTyu45NK/Siw+e2oCXD/aguSuGWFKHQxagOET0RDUkNQOSKGJWmQsnzPJhV1sEbZEUNq1tHJSVaKzyoCeexqHeJIJuBxorPYildbT1pVDpc0FxSEhqBvwF9qBKaQbmVnjg7c/ojTXLUWxox8DPhM8lozkUQ1LVUeF19r9/BhSHjIXVPnRE00XL6TJ9bm+0hPFuKI62cAo1fgULa3yo8OZ6P8aj76fQ57LCawe70ZSOpGagI5LCtWvnwymLxxzsDDUZkkbBMPJHfxcKfmIx4KWX7F6k554DQqHCj+Xx2D1ImSCptrb48zocuQCJwxqIaJpiwEQ0SUbbkzHSAEsQgK6Yin2dMXicEmRJRLnHiUqfE5phAJaA2oCS10dS7rYHJiRVHbppwgUpby1JTYdfkZHWjUGZiqPXWmgoRcAtozWcwq7WPnRE7GBIlgR4XTLmVXpwUn0Q5R4HfIqMlGbizSMRaIYJhySisdKLtQsr8cSudvxpZzt64mkoDhGGCYQiKlTDhNshAv17NM0pt0vLMiWKn1zflJeVSOsGGio8qNFNuGQRfUkNKc3ESfWB/s1+Q0O+J6fOLc8eN5YT/6GGdgzMiNX6XdkBFZkNeTMZsTK3A6IoFCynG9jnNjvgRl9CQ3tfEqH+fqKVDUFUeJ3j1vdT7HMpCEJ/MAyUe5zwKw40VHjGJdgp1AdGI6Cq+VPtLCv/55YF7N+fyyK99lrxwQ5NTblepNNOKz6EQRTt/iOv1/5yDP7bRUTHj8nYwmIqYMBENElG0pNx/om12T88boeEBdVe7GqNFD2Znx1Q8PjODkAAytwyNN2EKAChSAodkRSiKR0VPheaqn159y9zO1Bb5sKBbgPRlA5ZEuGQRGiGiWhKh2kBZy+sguKQhsys7O+KDRpK8U57BI+/1Y6U2p+d6n9a3bAQTWnY2xFDX0JDhc+JSFJHQ7kbdUEFkijCME20hVO496WDKPc4kNYN1JYpEPp7nXTTRI3fhYDbAQtASjPzJt5lAopCWYm6MgVt/eVoA/+oi4IwbJ/Mwho/Flb7R/2PwkiGdmQ+E82dMaQ0A16XhLRuIJbS4XZKaKr2QhCEguV0hfrcFtX6EFd1JNI6IkkNezqiWFrnR3skPS59P6MN/BnsTLKBU+1UtfDPX345FyS1tBR+HEUBzjzTDpLWrQMaGoo/p8uVyyJxWAPRjDFZW1hMBQyYiCbRUD0ZS2b5B+0FFHQ7IIlCwZP5co8dNPQmVJzSEERvQkVzRwwd0RSSqo60bkGRRVR5HCj3DL7KW+l1wTAtmBaygyEAe4PRkxuCuP7chQBQcK3nn1gLhyRi84vv4khvIjvhrTuWxo7DYaTSBkzY501OUYAp2BezLctCWjfQFUvDtCw0lHtw6rzcdDrLsnCkN4loSoPHKUIA4JRFiIKAMkVGZzSNuGoHSA5JQFw1sxPvjg4oCp2o1wfd2aCnJZxEfdCNhTV+XLOmEf/vtcPY1xmzR6m7HYMySMVO/DNX16JpDbGU3t875UBdmTKioR2ZjNhvXzmCg90JdMfSUBwyasoUNFV7s6PUC5XTFepzG9hT1BFN4UhvAkG3Ayc3BMel7+d4HcYwba+Smmb+VDujQBntoUO5AOnllwsHUoAdFGWySKtXF+8xkqRcgOT1Dj35joiOS5O1hcVUwYCJaJIVyn4kNR33/vXgoD88bX0pSKI94CGc0PKClhVzAnhoW8uAk2UBCc1Ab0JDWjNgWrB7fXqTEMReLK71553YNlS4ccnJdXirJYJ3u+IwYcLrdGDFnAA2Lp+V/UNXaK1P7urAG0fCeLO1D26HBE23sKDGi7faIoikNFiw93u1LEAzLEiiAEEAHLIISRDgdkhIqAY8LgnRlH7UhqcaKr1OxFIGBNj3N00TXTF7Il5vXIOmW3A5RLidUrY3q1h/TuZEeHdbBK8e6EVnNIW0YWavhJ1Q58fbbVF0RtMwLAuSIKLar+D8pTUjLrd7/XAvDvUkkFQNuB0S5lZ6sKDKi/1dccyt8AwavnD0xLqFNX58fuMSABbeaotgYbUv2+sFFB8wUazPLdNTFE5oeLc7jitWz8W6RdXjFgAcb8MYpt1VUk3Lldolk4NL7VQVeOWVXJB04EDhx3E4gNNPz/UizZ9fODskCHbmKBMguQoPSSGimWGytrCYShgwEZXAwGyFaVq469l9Q/7hqfQ6ce1ZjUhoRvbq955QNHuy3BNXsXV/NzoiKZiWBcuyBygYFhCKppFUDeiGCbdThigAFT4nXLKEl/f3IKkZcLsk1AW8OO/EWqxtqsr+gTv6qvvAwM7tlOB2SPC6JISiKXTH09kx3wNP3wQBMEyr/3/tFoe4qkMzLOxui+JQdwIel4zZQTckQYBumAh4HFB1A16XAz3x/vWbFpySiLRuQBDs4RAWAM0wBwUU2SCpPYJX3+3B/q4Y9rTHoJsW6gIKlswqg+IQsXV/N36/3Q46F9X4UF9ubxp7uDeBe/96cMgrZJmra4f6x44bhgW/S0YsraE5FEVbXwqRpIYavwJ/gQv1R2fEZFnEh05vwOYXD6AjmoYoCsNmbor1E5mmhbZIEj0xFQKAxgpP3v3GI5tyvAxjmDZXSQdOtSuUIWpttQc1bNkCbN1qD3goZNasXBZpzRo7ACrE6czfE4nDGoio32RsYTHVMGAiKrGR/OHZ1xmHIAg4YVZZ9meZk+VYSsPOljA6oilohgnNMGH2RyyZMrhoWkdzKIamah9MWNjXGYdTErG8vgxN1b5sNuuxne2oCyhYWOMfdNXdJYnoitknaqfMDSKa0uGQRIiCiAqvhNZwEn1Ju2FcALJBkwABgmifpGu6BVMEJBGQRQGyCHTHVRzqSWJPRxQBxYG0YcKCBYckYX6lF+19KSRUw+6XgQXNAJKaCY9TglMUsbs9gmqfC5U+V7avKpP12dMRhW70B3CWhTK3jPZICn1JDctnB6AZBqIpDdU+Z7YfZyRXyDJX17pjaeimCcO04HGK6E3YU+JSmom+hAbdtLD9cC/OP7F20HtbKCM22sxNoX6id7ti2H4ojN6EPSBDkSXc/PBObDp7Ps47sXZcsynTvT9pSl8lNc38qXZHl9ppGvD663aA9NxzwJ49hR9HkoBTT80FSYsXF84iiWL+nkgc1kBERYx2m5TjAQMmohKLqzqSmg6fIaMrls4bCw4U/8NTH3Qj6HHgL2+H0BlNI6kZMPqjFKn/fEiS7GlrmmGhzzQR6x9fbVmAYZrYG4rB65JR4XXlnSCaJnDvS/lX3UORFPZ1xuBXZPQmNJR7HNk9jiq8TigOCYZpQRKAzMBiO3CyIPZPfjABCJYFn0OGJIpoCadgWYAgWLBMAX0pDQKA1rSOxbU+BD0OeFwSBBHQdBNp3YLXZZ/Myv2/WyiSxqp5Fbh81RwAwOYXD6A7lkZvXIVDFCELFo6Ek7AsoCehwjQtQBDQGUlDlgUE3Q70JrTs8Ahg+CtkmSDXr8g40J2ALAnoiKahGRacsgivKELT7ZLCA11xHOqJY16lL3v/oSbWjSZzc3Q/kW6YeOVAD9K6Cbl/z62AImNvZwy3//lttIaTeLs9OvWzKZNkyl0l1fVcgJRIDC61C4XsTWO3bLE3kY3FCj9OZWUuQFq71t5MthBFyQVJisJhDUQ0IqPdJuV4cPz8JkTTVGc0jYPdSezpiEEAsmPBM3voFPvDs78rhlA0jYRmQOsf3pBhWoAoALIgQO0vkbMA9CU0pFQT5V4nnJKAnriKfZ1xlHuc2RPEvR1RhBPqoKvusixAloB42sCu1j6sbarEwhofYmkdPXEVgmAHSKIgQBItWKZ9/mVZsDeb7V+fQxJQ5nYinFRhWhYkQYAkibAsIK0ZkPt7kvoSOnoTKkRBQHX/RL0Kr4jlswOYU+5GLG1k9/y5bOVsLKjyZUsbZ5UpONAVB2ChK67CMC1Ylv26OGURhmkhoekQDQGCIMDrtLLDIzKGukKWubpWpjigGyaSqgHNsOB2SNnfWRMEVJc50RpO4fVDYZR7nPC45BENRxhN5iaTlfrzm+2476UDSGoGfE4ZbqeMCq8TbqeECtPEoZ4kfv7Cuzih1o8ls/xTK5tSIlPiKmkqlQuS0un8nxkG8MYbuSzSrl2FH0MQgJNPzk20W7ascAmdLOdnkTisgYjGYLTTUo8HDJiISqg5FMWf32yHbpgwDBNVfhd0E+js30NnRX0ZjoSTWFDlg2VZME0LoihkS4kM08KaBZX4yzshpHX7hD9TDmdZgGqY2UDFMIGEakAUBDgkO1DwKTJ64mo2u+J2Sni3S0UkpWFepTf7R7AnnsbbbVH0xjWYloXehIqUZuDUueVY2RDsvwqfsMd0iyI8DvvxE6oOXbeyGSdRABqrvBAFAd1xCwG3A6puQTdNO/MDAQ5ZRLXPCackoTehZTfPrS/35E2NK3OLeXv+DMwWhKIpO5hUdej9vVwCcgGdKAFp3X5hUv0nw46jgoShrpB5nTJckoho0l5fX0qDqz8Qk0QBhmVBFAS4JAlVPhcckoTWvhRkUcibNOiSJbzdHjnm/p+FNX6cPj+NX718EPVBN8oUB5yymH3/RFFEmVtGS28Sy+vKpkY2ZQooyVVSy8qfaqcfFYz19AAvvGAHSS+8AITDhR8nEADOPtvOIp1zDlBRMfiYzLCGTIDEYQ1ENA6O12mpQ2HARFQimaCnN6HijPnl2HGkD+GEBp8iI+hxoDWcwmO7OuBXZJgW8K0/7UZdQMF5J9ZiXoUnGxz4XDLmVXjwVmsEutVfVWPZ5W/igKyTBSCl20MjNMOCSxbgkETE03o2u5JUDYiCCMOy4Ok/SeyJp7H9cBjhhD39Lq2ZgAC82xVHd1zF6vmVWDUvCIcEVPlcdsZIBMIJDUlNhm6YcDkkSIIIwMLy2QG8drAXUn/w4JLtoRB20ATMCigwLAu1ZS5cfVYjntvTiXe74tnR5dnf56irWJkhGClNxN4Ouz/HsgCHZO/vZAEwLPQHNYAk2uvRTAtHz2QY7gpZUtPRFVOxu60P0ZQO1bCQSBtwyAKcktjfCyUjbZiYHXSjwiPjw2fMxayAkjdpcDynsvX2vz/lXifkAtkFWRL6M33W4Dvj+Kw5H86kXSXV9dzAhqNL7UwTeOutXBZpx47BpXgZS5fmSu1OPrlwhmjgsAaPh2V2RDQhjrdpqcNhwERUIgMzIn7FgZUNAvaF4uhJqEiqOmJpHZZlYU65H5puojmcxI7DYWx5pxMnzwmiJ6FidtANQRDQVO3Du10JxFU9rzTP6g+eRNjnTZIgQDNN9MTSqC1zQTMtSKIIpyRmTxAX1vgQiqSQ6O932heK26V8mp2dkiQ7w6XIImIpHX/d14WeuB/zKr14zwk1eObtELpjKhoqvHa2xbQn2lV4HVAcEvZ0RGFYFuT+TIws2gGWagBelwyvS0JXTIUkilhU48fcCg82v3gAzZ3xIa9iZbI+77RHoRsm/C4HehIqRMvKBpHZqXoQ7Oc37YAKFhBOavAqw5fMNYeiuPevB5FQdWimnbrKZPU03YJuGJD71+NxyqgPKgAELKiyM3a72yN4dEcb0rqJ2cHx6yOq9DrhkEQkVQN+ZXDApBv95Y9FTqCPx5rz4UzoVdJUKhckHV1qF4nYPUjPPWd/dXUVfgyv1+5BymSRamsL/RIc1kBEJXG8TEsdiZnzLyPRFHN0/0Rm75xIUsPrh8P9ZXUW2iMpwAL8ioxyjwOdURXbj4QBy0KVz4mGCi8aKuxytT2hKBJqrhdHBCCIdjle5kQ5ktQgiSJiqg5FFjG30gvAwt5QDBVeJ/7htHo8uSuEna19qPW70BNPQzNM6KYFr7P/irZll3FJomVnqHQT15w1D4tryzCv0pO94pRQdbhkCSvm2FecAOCHTzdjf2cckiAgrRmALEE1TDgkERVeJzTDQlozUFvmQjSlwa84cM1Z8/DkrtCQV7Hqg25U+114+d0eVPvt4CGc1GBYVjagEWD3MVkWIAoi3IqIE2r9/UGqgQNd8SGvkA2cjueURQTcDvicErriKjTdyj6HJApwyAJW1JehJ6GhLqDg/7a3Yl9nDLvaIoildMyr8KDa74Qkjmwy33BObShHY6X9GfA6pbxsnGmaiCR1VJcp9th3y5oRNecjMW5XSS0rf6rdwFI7ywL27gWefdYOkLZtK7zBLAAsWpTLIp1yip0xOhqHNRDRFDHdp6WOFAMmohIp1D8hCHbvT1o34XPKCMXSEAUBtWW5KV7lXgeSqgHVMLGzJdJ/NUfESXMCiKU1HOpJwOzf78gpidkTZFHMDTxQHBLCSQ0pzUSdYaIvqeedIIqCgNa+JJo7Y4imNaQ0HRBExFUDDklEXZkLsiRCMy30JVT4FBluh/3nZLgrTjecuxDf+ONbeLsjAtOyEFd1+BQZlV4nNMNAa18KTklERySF//5Lc7Zc7YKltfh75+yiV7FEUcCq+RV4bFc7YikDPkVCmSKhL5nLutm9W0Ct3wVBEDE7oMCnyFjTVIVLTq5DcsA+V4UClqOn41V4XXBKAvyKEx2RJFTDtIdU+BUA9nQ+v+JAKJpGW18KPpcEAUDQ40BnLI2YqmNlQxAVXtcx9xHJsohr1zbi9j+/jUO9SVT2D3xIqga64yrK3A5cvWYe3m6Pzpia85Ea81XSTKld5mtgKV08bu+HlCm1a2sr/BhuN3DmmbnNY+vrBx/DYQ1ERCXFgImoRIr1T6iGCd0woer2FejMBLsMhyQiZulYUOXF/s443mjpQ1O1D2VuB5qqfeiIpCEIgM8lwylLUHUTZn/pWySpIaWb0A0LblmEIAqwLOB9K+tx9qLchrWZq+6/feUw3m6LIJY2IAh2MCAKAsJJDRVeFxySAE//mPKBvS9DXXFaPMuPr1x6In70l3043JOAqtt7IbX0JpHU7L4jSREQTmhYMkuB4pDyytUG7kV1tBNnlWFxrR+9cRU9CRWqYcG0LIiZsjnTgsMhAoIAxSlBlkRU+lzYuLwW8yqLbOA5wNHT8Rz9498DHnvIQnc8jUhSg2YYMC1gfqUPogC0RVJYVONDd//EvjK3Az4XBk0pPNY+ovNOtLN497x4AAe64+iJq3BIIpbU+nHNWY2D9mE63mvOR2PEV0nT6VwWKZXK3W5ZwIEDuQDpb3+z90oqpLExl0U6/fTBwxg4rIGIaEphwERUIsX6J1TdQEI14JQFeJwSHHJ+P4pmmJBFEbODbmiGhflVXoQTGjoiKXicMlY2lCOlG1hU47OzUEf6oDgl6IaJcFKD2yFhdkCBV5GRUA2096Xwu21HMLtcyTthXljjxwdOmYNn3g4hkrKvuisOERaAuGogrSfhdkioLnMh6HYU7X0xTWvQlfvFtWX41/cstDeYPdSLnrgGWRQQdDvhlERU+BzoS2p4s6UPKxuCWFTjG1G5Wn3QjVMayvHS/i440iLKFAeqvE4kNQOxtI542oBq2PtCNZS7cerc8lEFCpmsoGGadoatf3gGYA9NqBZcdkasxgdBAP7upFr89pUj2X1+nJI44H7ioCmF49FHdN6JtVi/qBrbDveiO66i0uvEqQ3lkPs/RzOp5nxcZErtMv1IA0vtUik7MHruOTtQOnSo8GM4ncAZZ+SySI2NhY/JBEgc1kBENKUwYCIaRqET/pGcXI7kfgtr/LjmrHn4f6+2YF9nDKZlIqA40FTjQ0oz+rMVJlyyXYJjWRZiKR01ZQpkUUCVz4VNa+dDFITs8yRVI7vprFMWkNB0mJaFjqi9p9HcCg88Lvs/fa9LgKob6I6nBwUjpmnh6bdDmBVQ0BNXkdQMSCLgkCU4JAHxtAFRANwOCYtq/QV7XwZmMwpNg2tc58Udj72NcFJFuduBfV1xlCkOuBwSXLKUzcCsmucctlwt83o31XjxyBut6EtomBVw9WfZ7FLCap8An0vGyrlBXHf2AjSUe0YVKGSygm+2hPv7ydJweu3skGVZiKV11JS5IAoCVswJoMztyOtTs/vQ7M1+nf1DGjJTCofrIxrN51CWRZwxv7Lo7zGZNedj/e+npAwjfwNZc8AeXUeO5LJIW7fmZ5kGqq/PZZFWr7aDoIFEMRcgeb122R0REU1JJf0Lffvtt+Ohhx7C22+/DbfbjbPOOgt33HEHlixZUsplEWUNd8I/3P2aQ1H0JjVIAtBU7cMHT2vA4ln+vOOe3BVCZzQFo38T15oyBZecXI9n3g7h1QM96I2rqPa7oJt2sOR2ylhQ5UV7JI2T6gMFT/o3rW3Er14+hOf3dKIzqgKwT1z97vzRyZphQpYk1AXcg4KRlnASrx/uRVI14HFKiKs6wkkNkqhDcUjwuiSYACp9rqLT5Da/aAdudYHC0+Da+lJ4cV830rqBjkgavQkVac1Epc8FxSHCKYtoCyfRGlRQ41eQ1lOIpjQc7I7j3a44AGBBlRcpzcSTb9nvU08ijXBChSQKiKR0yKIBSRSz+zg5JBG9cRUdkdSwPUtHG5gVjKcNSKKA7pgKl0PMbrorSwJcDhELa32IpXS4JDHbpyYIQt5mv5m9klTdzA7dKPZajuVzWGrTat3pdC6LNDAIUlXgtddyWaR9+wrfX5aBU08FNmywg6SmpsFZIkWxg6PMsAYiIpoWShowbdmyBTfccANOP/106LqOL3/5y7jwwgvx1ltvwesdvp+AaCKN5IS/0Elf5n6HehJIpO3x4GndwO62KF5+twefOm9Rtpdk4OPXl3sQT2t4pyOKI+Ek1i+uhksW8Ow7nTjSm4TXJaPK50J9UEF3XEWF14nzl9YUvXqf0gzUBd1wSCJ64mkkVAO6CbRHUphVpkBxiNlsVbXfhYPd8bzemd1tEexpj8IhCajyuxD0OO3+mrQOw7TgcUpwyhLOnF8B3bRwuCeRff7MNLmeuIpFNb5skDZwGtyvXz6E1r4UeuJp1JYpsJx2hiaW1pHU7IxQWjeQ1k1s3d+Nap8LqmHi6398C+19SaQ1u6dKcdhlbjVlChbV+OCURRzoSkAU7H6vRbV+VPtc8Pf3G3VGU9jVFsFPt+yHyyGO+iR+4FS11w/34nBPAtGUDo9TQoXXCVgC4mkdD7/eApckoiumoium4pS5QQiCgAqvs3+z3ygOdifgV+y9qor1EY31czhexpohKvW6h2VZQDKZyyQN7Dfq6MgFSC++aGeZCqmutoOj9euBs84CfL78n8tyfpkdhzUQEU1LJQ2YHnvssbzvN2/ejJqaGrz22mtYt25diVZFhBGd8Bfqp8nc71BPAr3xNFKaCZ8io8ztgKobaI+k8F9P70V90I2nd4fyHr8nrqI5FEVHJIW+pIa9HVFcctJsfHJDE3a3RtHWl4QkAoCAk+oDWDLLnx21PfDq/QXLavDErg60hJOYU+5Gpc+JXa0WYmoSDsEeKhGKpeB1SPC4ZDRVe5HS8ntnTNPCqwd6oZsWKrzO7Aaz86u8SOtmdpiAJNgB3fPNXXnT7MJJFa8d6oHikNAVT8MlSfAr9mNHUzqckoDn9nai3OOExykhrRlwySK8TgmRlIZIyg7cREGABaArmsb/z96fBtl5pfed4O+cd71b7it2ZALcd4JkkayFrCqVJEvj0cjdttXdE7IcMW07bHU49MFhR9sfHB0TihnHTDi8KRQxY9k9brnlZSTLI1ulKhZZZFVxA0gQBFcgsSWARO437/qu58yHc+/NBJAgEjtAnl8EAsDN97733A04//d5nv//XDVCm9gj0wroOwyXPJYbCXGuyJVmz3CRgucQdio3jTjj1FLTPHYEqVIcOr1Ko5MLNd53fZv4jXNA9TilEWWsNlP+y9E54jRn20CBou/SSjKWmglzaxGcqbJ/vEzBNy2N/QWPZ/YO8UuPTvLgZN+mQuR6P4c3i+utEN3pdV+RPL8oQFZlOfO1iFY7pv/zjxk+9Bbi9dfhk082vbuWkujhR0m//g3KP/cd5EMPXlxFEmJdHJVKm1uCWywWi+We465qml5bWwNgaGho05/HcUy8IQCwVqvdlnVZvnpsDJUVl7TVfJH987lqm+MLdVpxRpQqhkrrDneh5zLRJ1isx/zrN08SJap3/pVmwlsnllluxigFSivm1iL+6PB5Ht7ex//07f0UOm1xl84pXXr1/tCZFU4vtUCY9bhSUvQcKoFLPc5wBLQixXDJZ/dwCUcIzlcjHtuxPjtzrtpmsR4x2R+y1k57rWNCCELPoehLZlcixvoCJvsDlBbUopTXPl/g+x/NIRDMLDYQArxOXlF/wQMNUaZoJSnztZhqMyXTmiRTplIkBXGmyTsjI0JqpDC3dQ2bBcYePM4Uc7WYwJH4jnkNZxaa7B0p0kpylpoJWZYzt9bm7GqLwaJPlitaqeK+8TKT/Sb093o38RvngJTS/M5rMySZ4r7xykUC4cmdA0AVNJ1WQNXJphq4quHE9X4ObwY3UiG6k+u+jCRZryK1272bZ4/PcuaP/ozBg2+y99P3KbQbm99/cJDGs8/z/t7HObj9IdbCIoHjsLNW5BsrTXZPDq232RUK1qzBYrFYvoTcNYJJa81v/dZv8fWvf51HHnlk02N++7d/m3/4D//hbV6Z5avIpaGyl3Il++dmkrHaTmnEJlvo0s2i75q5nBMLTQqBw/bBIlprjpyrMrfWRgCB5+BJl1aak+Y5H8xW+d/fPcPf/6WHeu1uv/PazKZX75Ms5wefrNKMje144DmkuaIRZZQ7ZgrtJKOdmts+PFclzTSjlYD/9sCOnlBoJhlxrrh/oo8Pz62x0jRZS54jSTLFQj1Bo9k1VOSz+SarrYRWkrHWTkkyE0KrtcZzHbQyQmGhFuNIwbaBEIEgyzW1KMVzzdxPlmviTJFk6qLXLOuEKHXDZ1Xnz66EJNO0Vc5Q0SNVMLvaYrkZkypTceoGyWa5ZrmREGW5cbOrXLyRv9FN/NUEwv6xMqvNhF97bhd9HUfBrbS2Xe/n8Ea50QrRnVo3sN5q160kdVvtlIKjR+H114lf+RE7PvmYnRtzkzYQP/AQwXdehm99i9OTe/iPH1xgrZUyWgnYHvjUpcehWPDZOcGvTw+zb/TqVcl70vzCYrFYLMBdJJj+1t/6Wxw5coSf/OQnVzzm7/29v8dv/dZv9f5eq9XYuXPn7Vie5SvGZqGyG7mS/XPJd5ECGnGG60jQea86A8Zkwe/kHwkEJ5YaLNVjPj1fI1MaR5rKiRTgSGMr3owz3jqxzNnVFruGS1fcnGutObHYwhUgMSKh4AsC18EvSVaaSWduyawjU5py4DJSdil6Lq98Mk/gSkYqAbV2SuBIQk925m0arLYSGnGGVkaE9Bc85msReec89bYGDUprWknOQOiSA6EnWG3noMGRsNyIacQmb0lrTZQaUwa/I5q6W9jAFQwUPVYaiRFH+frrHOcmWwkgU92fGQEG4AhB4EpyJUhzhSPXf6/4LkuNmD3DxYtev61u4jfb+NbjlJVWjO9KtKY3L3XxuRV9Be8Lc6Qu5Xo/hzfKjVaIbvu6u6123V9dV7u1NTOD1HW1W1kB4NJUo7hQ4vwjTzP76AHe2v4w2/ft5Nee3QXAG2+fYSmT7Ni7jaxQouEHCGCn1luuSt5T5hcWi8ViuYy7QjD95m/+Jn/8x3/M66+/zo4dO654XBAEBDbAz3IbuFKoLPCF9s/tNKPeTjvZOime41DwnM4ckGC1mVL0TZVndrnJUjMhztavcuf5xivemtPLLXxXUotyfnJ8ib88WOT4Yp0zq02SvIDqhKAKIahHGSuthKGyTztT1DdUuYQwdtqzqy0E8OBEhQcm+whcM1u00kx459QKH8xW2TVcInSNWcFiI2HfaIm9I0W2ZyG+K2nEGW/OLOE5gkxphks+SaaIMoXnSqLUKBstBK6AVqrIc0WuIMuhHuU9UZQqcATkStHKYePTV0pjXnVTW7roldHdV2j9dfcdgcY41K02U0LPVMMqgc9IJSBKcubrEaHvXJR91HvvtrCJ32zjO1D0qEcpMwtNTi21CD2HwaLPvrGyMYHY4rk341o/hzerinGjFaLr/f5cE0myXkXqttppDZ99ZgTSj38Mhw8bMbUJS9v3cP7xZzn72LMsTD+I7hgyFOOMk9WYOXx0scT7fpP+qYD4EuG31arkXW9+YbFYLJarckcFk9aa3/zN3+QP//APee2119i7d++dXI7F0uNKobLtJGduLdrU/vnzC3X++aszZFoTeg5JpvAdaMQpa+2k0x4mWGnqXhXpCh1BPTKlIVNo4I/eP8e7p1Y4enaNs9U2n5yvU/Adtg8UeGzHAEprMqXwXZf+gofvSJYbMb7nIIWgnZjw1sn+Ag9vH+ht5leaCYdnqzSjDCEFBdehv+hyZrXFqaUWn12oUfAljpQUXAfXMQGsIHpW2bnWKK1xOxtjR5rN+2hfyGIjJu1c8FebPN9cr78O3bY7gFzBSjMlV5pLt+Ua2KAziTNNlhvnPs8RZLki1wLfdRjrM+9d6ElWWwlRmhNizC9659vCJn6zje/5aosffDwPmKpSnOaErmShbtz/9o9XGCn5XKjFF82IXQuP7ezno7k1PjhbZWqkRDFwN/0c3swqxo1WiK7n+3NVrtRq12jAm2+uV5Hm5ze/f7EIL7zAwlPP8W+8XfTv3bX++EKQBgWyICT2A+bWUuoDJseqrTSTV3ieVxOOd635hcVisViuiTsqmP7m3/yb/P7v/z7/6T/9JyqVChcuXACgv7+fQuEGrjxaLDeBjfbRM4sN5msRgetsav/8+XyN/+X/9wkziw0KvqToG8HUSIwFd5qbakngCpQCLeiEv6pNH7u7dco1oDSuI5lZbPDpfJ3B0KM/dGmnOWmuOLnUpJXkPLKtD0cI1lop2wcLDJd8Ds9WWWy0zTyP1mhtnO66YklrzZGzVc5XzRX6OFO8P7tKf9GjEXVtljXNOCdKjXgJPclQyWetnTEuzRGOEMbRTptKkCsFCHAdowo3CqEuruiIpQ23SbFeZXIk5Eqz+St0MRLwXFPxWmmmaKDgScbKZqMORnz2FT0E0EpykiwnU2pLm/jNNr5aay6sxfiOACHwXYkUsNJKSNKcRmJcEYueEW0bZ8S2wkYB1IgyU/Grx4yUA0bKwUWfw5tdxbgZFaJr+f5ckTw3lt5d0waljHA6cWK9inTo0MWW4BvZu3fd9vvAAfB98mqb+KenaOAQlCukoRFKXbOGZpQSuKonBm9EON5V5hcWi8ViuW7uqGD6nd/5HQBeeumli27/vd/7Pf7KX/krt39BFsslbLSPvlKb0/EFU1maWWwwUPQoBS5prsiVYqWZopRGYgRA4Do04gxPSqSQaBQOcGnT0EXiQoAQmiRXKKUZKPlms16LSDKF0pr5tQjfEUZgaNMmd6rTzrdjoADCVJKaccb5apsdg0WGSj6zKy1OL7fQGAEXuJLQcziz0iLLjaV4tZVQClxGKwGeI6m1ElpxTjvJOLPSYlt/AbfjVFeLTH6SEEb8tJKMxiZX3wVGGG0UUk5HRJJrI7SAPLtKCa57Xwkv7R/hs4UmSmkm+wLqUUboGUWntQn9negLcTrzY1muObXU3NImfrONb7cFstJp64tSxY7BkMV6jWaSIzBCa7ji0xd6/OjTBXYPF7ckFC4VQNsGCjTjlBNLTUqBy68+tZ0Xpke2nHl1pSrGlVr4rqdCtNm5tvL9uex+RQfZbl3catduw9tvr4ukc+c2f+GCAJ57zgikb34Tdu3a8CFxoFhkfGyc/rWAD+eb7O8vX1UM3ohwvKPmFxaLxWK5adzxljyL5W5no330pXQ3q8uNmKLv4EpBlOZIIXCk7GzOIfQkuYaCb0wXNLrXEqYx4mKzdjWAoDObgwbXkSitKfouAwWf82ttoiRHaZhZbLBvrMy2gZDP5uvEqWKk7NFOFfUoo7/gMV4JuFCPOb5Q58DuQU4sNUlzRSV0iDNNKXDxXdlRMZqVRkyqNMNlE/Caa02SaxpxSq41q62UdpJTCoyDntlUahpxTq40S/WYNNd0dJCpnHVUUtfxrneTNkYVjoSxSkAryanmKWJDFWqzShUY44fji02mR0vMLDTxXAfXUSw3YgLPIU4VritxpWTXcJFff37PRTbtV5v12Wzjm+SKTCk8x/wz2ogyFuvGTXCiPyRTxolwaqgEUvDphRr/7t1Z/s7PP4Dryis+1pUEUF/B5/EdHscWGhw5u8YL0yPA9VcxrtbCdy0Voqud64vme77/4QXOnF9GNxpUsoS9fR7fuG+Y3c2VdYH09ttmZmkztm+Hl14yIunZZ421t3nyEIbrwbFhCJhq5Pcel5z76akticEbaS28U6YdFovFYrm52H+lLZYboLtZLfkO1XbKUiMxnT0aoixHCoiVRqd5T/RoYZzkQPRa0BwuFk3d7ZcUMFQKWGkm5EohhUOmNKvNhHPVNkmmTDUH46rnORLXkZ1Kk+LUcos013iOwHUEBd+YUJxebjFY9KhFKa4UtBNF4EmGih650uRaoxU0khxHwFI9YbmRkHb65TKlEcJUgBp5TjvNGS75DJcCmkmO1p2ZqY6YE9I8F1eKXpvdRiGku780CC2otlKU1qjOMYKL2/U20n2t5tZiQDBc9nl4Wx9nV9ucWWlRjzKKvsPOwQJP7RrcejvYBjbb+PqOEWBpV/hqOkYSLoHrsNZSrEUZb8wsk+YKreHYfIPVVspf+9bUZWvoVlpmFhscOVdlWycn6qLnuokAup4qxlZb+LZaYb3mdkClmDl1gf/w6qc0q3V2llxKImfo+BHG3nubyufvw8IVqkieZ9rrulWkqan17CPPWw+NLRZBbi5Mr0UM3khr4W0xv7BYLBbLLccKJstXipudhdJMMpYaMUuNCKU0Gk3BdUhyRZorlDYiSGtB6EkKnkOUKbJc4zoK1xHkmZkt2lhFcSUgBIMFr2OoYDKHcp1zvtqmFedoNIEr0azbcTfjzJgw5IrQczDGDC4l3yXtVDwcaeZtlhumOuQ6Aq1hvC8EBEuNiFack3bUm8bMB7VTRZR2BJAwLXSi87Ms16w0jaDqC10m+4NO22CCUuZ+iTLPs+S7xJlxztvodtd9FzKlaXaEVhfN5mKptz5pBONiI8FzJL/+wh5cKalH65lYlcC77vd7s41vJXQZKvrM19ogBOXQpRGneI6kFWfMrrbIlCbwJCXfRWtNPc5449gi7TTnb393P/vGKiil+dnMEj/8eIG5tTbNJOXkYou1Vsr+8TJDpYudQS8VQNdaxbjSPJbWMFj0OLva4vtH55l6qdxrz7tahXVL7YB51ptFUs0Wb751Gu/ESX7h7FF2fHiQbR+/jxdHm78BExPrAulrX4Ny2dwupakodQWS72/5Pd2KGLyeYzdyS8wvLBaLxXLbsYLJ8pXhVmShFD2HpUZMK87ZPlBgvh4TZYqO18H6pl+YigQCSr6xCc9ycB0z37TR2KDj80DRk0gpaMZZz0DBl8YqO1WmzS3rqAgpO+JKaeIsZ6WVUgldRsoBudI0EiOUSoHbm0n675/fxX96/xyeIzm72matldJMMnJ1sYm3AJpxTtYRgN1KENrsV0PXIZeadmqOma/HLDQS9g4XKfoOgeex0kwQSU47U8SZInQF9c7gVtct8KJq0zV06wpM5aXgSepxRpar9QqdFEz2F25YGF9p4zvRHzC72gI0E6MhJ5dzmlHGXK1NlisCz6HsOwghyBQUfQffEXx+wXwW1cOa//2dWV79dIFWmlMOXCqBi5SCC2tmc/7EzoGLRNOlAuhKVQytNbV2yvHFBg9t62Oyz7SkXdrCt9KMmVlostJKyJQRsYv18zy+s5+v7x/9wtflau2AO0OYO36GC4Mp24qOMWc4fJjWn73C937wI8bmTm96XiUlZ/c8yMAvfpe+730b7r9/vYoUBOsCqVBYv/06+CIxeCPHbuSmmF9YLBaL5Y5iBZPlK8GtykIx+3ozY1TwHSb6QlaasQl47RwjOy1ztTijYx7Xm+lJ8/XKCp3bpTCbs8BzSHNN4DrsHSlQbacsN2LixMirXJvcJikgkIJS4FEMHKqthDRX1NoptXZqjCEwFZjAEQhh2vYe297P7HKbo+fXeHxnP298vkScrbeXddvgpBQkqbrMmEIBWkE9znoCpx7nvRbBU8sm86lScBmvBKy2MohSojQ32VMCyr7D1GgJKQRHzq5dVkX6ola8jT8HIyRcKfBcyb/62Slq7eymhoReaeP7cw+Ng4bVlpmxWWrGoM37V+yIJa0hyRSlwGWo5FOPM352YonP5ut8OldDa83OwQKZgno7IckVfqdSNbPYZLDo9ypBl7ZxbSbmojTnswt15tYiXEcQeg6/+/oJfv6RcTKley18K82Yw7NV2klOOXTxHJc4y1moxfz+O2eY6A+/8DW7rB1QKbyohRe18aI2lSylOnse99Tr8N7bJkS2XqcMlC85V7tvgLOPPsPZx55h9sEnOBk7/A/P76Fvov/iNjv33vtv63orVBaLxWK5O7j3/uexWK6RW5mF0k5zRso+ouNC1x34X2kmtNOcPDftdI40Ia5prsmU7lWeCp5krBIQeg5ZroyDniMYKQfsHC7SaGeMVAIm+wustlLeOLbI6bh10Rp8x8wuVdspvitpdqosaU6nWmQETJ5r8lzgu8a97vP5Rm+jfXa1hUYTupJ2mvdc8xwpSLPLxVKXjjfExUYMGqRjLNTbqaLaMnNSw+WAgaLHcjOmHLjUo4zn9g6xe7jE0fNrCNGxGlfr597Ku2EqVBrPlWgN82sRh2erPLljkG3hzQ0JvdLGF0y15ZO5Gr//zmmOzFahIzozpUkyhecIhooenish0pxdaROlRmAOlPyOSQj45YB0LSLOFVJI5muReQ0dccU2ro1i7v3ZVT6fr5PlmsmBkPvH+wg92XsNfvGRCULXoRlnzCw0aSc5QyW/972QQjBQ8GjG2VW/FyXfpYhCrSzTrzPcJELkGSMnP2fHkXfZ9sE7jJ05vul9tRDM776P8088y7lHD7C0e78pWQrBmpKkRQ9/7x7YNnTd79fdxPVWqCwWi8Vy57GCyfKlZ6suYmdXWwghLrsC/EVzTyXf7eTi+Mytxaw2486MkqLou+RKEaUK1zGtdFqvGx9knT+HnkMjyog6FuHd+R3fcxAYu+rTKy0GQpeBgsu81wmKVYCGgufgdc5/Ya3NWpSidKc6JFh3pdOQa43nGBe8Vz+bZ8fQHn7hkQn+w6FZljuGFY6UBC4ErkRpjKnBF7TIbfYjI3pER4Apokx1Kks5aNg3WqYWZ71Ws7lqhNZGpHXdM7tVpY3n39wlT6Ax7WeZMs85WWiw0kh4YtcAe0fK1ySML32/J/tC5jozQ933f7ONb1c4fe/hCU4tNllqJLSTHMeRprJU9Cj4poLTFVHDRZ+1tpl76j0bIRgqm9v7Cx6L9ZiTy01GL8leupR9YxX2fLPE//37nxGlOdMjJYQQpJ3ZsX2jJY4vNvlgtsrUaIl3T60Y8Rpe3MbXiDLG+kKmRkpXzgjqBMhur9V5Iqty9uR59p//mJ0fvsv2o4cIG7XNX9z+fvjGN1Df+Cb/sbCHo5HD7uEi2vVIwyJZGJL4IceWWqaKNjF4xffJYrFYLJbbhRVMli89W3ERO77Q4F/+5BS1KL2ojeuByQqfztWvOPe0cX5kaqTAJ2lOlCVIaTafzVhRDoy9OK7EdyV5nlNtm5pNPc45sdgwm+qOg50jBavNhNVW2pkTqiEEeI6poJQCjyjJiVROrjGZP8LYePcqShvd9zrW5kJAlmmaSYbverzx+RJzaxGDBZ9zK21Cz2G0EhC6krm1iFqUodFkW0mO3UDXoKHaStfFTTulL3CJM005cFFas9pM+enxJR7aVulUYCSZUhe136nuCTu4EtIN69HQM6cAU0kzFueC5WbCG8eWANg7Ur7IXW77QIFz1TZrUcKppaZpQRTgCMn7Z6os1k2FJ8kUcWocBH1XXrG97/P5Gv/h4DlmFhtkKif0TNtj6EnGKwGB5/Ra6uptE7JaKbiM94WcWW2T5orAdXrn8xzzmdk1WKAv8Pi5h8a5f6LCUzsHN7Uk3+iwd7ojrj5faLLaSshyI9gHiz6T/QEzi03+T09t5+O5GmvtlMBzUFqT5sYUpOC7TI+WKQYuC/XYmEsoZYJju7/SFD75BPnjH/PfvPIq/kdHkXrzD0p83/0E337ZGDY8/ji4LlJKDrQUnx5Z5FDmMj5YXjdDWGpZMwSLxWKx3FVYwWT50nM1F7G5apvZlRZCmJDK7nzTWyeW+cPD55jsD9k/Vr7i3NPPPTTOwdPLfP/jFSSaoVKA57q0EwUio5UqAldT9BziTNHszCB1qyWmKqJoJt1sMkGSGcc91wFPSELfpZUoojQjcCVZp9WvK8zSfL2FzRVm85+qjuDIdO/xAHSuyXOF67uMV0IaUcap5SYaaCU5viM7bYO6Y39+fagNj5lkmtnVCM8VPLKtryc2Dp9d4yfHl/GkaU9cba9vui81w6DzWn0RGjMrhBYUfUkrURyerbJ7qNRzl/tkrsYfHz7PT44v8vl8g2acmmpd53Ur+S57R0pM9BeYXWlRbacMFj2e2jVI6DmXvf+vfDLPP3nlGIv1GN+VBK7EkRJXCupRhhSCkUoAaNZapvq3f7xibNYdyVDRZ6Ee4Zdkr9KTZDlRknPwdJWS7/DT40u8f6bKuydXLxNrG81MFhsRn16oIzCujEOlAC90SXPNYj2iFqUMl3xGKwG/9uwuTi21aMYZrQRcKRnrC5keLTNU8mk2WvTHLfoW56E+D7Ua/Oxn8Npr8MYbsLgIQHjJexAHBU7e/wSrzzzPzj//PXY8sNf8oGvWUCpBGLJXCH5tYtKaIVgsFovlrscKJsuXni/KQlFKcfRcDc81Jgiyk9tSDlwypahHKaNlf4OV9MVzT0pr/u07Zzg8u0YtMiGr1XZGMXCZ7A+RApaaCe1UE6ed6kk3a0msu8EpDXmqSLN1JzqJcdaTHWe8wBXEKbSTTvaS6M7ImHO4nfa7TJnK0qVslD5pbioKxxYarHbmrbrGBGud59EXOFSj9eyeDd19X9ShdxmCjngSmsGCz2LDmGKsNhMcIajFKVl+uRLqCq6Nj9V9XUzroCl8dPQgsnesJlGQJQpPCpYbCccX60z0hcSZ4k8+nOPsSovji42OIYZAoVB5dyYr49xqi7PVNoEr2TVo5sdOLbc4sHuQ/WPl3vuf5Zp/8soxLtQiJvtCPFeS5ppGlDJQ9PATSZYrluqxmVUqeDw3NcxffmYXP/h43lQmR4vU47Q3A5fmijPLLaI0x3UkjgyotlKK/uVi7VIzk5LvcPRcjSjN0dpBFTTSlQSuwC/5zNdidKeN88XpEf7cIxO8e3qF7QMFAtdhQOb4UQP3Qovq3CovZCtM/K//GV7/Mbz3HmQZm7JvH/qb32Tl6eepPvQo/cWQ+wZLyEp53bDBufxTac0QLBaLxXIvYAWT5UtP10XsXLXNB2erDBZ9+kIPR8KJpSZprnly17pYAhNAutoyV+NXW2knkNRUp7pzT++dWeXg6RU+mauTZIqBzs/jzgxTmikKvotuJEgBBc8lSjNy3XGY2zCjk3XHhC5pR2skiqIPrpAorREIFBqhoeQ7vcwfoJP51JEMV1E0zcTkIkkhqAQmaFUDUZqRJhB6DqkyBgCOMDMwJhBXXZSPdDVEN6tJQsF1CFzJqaUWRd/pZEvlgO612QWOmetKcmOW0HMapCOeOkLR77S7GbtzbQTiBit3B02caWLM2j84U+V46NEXukg0C/WINFM4UqCVxnUEkTZW7Uob5z+BQBQ8RCdjaaWZ9D4Hk/0hx+brzK40WazHTPSZtjugJ05WmgkT/QHDRZ/vPTLJaCVgaqTEjsFiJ98Izq+1We6YkZyvRpyrtllqxGS5JvQcdg0X8RxjXd9Mch7f0c9yM+HPPppnz1DpMjOTtVZicrYc8/qttBK2eRtn93TH09F8L37h4TGW51donZ9jyFdUsoiRo+8z/v7b/KXP3qdvdXHzNzYM4fnnTZvdN78JO3YghGC4UGC4K5CCYPP7XoI1Q7BYLBbL3Y4VTJavDKErWawnHFtoIID+gsd9ExW0hm0DF2/YktyInv6iZ6y5L6mAhJ7D6eUmSaaMlbUjejMobic7ab4WmdmlziZeoXvVkM0qJ1ciThT4EDoOgyWPhboxZ/Ad46oGRsQ5AvJM9yo6X4TuhB1prSkFZnaqHqWIzr1DV9BXMK1icZqTKUwO01XOeylCg5Dmd6UV9Tgzxg9ohBBm1mrD0FKcQ640oScoCGMYkXdcBh2pTXaVFCht2gezjnoTcv3xzHl0TzRKzExVI85oxRkl32GtnRF4DlGam8wshLGO0CbvKs7MTFGS5ma+quM+2P0cFHyHk0spzWqKEGbOK05zfNe01XVFViPO6S9oHt3RzwMTfRe9Nhud7Y4v1Alcs4a+0MN1BKPldRHWFWAnlprcP17m+EKD92ZXLzMzSZWm6Du00SSZphlnRGmOlIJGZAJ8xwKHaGkZ2qvsa7f5q84cZ974r4y+/zZTJz7Cza9QRdq1y4THfutb8OyzRhD5/noFqVAwPaIWi8VisXzJsILJ8qVnY9vSc3sHyRXUopTVVoLKNb4rL5tv8h0ztN9OcqQQxGnOUiPGdySV0GWxHtOIMjxXUglcWolxgEsyRZJrstxs9AXrrWJRx/0OtmaX3SWHzvySotAZ+DeVEE2emd+FBi30lgWNxgiPRpyzWI+Jc2Vs0DtrXmtn5EpTj/Jrar+7DAECQaY1SQ6kOVobYeK7ZsYnuWTRmYZGst74J+haopu/5ErjOd05r3Ur8q6xhdYXB+EqzD5+/2iJzxcazNVicqXwHadn9gCid1/RUbOi81i51pArHClN+DAm86md5pxfi6i1Mxpxjislhc7cUMHvOhemSCF7IbOXsm+sgnoI1toJ87WIODPPrSsGN9ZofEcyV20zUQmJspzlZnKZmYnvSIqeg+eY17YZ56y2EgakYtrJ2SFzgrUWw98/AgffJH31NXaenWXnJmvLXY/kqacpfPfbRiTt2WNeyI2ZSN7lM4EWi8VisXzZsILJ8qVhM/tvoNe2tG+0RCPOybVisOizc7DAsYUmcao4X21z3/j6fFMldBksenw+XzezI+fWyJTuuI15pjLRaedyHIErhXG1w2yyu5t1Db0Mo42tbN15oGup2CgNzU7vmsbYfgeeQ9Jp/7uWsQ8NtFMFqaIRGzc7rdbnk+JcE7euUGm4BnzHCJEshUwpdCaQmApdKzECcytrlZi80izvti9qXFeQ5+Y9yVLVa2nML+lH9Fyot1M+vlDvVP9MJS3viCJNp3VQCFSn6tat4KW5QkDParsSumitObbQYK2VkueaQuc9cKUwrY55xERfiBBmJmzfWLn3WYSLP6dL9Zj/8uEcq62Usb6Q+XqM7wiq7ZS5tXbvfivNhEacEWeKN08sMVjyiZL8MjOTNM9pJTnVZkQhjRlJ2kwrwVOizlMnjzD83ltMzxzFTWLz2lzyWi9Xhnh/72N8tP9J5h9+kpGxAX71+Wn27BrrmTUgrkXuWywWi8Vy72MFk+VLwUansI3234/v7GdmsUHBkxw8Xd3UZjnNTS7Se2dWmewPGa0ERKmxlE5zTStRVEJBX+BSj1I+mauZORkBSa6pxxmp0uSdQNqtVGQURgRcL74rje13O0UKI0rSK6XLXoF8o6rr4EjwpCDKtvIsvhiBeX1kp12wG+IaOEaYJFl+kYX4F6Ew+VCVwKEeZ7hS4DuSep6Ztkhhjrl0vsp3BMNFn1xrmnHeu60UutTbKY4UZErjdOd6MI5+gSvwXYmUgvlazEDRY89wkUaccb4aUWunDJV8Y8Fei5BKEGemJS/JFQv1CKU1E30hL+4b5vOFOiXfpZ3k/OBj8zltpzmnl5tkSvPsniE8R+I5xmVvoOCx2kqZr0Wdz6CpzCmtqbZTklzzg48vMNFfYG4touQ7nF+uc/zkPAP1BmONOvvOfsbzZz/i6VNH2LF8ftPXNZcOx3fex5vbH+bd3Y9yZmgbynGJvYCRyjCr5QH+y5rPXx8atkYMFovFYvnKYgWT5Z7nUqewjfbfH82tsVCLaKeKOM0ph95FNsuL9YhMmY3tSjPh9LIxJNgxWKAYuOwfL+NLyYV6xIVaRJwq0k5vmO8IHGHEVpTkF7WBbYXNXOC2SpbrTgVDG1OG6zzPRhyM4LgZYsntVG6MgNT0hy4TfSHn1yKiLKeVZJdVgr4Iz+k4+znG4S1Tmr6CR9ppfZTCVPmSLO+tX3Rsu4UQuEJQ8HTPzGGyPyTqzCcpDXlnNqkreDNtjD+Gij5jfQGDJRMkG6WKXcMF1toJUZpTjdJO+5xCCoHOFEpp1tKcyf6Q6bEyf/T+eaJOu+ZiPaav4LF/rEw5d/l8vk6Waz44u8bjO/oZLPos1iMGiz7tNGelmaLRRlwLgXQkBc+h6Ek+PFejrDMqzSbvfXoc//xZXjp5hOfOHOWJ2Y8pptHmL+boKM1nn+c/D+znyO6Heb+qaEqPyA9pewGp66PRzNc1L4zJK4fXWiwWi8XyFcEKJss9jVL6MqcwoGf/fXh2lTPLLQq+y3hf0Pt54Apyz+HkcgsBPLNnkKd3D7JYjzm/1kYKQeAI9u8YIMkVK62Eku/gCEGWG7OFVseK2+QVXZ9guRbB1LXTNuuX5EqD0L25I08acwS4PtGz0bnvUpyuA90Wz1UJXYQUxKmxQH9m7zD7xsp8eHaNc9U2K82EXOueacPVEJ0BI601gScRuaIeZQghGSmaVspca1aayrjACTMjpbXuzJZp0jwn7VS8ir7LnuES51bbNOKUHFNxcx3BUMlnsj9kqOSTKc22/gK/9NgkI5WAku/y0dwaf3r0Ap6U9Bd8Sr7DUiOlGafkCuPEJwXbB4tEqWKyP6Tghbx1YpkLtYhcKdK8iOq0BI5WfKqtlBNLTaZHSzTijHaS0Rd6rDRT0y4oBVIIBgKX3aGmX7VpLi7T9+FxXjj3EVMfH2LPwpkrvK+C49um+Wj6cSb+/C+QP3A/r52q8+Zck/ncY7ls1uu5Rlg6mLbHdppzcqnJvrGSCa+1WCwWi+UrihVMlnuac9X2ZU5hXYQQjFVCDs+u4bkXb/W11p32vBzPkay2UkqBy0R/yETHMnyxHrN/rMzhM1VaSU458GjGEb4njSOdNsIlyYwhw/VwTTNMGNHUDTxN8+wia/LAEVRCH601USO56vmuxalPY+b91RYXHGUK3zUGGb4jO22OOaOVgF9+fJLff/sMn16obe1kQJx1E5Yy4kxQ9CT7Jypkuebhbf30hQ4zi00OnllFk4IGrUWvFU93xJYrBX2hS+A5bC8H/PWXpkhzxQ8+mmd2pc0DExUKvmsEnxC9eaUPZtf45ccnqccpr326SJZrBovGJj1wJUXfJU59Vlop/QWPXJmZsq6Ir7VTmknOZF9II86YWWxy33gZV5qQ4K5t+f3jFZ7YOcDxhTrHFxoAlKRmVGZMypTd9VUeev8wD31+mPuPf0Apam76etXCMod2PsSRfU8y98iTzLtlTkXAWon0cItE+ESupK1zUEYMZzlIF5xOC6VCM1+P2DNcvKJpxbWy2ZyhbfWzWCwWy92OFUyWe5pmkl3mFLYR1xG9zJ5uMKjnSJYbMfO1iExBkuf87PgSgecwVgl4aFsfE30hxxca/OnHF1ioxUhhnPXiTFGRJgxICsFgyacVZ6RZTqr0dVV2tlplknRaxrSx+C54DkmW9USX6SozFRRXrAe6Xolrah/Ul88HfRFJqlDauAV6jmShFuFIyWM7+vlvn97J4zv7+a0/+ICP5+rXsIrunJZGK4WUglBK6lHC5/Pm/WwnOWmm8aRASFC5RgsjlKQ0bnUDRZ/9Y2Xm6zEnF1v80mOTvPbpEk/tHqQSemitjXtfrsxnxxX8yYfnOXK2SpznzCwYkbLaSpnoc3o24qHvMiQEc2ttir7DYMGjHmVUQrdnU++FLmVhxBHAUNFYtw8UPTKlSHLT2uckMYValR31GgeWTvDCuY85cPpDds+dQF6hDHhqYi8f7X+Ct7Y/zNHh3WSFAk03pDxY4VwMbSfDlRJXCXYM+pxczEiVqR6CuYiQ5SAdY9vuu4IoVfQVvItMK66XK80Z/vwj4+wbq9zw+S0Wi8ViuVVYwWS5p7j0CnXRcy5zCtu44a21U0JPsn+sQq2dsdJKWGkmLNVjMmWqNY4UaKARpdSjlPPVNkMl0w6lmwmqY2MtlHFlq8cZviPpCz1KvkMrTvFdh3Z8fW1LG7e/XQvyjbd5jrn63xVGQphw3JiLK1RZxxzAl2LLZgq3DAFpJzjWEYo3ji0y0V/g5QdGzYxPK8V3JYMFl2o7u+Z2xlxrDp+p9uzZPccYNHTFZ5xryDWugKLvQsf1ruA5DJcD+goeUgqOLzQ4udTsie6VZsLxhUbPHCTXmkZkTD3G+0IqgWcEhjAzThAxVPLxOo56K83YzDRlig/Pr+E5DkNFn/G+oFMV1HiOyXRKc830WIl6nLJYiyjnCXr+AkvHTvHkp+/z104f4dETRxhoby4qm0GB93c8RPP5r7Py1LO81Qo4HWmWtUseFsBxaac5jVQQpTl9oUeUmfZRKSTDZZ/6StsYmMiOEFcaUL3WTkfA07sHb7gK9EVzhufX2vzGi3usaLJYLBbLXYsVTJZ7hs2uUE+NlBgoesytRZQDc+X+47kaq82k48Sm8D2HRpzz9O4B6nHG+6errDaT3pV1pYxE8RwzFxSlObOrxlGt4Eq6zW25UuSqu6nUFDyfhVrMUjMhyRRbcMi+IiZX6fIWPYFpg7uodU4bAwRXmvtJYWZOFNCMc2Jx4wYQX4QUV682deequtvsTGkWahH/5JVj/OufnWK5kbDYiEGDK9crWFue5xLgOcJUlBQ4maISugSuNDNLHcfAVEOcK8qBS8Fz6C/6TI+aNrmC7zBfM8YIoetwvtri2EKTdpJRDj3cwGFmoUktMnNEn83VCH2XRpIzUvZ7LaBRktPUGZnStBNTlSqHLuXAQwhYqEfUooTQkzSilFLg4EhJgGaYlK8XIuqHD/LkicM8cvwD9p07hqM3/zCdHtnJJ/c9waE9j3FkbArKZZ56cAfhQB99CTRPLLNSbVMSpn9SKU0jM9XISsEnbsRobbKl+gsevhP15rryTj6Wmf+SoGGkEvDivpEtviubc7U5w2MLDf7so3mmRsq2Pc9isVgsdyVWMFnuCa50hfqjuRqOFDhS8NOZJU4vt4jSHCHMRq3guQyWHS7UIg7PwkR/SD1KUZ2spO7GXncs3RwpSFLzM9+BcujSiE1I6UYXvCjVHFtsXffzkayLo25V6aLg1e7PBFQCt5OblJPk6xlPjhR4QpDkCs8xLXlKG5GwGd2t6I2IKSPQRM8d4ovc+TxnvYWwHJj8ouVmzHwtNsYMgOcJs0nXUHQlBd9huZFctUKWd86ba/P6OVLQTo1AuPS+caqQZGwfKPDYjgGGSj5gwmeDjuieGinxx0fOkyvNcMknShWnVtqstdPe7Fg9ziiHLkppzlcjJvsDBIJHdvTjO5JP5mq04pz9I2U0sNSIGSr5DJV80w7qSMoip3lhhQdli68d+wHbj7zLjg/fpX9tZdPnmfghR3c9yFs7H+Wd3Y9wrm+MsL8CpRK7tg8z3l/g1FrEftdjyBM8sq2f1VbSs8T3HEHoSSb7Q1wpWALAuDv6rrHWX24meI6g6DsoDSNlnyxXaATfum+UHYM35o53tTnDyf7QOvFZLBaL5a7GCibLXc9WrlCHDpxZblFrp/iOwHMcgkDiSYkE+gvmo77ciFhuJcS5RkqBys3GXXQCT3O9LkhMq5/qVUo0128Dftlz2vBntyN29CaVm1ybmZLt/QVmV1ukbdP2tzFs1Wg9gSMuFguXrtkR5j7X6U8BmKpO19K8GxR7JbpVHimMtXjUmWtSqiMOO21gsmOgEWfKtD5uYR1Km8qO0sYdsBy4NGPT2ud2BHSaKbKO+IwzxdnVFnuHiwwWTevm3FrEo9v72TFY5IldA/zH986itabWTlmox9QiMx/mCDMLF2WK5WbKcMlnvh6zUE/oC11caVrt5msxAyWffeOmtayZ5Kw0YoZlxmTcYuLzYzx/6jAPHTvMvjOf4uabB2dVJ3Zw9rFnOPvoM1x44HHmZchnNcVsDNVEcf94Hy/uG+bnH5kA4Pd+eopjC0aQTA4E7BoqcGalzXDZZXq0wpnlJq4jzFxX53X3HDN3NVjyaKU5UkCSK0JXIoDQc7lvosJ/99yuG676XG3OsFvps058FovFYrlbsYLJcse5mnPW1a5Qh67kx58v0UxSAlfiSHP1fKQcUPAcVpoJgecwXPb59oOjHF9omFY9R9DSCtDrpgYdASAxG0gTvHpx1eeix2ddlDiS62rLy3IjZK7U5rbaTPEceVk1J0o1vqvxOwMo0SX7zUtPl39ROWjLa9U9M4mtikeloda+WBxojEjVub7IznyltfVNc/f10p0qYdqpELpSkOTmPe2K3VzDcjPlh5/Ms2u4xHA5YNdQke89PI6UgpFKwM6hItVWwvGFJvGGUF3RqaoJNGmuaKeKyf6Ahbqp5MzXIlMJDF2e3jXIcOjgRW1edmuU3n2DfR8d4tGZw4ytLW76PHQQIJ59lrXnXuR/C3aTTO3D7+8jCwvkfoAPPKI1w2sRK82Yv/ataQ7sHgLMd+Mb+0f48WeLnFpqotEMFn1jb17w2D4QUmunzK21cR3JcDkA6LlCppli51CBNFW0M8V4X8BIOeCx7QM3zYyh5LuXzRlupFvpu1lOfBaLxWKx3Gzs/1CWO8pWnLMuvUK90dShFZvB8UaS4klBOXBRmIrCfC1moi+kHLisNhKkEMSJwnUkWmuaieqJpEt1jjmH7lUsrmRLoDf+vkl152qIzmN90cEamK/Fm94eb6LQPGkEQk9QXLLWG2Gj8961nG/jsd3X5hpyazel+8wzDY3EWKy7QpApYyG+3rpoxJnSkOSa2ZUWrhR8+4V1o4GS7+K7knqcgdAUfYc4MxUx0+poql++K2mnOYMlF98RvLhvhL/69b006y3+6I3PmD52mIc+fIsdR95l4tMPcNPN7d319u2Il15CfeObzD/6NI1KP2FfBfV5lc/mG+yvlC+7ONCIM57ePcSB3UOcWGrw/aPzvD+7ypmVFu0kx5WC8f6Qx7b382vPDvPZhToziw18VxrnPSl4eLJCpmFmvsHcWpvAleztL/PkzgEe3znQy5q6mXbf2wcKTI+WOXp+jXLgXvS8tNa9St/NcOKzWCwWi+VWYAWT5Y6xVeesgueQ55qzqy3QcHqlSbVl5pAasRFTWmmk46C0xpES3xG005zz1TaeA9V2ymo74V/+9BTztWg9v+gLjAa6t2dbtJy7HjFxs80ZBJ32vpt83pvJzVpbd9stxXpOkxE4uicWTeVPILVpVxwt+wSeQ3/B452TK0z2h1RCj/FyQJyqTkunxBHm89M1ougabajcmEzMrbbpJ+O/Gdc89KP/jH7lFe77/iv0z81uutZMOhzbeT+nH32GU488Q3L/Q4xMDnGmDfNnFHG+Rug2GCh6SAEfnK0yWPSphC6uFFyomXmo7z08zomlBr/301OcWW6xUI/Ic00ldInTnGor4ZMLdZpJzq+/sJs/722jmWQs1WNe+Xiet0+tstZO0Br6Cz4Pb+vjLzy9gxenR26Z4YKUgp9/ZJzza+1e62DBd2gnOXNrUe95WcMHi8VisdytWMFkuSN80VxSyXc4cm6Nf/PWaV5+YIwjs2vMrrY4u9omSnOU1viuRGjds0kGjDtaluNIyLUgV4qaWm/LcqVmdqW5Ppe0RTe5Gxj5ue3chK67ewbPAVdKtBCkuTE5iDvitlfFgl42lgTSXKGApUbCf/lwjs/m6wwVfWN0oBT9BY8LtZg8z3shvd2WTPKctNpiT/U83zn1Ht849xGP/fbHELURQP8l62sODHPs/if50fiDvDf1BHsf2oMslzm6knDmbJvWiTmKgcOuwSL3T/QRepJj8w0W6hFZrjk+3wBhhM3zU0P82nO7mBop8zuvzbDciMmUyXbqVlXLgUsjzshyxXIj4YcfL/DXvzVt7NNlnTjXjFZ87h8vUwk9HCm4UIv406MXmOwP2TdWueFg2Svdf99Yhd94cU+vmjxfiwhch0e39/O9h20Ok8VisVjubqxgstwRrjSXtNKMmVloMl+P+GSuxg8/nqfouxQ8k13TdbVrJ+oyYZB2Nss6B4G+qBVNA3Gak6j1266mLDY62VkMXeOIrkMd3DwjjGtFaSgEbq+Va2axQTPOr7gW0clOyrVRyoEnmegLKfoOH8/VOFdt8/BkH8uNhDjVuI5ApgmVqMlz5z7ihZn3eW72KNMrZzd/ACmJHn2MT/Y/ycG9TzCzcz/HWoKm43NgegSE5L3ZKq0kM9lfWuMIQbWd8uG5NfaOlFhtJVTbKTsGCjy0bZhGZLLD2h2nju73phK6fDZfp53mVNsZShtrcM81ImjHYLHnPLd9oMD3j86z2kp4fMfARd+3Srhu66205gcfLVx3sOzV2mv3jVWYeql8Q4LMYrFYLJY7gRVMllvGF12t3sw5a6UZc3i2SjvJKflOLyuplWScWUnMPFHHUe3STfGl4ubSnxtTgK2v/dItnBVP5jXxHGMDrjCCIssvt/G+mY/3RafWCPaPlXhmzzAAO4cKvPLxAkmuLnMLlJhKUaK0eS+1JnQdk08UeuwbLXNiscnZlRbjbsb04jlePPYuz578gCfOfEQl2dxCvl3p57P7nqTx3Iu88Nf/EuH27TxeKDLSVswsNlh95wyP9ReohC7vnlo1GU++Q7WVUgxc0lxT9h0accrhM6t4rmSiL6CZ5LhSsmu4xM6hYk/UvPTAqGlB1bDcSJDSmJ5IIYxzYKpoxzmNOEMK8z3biq33e2dW+Wy+TpKp6wqW3Wp7rZSC7QOF3r8LXUFnRZPFYrFY7masYLLcEq52tflS5yytNTMLTdpJzlDJpxGZINCxoku1lZJ0BnN8TxJn6rJN+heJmesROxtP70kzF/RVx5hM6PXMKKVvqYj8IrHkSWP1fa4acUBrpJSdYFqPoHN7prutmOA6kjxXaAWFUNJMcnYMulRCF5HnjKYt/tzse+x/7yccOPUh0/MnN31cheDExF7OPf4sq1/7OhceeIJVx2cpc9i9fZqdQ0UksLNgxIojBaXApR5lrLYSyqFHrlRHsEni1LQI+p7DYqPNjoECniNZa8cs1E2obiV0e1lFB/YMEjiSYwsNtDYOiU5HbDgCM7uXK84sN9k+UODCmjlHO83YdgVb79BzOLPSYqwS8NSuwWsOlr2WYNquWcX1VrEsFovFYrkTWMFkuels5WrznqESwyWf92dX2d5fwHUky82Ycmg+kvU4w5UCzxFEaY4EMqCdXt6KdzWud1N/qbObhcvaHO8UvivxHMlKI+HTC3W2DxQ4X23TF3rsHy/TylZIMkU7MTNvWhvzh1xrlNL4OueReIkn/tP32fX+T9nx4SHCxtqmj9UIiry742Hem3qMn00/zbm+MfqG+hkeLLMvLNNXcImWmpflCG28KJDkZt7IC13QAikEaa4RwoTIKgG50iS5YnU1oZnkHD1fo+A1GSr67BkpEmc55cBltBLy9sllSoFLnClcud4mmeaawJWcWWmR5Jo/eHcWpTWzK20KnsPOodJlz2+xHtNO8usOlt1qMO3PZpb4r0cvXLUKZbFYLBbL3YYVTJabylauNv/bt8+gtOb1Y0vMVdscPVczJg5oxvsLNFRG0XdxHUGSQabWs39u5ya9O+yvtDEYuELOqOUOEKWKqCOeD89W+eh8jdCTpJnm6Nm1ns12KXBRSpMrhRe3eWr2M37+9Ht87fQH7Dt/Aqk3l9OnRndyeOpxXt/9JG9O3seqUyR2fRCCoicZCDwW6iYXacegEfyhI5ldafVaUCf7wp6d9nglwHVMwK3vSgqeZLWVMlD0iDNFLUrItWapHpMqTV/BZawckCrFQj1iuRmzc6hIJfQ4sGeQPz06h9aaBHrtd7lSaC2ItLFV3zlk7LybccbJxSbvnlql6Lu9LCbo2nq3KfoOY5Vw09fiasGyWwmmvbAW8cOPFy77d6EcuIxXAo4vNvh3B2f5O997ANeVW/8gWCwWi8VyG7CCyXJTudrV5oIn+dOjF0wbkiPZOVRkrZVQjTLSTJGtttk/XuaRbf3MLDY5V22R3qF+uIHQJcp1L7DUcuuRYn1ObbPZqO5cU9fuWwCBK+gLPRYaMVFq5t8KnkO9nTBcXeIbJw7xzZPv8ezsUUZam1eR0qDAsf2Psfbci7i//Of4p6cUR1dTWrl5LJPtZB4vyTVz1YjAlbTSnHPVNmOVgL//R0cJfQfflb1WswcmK5xfa3OhFlHqzC6VQ8cE4Qrj1jdfi3pW8HGqKAcOo+UAKQWBdPCKgjOrbcYzxWSfETX3TVQ4v9qmkeREad6zUhei+5pIqq2UtXbCUCng2b2D/PjzJd45tcKL08MUA7dn6z1cDgg9h3aaU3EuFytXC5bdSjBt3hFm2wcLvX8XugYvxtQi4/RyC7TgLz6zw1aaLBaLxXJXYQWT5YbpmjvUo5SPztdYqLcpBy5a68tCKs+utliLUgaLPuN9AUII+gse41nOiYUGqTItU64UTI+WOF9tkWS3r6600WigkWYoZdoCldVLt4XQlWTKiFSXi7OtNspvjZnZ8RzJAxN9fHahTjNOEUnCzpPHefn4u7xw6jCPXjiOe4Uq0tL4Ds4//iyfP/487+x+jLjSz/BAmdVWwplklUaWorURIlJ0fxn/xXqcEaUmyLYbIHxsoUEpcHhgog9XCj48Z1rNvv3AGJ/O1Xl/dpXFRsxiPafgO2htKl8gcKXuiaZ2qqjHGYHnkOaKRpQxUPTxXclcLWL7QIFdQ0U+u1CnEphMqWorIckVcaaQQDFwWWunHJ6t8sTOAYbLIc/sGeTTC3XOVyNcR/Rsvb/74Dg/+Hj+uoNltxJMO9kfMl+LKHZE10aDl3LoUgoClhsJH8+t8Xs/zWx7nsVisVjuKqxgstwQXXOH92dXObPcoh6lNOKM08ttdg4WmR4rMVQyLUD1KOPCWoTSGs8RJJkyrXhCoLUg8F3aLTOTUm2nTPaH5EpfJGJutYX1xnMnmbEnDx1N8lUJN7pDdN/XzQw9umzmfFgOHc4eP8uzR37GN2cO8bUzRxhvrGx6/8jxOLz9Ad7d+wQ/2X+A89v2sHfnGCOVkIGiR6seM1eLqAQuUhgxFHXCax3A6TgE5spUnZSGou8QpYpcaVwJC/WYtfYyo+WAwaJPM8n47EKdv/bNKeZqEZ9cqPHOiWX+0+HzZErTF3r4rsR3JWutFE8K1qKM+VqEIwSuIxnrC9k9XKTWTtfb4jovhuuYKhfCuOWlmZkuc6VguOSz0kyYWWwyWPSZHCgQpYq/+MxOJvrDi5wrpWRLwbJXcr68WjDtdx4c5w/fO0crySgH7kUGL0II4iwn9Bz2jZaZr8dfaDJhsVgsFsvtxgomy3XTNXc4s9JisR6RK8Vg0SfKFCvNhCTLWW7GPLN3iOFSwEK9zWI9IdOalWbCWjuj4DkUfUm1bVzxQk8iEWilmVls0krMMQojnDKlyfJb6862EQ000tv0YF9hrkWPCq14YOEUP3/yHb5+8jCPnfsUP998vuZc3yhv7nqMH+99krd3P0693Id2XMYqAXGmcKTkV57YzpGzVebWIvaPlVluJrTTnCRTvdBjIYxpRNZRc64wOU5F36URm1ZAIQShZypHUgoWGzGOFLx3ZpW5WsTOoSI7h4r0hS5/cmSO7QOFnmBKMkUzznEdQV/BJU4Ve0dL7BgoUglNIG2cKkq+y7lqm2o75Zk9g5xcarHUaCAAJUSvcpTmmiRTlEOXlWZCPcoQwjjiTY+WLzNv2Eqw7NWcL7/o/lMjZY7MrvXmuVZaCeXQ7Vws0TSijLG+kL6CZ4J2v8BkwmKxWCyW240VTJbromvusNxIyDJFlmuGywFRqvCkoJEpVjJFLUppJRn3j/fx0fk1NMbFK3AdENCIU1ZbZuMaehKBw2DB4/7JSqfFr47vCJpxTuAaO2iERmySxWS597lSdakYt/jGqff59sxBXjj9ATtrC5sel0iXDybv4yd7HufVqQN8NrbXmDUAvgQpBZnSrLUz+gouqVL8ZGaRxVrcm7vzHEGUKZQ2c3Zgql6eNpWbNNdoYVoCTQXKzDd1283aaY4jBUMln+VGzJnlJscX6r2qzHLTZIoNlnxcaWaGukYQzSQncAVRah67r+Bd1hb3+UKdKMuZGikTeiavrBQ6uEKw3ExoJDlKKfJO1lQzzoiznJVmys6hAscW6swsNpgaKbFj0AiSc9U2mdL88uOTCKCV5hdVkLaas/RFwbTdKtTxxQbtNKMUBMRZTiPKKPgu06PGDOJqJhNdvijn7Ua4Vee1WCwWy72LFUyW66Jr7tAXupxablIOXaJUcaEWkSrdsTzOcYRgsZ6w1l5hoOBx33iFs6ttklxR8EwrUjPJ8VEkmXGla2c5n8zVSXNFminyHBwpqcWdA7Bi6avA3pWzfPfY23zr5Ps8fe5jClmy6XEL5UF+tvMxfjz1FG/seZLl0gBaXG5ekChMHx2mPTTOFQ9O9DOz0CDXmu2D69UMpyOIlDZ5TyozM0ZSrptOdCtKMsrwXAchTAVUdqzCu7M887WY3/vpKePYpzuV0lzRijP6CkbMCSEYKgUkeUQzNtUg35XUo/SytriNJguB6xD6Dp7jELiSIQTt1Hy/8lwTC9NSeHyhwVo749h8nT/5cA6hob/ocf9EhcGCT7WdXlY16lZ3riVnSUpxxapQtwr1796d5fRyi+VGQug5jHXcBIdK5rW4mskEXD3n7Xq5Vee1WCwWy72NFUyW66JrJdwXemRK4UmXuXpEmisKngNohICRsk8jSolzzUjF56HJftqp6lxBNoIKjE10rjtZMkrjyRxj2KWJMk1/waGdiZ4bmOXewBFXrhpdipclvHD6CN+ZeYevnzrM1Or5TY/LheTIxD5+sucJXps6wJGJfaSdKtJWURhHuoOnl9k+WGSsEvZc3tJcUwxccq1pxjl0WuykFGT5epveeF/IvrEyayeWyZTGU6YNrhS4+K6kFWcsNhKU1riOYLWZsNiIaUQZjTinmbSYHhWUAuMsV/Adxio+J5czSp3ZqGorvagtDi42Wdg3WmKw6LNYj/BLPqEnKfkOJd8h15qVWkKpYwCx1k4JXOPAp9Es1RP+7ON5KqHHC1NDTI2UN60abTVnaSstdPvGKvydn38AEHw8t8a+0TJ9Ba933q2YTGy12nWtXHregheyUI9488QSny/U+ZsvT3PfeN81n9disVgs9z5WMFmui+5VbqU0rhCsthLqcYrXsSXOtXEUcx1J6LlIaWY0PEfytalhjpytcq7appVkKG3667Q2V+fLgYMrJbnWJLlGaUWU5XidosEVxlWuyK02irBcmauJ28m1BX7u+Nu8dOIQz84epZxGmx63UujjZ7tMFem1vU+zXB5CiRtrkxJAM8mZXWlx/3iFubWIcuDiO2Y2qeg7rDQSqu20I5I05dCj5LtEWU45cNAaKoFLLcqoRRmh5zBQ8IgzYzeutKY/dDm32iZXmkroMlj00Cuw2ko4vtBg+0CBgZJPO8lZbiZM9oX8X745xeM7B3p5TnO1iE8v1HotYuvtbU0m+wNqUcp8LQY0lYLLfWNlVlop06Nlip7DB+eqlAKX4Y7JgvmugVaaJDPmDDsGi5tWjbaSs7SVFrouriv5i8/s4Pd+mjFfj5FSXNFk4lKutdq1VS4972or5ZO5KquthCxXnFhs8r80E/7BLz3EfRO20mSxWCxfNaxgslwX3avcb51YphFnLDUSMqVwpMCTAiklfaFLkhonrHqUEmeKJFeMlAO+dd8otXbKSivho/M1zlfbCNbnQHKlcaSxjXaEwJGCtTjtZeFsVQA5HTvo1NqC3xEufZ+kynl29ijfOf4O3zz1Pvcvndn0fgrBx+NTvLHnCV6deoZD2+8nd9YzfrpbYTNhdG1099G6I+rTXKF0jucIDp1eob/g4TmClUZCOXAZLPlsHyxQCTwQmo/P1Qg8Sa2dsVBfo5WYROOhogdCUItS6Jy7Eno4jpmb6ooVgG0DIV5nNm+pkdCIM3zX4f7xCr/+wh6+8+A4YKoev/v6iU1bxDaaLAyX/M53QzNcChBC8tzeYR7d0c+/efM0ShtR0X38JFO0U0UxcMlyzUItph5lvWrPxqrRVnKWrtZCdylbMZnYjJtZ7brSeVdbacfyPKMcenihi+9mzCw0+OevHuc3v7PPtudZLBbLVwwrmCzXhZSCByYr/MHBWZabKVmuyDoBnwka19EUfYfBwOXBbX18cr7G3FqE19mtCiHoL/r0FTzOV9ucr7aJM0WWJwhprucLAUXPYajss9JIzCyJ1hRcSTO5sv30Rq4UgGq5fQw1q/zcsbd4+cQhnj9zhP64uelxa0GJN3c9ymtTB3h16hnm+4aveM7uW+pItpyRJTBiSet1kZV2golf+WSRyYECi/WEdqdSooGir3lyVz/3T/QxV23z7qkqAM/sGWSyv8BiPeb4YoMLaxGi06untJlRaqc5pcBBSkElcEkyY8TgdNzsCr7DgV2DrLZTvvfwOPeNV3hq5yCua0qpW2k9+xsvTfcMCgqec5lhw+cLdZqpeT6esy4wcq1RWhO6kjxXpMpczOiysWp031jlqjlLX9RCdyWuZhKxGTe72nXpeQteyCdzRiwNbRC4pcDtuX5ay3OLxWL56mEFk2XLbHSPKngOPzm2RJLlxgpcQJ7kmBQYsxFtxhnP7BlkqOhTDFxGKwEXatFFLTjHFhqmOpUbV7Jcg9TaDN1L0zrUinPSXNFf8KhHGS1bLrqrEVrx2PnPe612Dy2cRF6hJvjpyG7e2PskP5o6wDs7H76oirQVrvWjcKl4zpVGA2tRTnuxxVDJY3AgpBFlaMCVguPzDZJUs9SMKfgOz+4ZYrhsssUmBwr4ruT8WkQzUQwUXISARMhOZVOjc0WSKaJUoTptp15HMPUVPTKtObBniAcm1udjttp69te/dblF+EZKvkvJM//Mp7kmcM15HCE61TWNRuBJ2XEENGysGm0lZ+lKLXRX44tMIq70fG52tWvjeRfqEauthPKGahxAmitcx2Gyv2Atzy0Wi+UriBVMli1xqXtUlinen63iuZLtAyFza2b2JM0VumOzHKU5789WOVc1GTS//vxuPrvQ6LXgRGnOYm3dFcyR66GgWpsg0DTXtNMEOgJKaU1m9dJdR1/U4OWZd/n2zLt8/dRhhtu1TY9reCFv7XqU16ae5of7nuNC3+htW+Nmkq17mwQypai2EjQ+mdJEqTEw8VxB6El2DBTYPljoOduB+ZzOLDYJHEl/4PDozgEC18GTgk8v1Pj0QqOXJRb6Do6QZEpR7wiyRpRuusG/Wa1n2wcKPLq9n5PLTepRit+pmnRtzFeaCaHvMNYXUAnd3nO6tGp0vS10N5uNhhc3s9rVPe+bJ5bIcoUXrr8fG3OiRisBp5eb11zBslgsFsu9jRVMlquyWWvQ5/M16lFG0ZdcyBRprikHDpmSRKkiTnMyhRFGiWKw6PHZhQY/99A4v+xN8saxRf7t27MsNmLaiTl2o0GABtqZRpKjAE9CuiFI1HbZ3WG05oHFk3zv87d46eQhHps7hqs3V7IzQ9t5fc+T/Gj6Gd7c9RiZe21VpBulaw/+RZ8ZjQmjTXJNtZUwUPApBYIkM0HJH83V2DYQct/ExS5p9ShjtZUwUPR6Nt8jneqTCXttdpwdNRLTCpfmmlLg4EvBR+fr/B+f2H7ZBv/S1jOtNfUoI8kVviMp+A5xdvXWMykFv/DoBJ/O1/lgtsp8Laa/6AFmTUIKfNdhsj8k15p2nF2xanQ9LXQ3m1tV7eqe9/OFOicWm/huRilwSXPVyYlymB4tEaXXV8GyWCwWy73NHf1X//XXX+cf/aN/xKFDh5ibm+MP//AP+ZVf+ZU7uSTLJVypNajgu0gBjSgzbXRS0Nqwecs7G9SC6+I7ZrbpZzOLvaH6d0+tsFCPkZhN6pU2s90teKag2k5tdekOUkzafPPke8aw4eT7jDdXNj2u7fq8s+MRXp16mh/uf46zAxO3eaXrCCB0TWWynV3+s+7nTrPe3qc6yt2Vkkzk9BVcFuoxK42UZpxeVGFKckWWK3xX4FzS1uY5klJo8sg0UIsyfFdS9B0qoUs7MRcaHtvZD8DsSqsnRAqe02s9S3PFzEKTlZYxVnGlsQ4fLPlb2rjvG6vwt7+7n99/6wxvnVxhuREDMFj0+drUCAMFj2o75dRS86pVo2ttobsV3Kpq176xCn/z5Wn+l0bCzGKDJMtxnW5OlLFvP7bQuK4KlsVisVjube6oYGo2mzz++OP8xm/8Bn/hL/yFO7kUC5sn3F+pNUhoTa71uqlCZ5O5caAeoBZn1GNYqC/hu4JMdYfvNXkOKVurFmmwYul2ozVTK+f47vG3+fbMuzx17lN8tXlF43T/BG/sfZIfTj/Lz/Y8QXKbq0hXQmM+n+XAR5MSZ+viXF4hI0pp01qKkL3PfF/gkCvNkXNrPLqtv+cm5zsSVwpqrZRtg8VeWxsYMSWAyf6QPcMlLtRNBpMQGhBM9IcErqSd5vzOazMXOeFNjZYYKHgcW2iw2oyJUkU5dPGkSyNOObXcpJXkNOOttYbtG6vw93/5IWZXW5xcMqYbUyMldnTCeu9k1eh6uFXVrvvG+/gHv/wQ//zV4yw3Yyb7C4xWAqLUzFveyLyWxWKxWO5d7qhg+sVf/EV+8Rd/8U4uwdKhO6N0fKHOajvFETA9WuapPYOXuVJprZmvxeYKuM7JcxMm60gjmC5Fg3HQS20j3d1OkMY8f+YIP3f8bb514j121BY2PS52XA5uf4hXpw7wg/3PcXpo+21e6TUgoJXkJJeqoytY1GugneZkStMXutSjDNDEWU60mjNXjZjsD7lvokLoShRGeE2NFC+6qOBJQZIphsshD0z2cf+EmbFppTlFz6EcOJytRvzJB3MkubrYCe9cjTjLObPSohlnbB8okOaKc6ttmnGOlLBYj/i//skn/IP/w4NbClSVUrB7uMTu4dJlP7vTVaPr4VZVu+6bqPCb39nXq2CdXr565c1isVgsX27uqUbsOI6J47j391pt88Fyy9boVpQ+uVDjTz6YY6UV04pzGnFGnOV8MlfnjWNL9BdcSr6D7zr4jkRrzWo7ZXIg5NxqRNpJkr20umS5N9hRvcB3jr/Dd2be5dnZo4R5uulx5ysjvL73SX6w72v8dM/jRF54m1d6feQ5JMq0xYmOQtJAfoXjBZCZsimZUiSZJvQcKqHHI9v6OLvaZm4tYm4tYtdQgcd39tOKFcvNFN91ejM1F2oRo5WAou+y0ow5sdjqtdU5QqCUpq/g4UrJfePr7a5prlhrJcwsNWl2wqBPLjVod1z2HAGBNBWvj86v8c9+dJz/6Tv7r3sjv1ll+ateQbkb5rUsFovFcvdwTwmm3/7t3+Yf/sN/eKeXcc+ycWO0WI/5YLbKzEKDj+ZqVFspaLMxHCqbfKQkyzm7GjG72uL4QoOBoo/rSAJX0koyxioBpcAhSrKeJbjl7sfLU56Z/Yjvdmy/p1bPb3pcJh3e23Y/r04d4M/2P8/M8I6O4rh3cISZn+vNKmlj7pBt+KzKDSIKzFOU0ggnIYQxaHAE430hu4dLVAoeSmvOViPm6zETfSHjlQAEVFsp87UI35HsGi7y/PQwP/58kR9/voQU0F/08HFZa6UkWU4rzdk9vF6ZWmnGndDUnEpgZpgGix7nVtsobXLJtNAd90gFaN49tcK/ffsM//MvPXTNG/pL3S83BuN+1Sspd8O8lsVisVjuDu4pwfT3/t7f47d+67d6f6/VauzcufMOrujeYePGaKkRM7vSwnMku4dD2klOlGYkmXHOKiQObXLiTJFmOXGaIxHEWY7nCFZbCSvNhHaSI4XZWORXsyGz3FHG60u8NHOQ7868wwunj1BKo02PWywO8PreJ/nhvud4Y+9TNIJ7e8MohLEM152PZ7c91AGjiDq3lQIz3J/milyZ0OVWnCGEwBFQDFymR0usthI+6Aia0bJPrjSeK5mrRQwWPX71qe20kpyDp1ZZrEXMrrQ4vdSileT0hS6tJMcVguGyTylw+GSuzvlq1Jslmllo0k5yhko+UZpDPabaStEYYRdlCkcai30hIMuhGee88ukCLz0wxjf2b92mfSvBuF910WSxWCwWC9xjgikIAoIguNPLuGe4tOUuzhQTfT4nllLiTFGPUmZXWsSd0FiB2ZCttlKkEL0r8+b2HCcW1KOMNFO0U0Ujzq3F912Ko3KePP8p3z5uspEeWDq96XG5EHwwcR+vTh/glX3P8fHY3nuuinQlusWWSyufAnqudqaSJHh6zyAPT/ZzttrixGKTajMhyRVSSHYMFdk/Vmaw6HPw1GpP0GhgtZXguw77+wscW2jw6qcLtFPFasuIkCzXfC4alH2J70om+0Nq7YxmnLHcjInSnM/m60wOhAwUfFZaCeXQ5AsJIfAcSTvJet+zXGu8zs+0At+TOBIaccYrn8zz4vTIlqpMWw3GnRop2zY0i8VisXzluacEk2XrbDRx+GiuRiPKGC0HnF5pcm61TZYromxdKG0UPrkGpfVFlstJrikqTTPJL25xut1PzHJFhptVvnXyEN85/i7fOPUefXFr0+NWwwo/3vskP5p+lh9PPc1a4ctRReh+jrtzdFKYIOTNjsmUZrjsAYKSL+kveBw6vcpKKyHNcppJTl/BZ7Do8eB4H31Fj1o7vUjQJFmO27ESF0Iw0Rfw5okVRis+j+8YQAjBUiNGAKN9IQu1mE/m6pRDl0rnV5Qqqs2EQ6dX2DNSpp1mVIIQrTXNOGOsEnJ2tUnWMVYBUAhUrpFSUPQcklxRdiVza9FVg2y73KxgXIvFYrFYvgrcUcHUaDQ4fvx47+8nT57k8OHDDA0NsWvXrju4snubja025cBBAAVPcnK5SZortFImJ6mzAdtM9Gx2WzWy6fZ3E0IrHps7xsszB/n2zLs8Mj+DvIKE/XB8mlenDvDKvmc5MrkfLeSmx93LdFvupOi04F3SJSoFBA4IKYlTRT3KKPgucab56HyNPDee9yutlDRXJI2cpUbMUiPmG/tH0AgypfAcF601jShjrC/sWYlnSrPWTrh/g4GD70hcR5LlmjRXNJOsYyfuAFD0HdZagvm1mGrTtN6145zQd+gv+OwbLZFkxkCinRqbcq3BdyUFz3y3c6UZqQQ4Qlw1yLbLpcG4l1LwHeZrVw/GtVgsFovlq8AdFUwHDx7k5Zdf7v29O5/067/+6/yrf/Wv7tCq7m26rTbLjZjxSsDp1RZr7YQ008RpRppbJ7t7mf52nW+efI9vz7zLN0++x3B7c6fIWlDijT1P8Mq+Z3l971MslQZv80rvHK4jelb3XQTGAEJKB41GAu0koxQ4lEKX1WaC6whWmwmZ0niORApNnCku1GJ++MkCj+8cQApBM85IMkXBd5keXRdH9SgDbdraulRCl8Giz/lq27S1ShOiC9CKM5YbCYFnqlRRmiOEYC0ys1N7d5bYOVRkvhabGcM8wQEqgYPnSpTSNOKccuCyZ6SEQGwpyBag5Lu9YNyN6+3STnIC19ny+SwWi8Vi+TJzR/83fOmll9CbBfdYrptz1Tbvz65yrtri7ZMrtBJj5tBzALujq7NcM1rz0MJJXjpxkO8cf4cn5j7DucJ35tPR3bwy/QyvTj/D+9seIJfObV7s3YFWGkcaO3EBeB2HB88xYiXtpidjDBOUjhguBzTjDK0hcASB53S+MzlRaqz2j883cKSg2krZPVxk31iFoZJvHlNrVlsJA0UPZ8PMjxCCfWNlFhsxcarxXWFmAtOMc9U2ALsGiwSeZLEeM94XcqFmspbOrjbZMRgy0R9wZqW5XlHSmjTJyZWmHLg8u3eQKFU8ur2f7QObV4wuZftAgenRMkfPr1EO3Iva8rQ2eVHXcr6vGtaK3WKxWL5a2MuHXzI+mlvj0OlV6lFKrjYP5bTc3ZTjFi+eOszLM+/y8olDjDdXNj2u6YX8dPfjvLLvWV6bepr5yshtXundidZ0BIC5UKC1cZULXGmcIB2JKwWeFBR8ByEEtXbKQj3BcwS+59BKcjKlUEqjAEdpUqX4q1+f4p1Tq8SpcYzMlKKd5MytRT0RMrcWUQnXRchQyeeRyT7m19rrFarcOFKOlAMKvkMtSmkmOcuNBBAoDccXmrhSsmOwyPcenqDaTHhvtkojzii7kuFKwN7hElGmGCr5fO/hcaQUW9rMSyn4+UfGOb/W5tiCmWXq5kfNrUUXnc9yMdaK3WKxWL56WMH0JeLzC3X+6Q+Ps9raPHjUcpeiNfuWZ3l55iAvn3iXZ85+jKc2j1U9PrSDH00f4NXpZzi44yFS5/J2qq86oSephB4rzYQ416QKcq0IlEAK8BzRccqTRjAh0FqTdVzxGpHJFXOkQDiAMsaBS/UYKQS/+e19vQ3zfC0icB0e3d7P9x4eB+D3fnrqMhESZTl7R0q98y43EtLczDw1k4xGlBF4kkro4rmSgULO+bUI35P86lPbeWHaiOGfzizxyifzzK1FOB23vO5j7xurXNNmft9Yhd94cc8Vn4vd/F+OtWK3WCyWryZWMH1JOL5Q55++eowTS407vRTLFgjTiOfPfGhE0sy77KwtbHpc2/V5a9ejvDJtqkhnByZu80rvPULPJc6UqY50PMWVhjTLSRU90ZJrCFzJUCVgsRYDkGTKVJ9cCVqbYxxB4EnqUc6h06v8pWd28TdeKl+xirOZCHlsxwAv7hvhX795mnqU0he6NBOBUrASJQBsGwgJTP8gUgpGSj6OEBw5u8YLHbvwb+wf5cXpkcseG+Anxxb5/XfO0IwzpkZKbAuuvpnfN1Zh6guei2Uda8VusVgsX12sYLrHUUozu9rin/3oOG+fWKGdWkuHu5Vdq3O8fMIIpOfPfEiQb14JPNM/3mmzO8BbOx8h9mz22LWw1krINslRbnUM3wQmuNZ3TIWmFWdmtqiTPeZo0y6nNDjCiKUkN2G2tXbas9q+kt32ZiJksi/kd18/wWR/yGjJZ7WVIIWgnSkcQSdvSaGLZtVdB76pkdJl9t5Siose+/hCnT89eoH/8uEcy82EwYJHkmn2jZUZKvlX3cxfej7L5lgrdovFYvnqYgXTPcznF+r8h0OzvHNymU/m6mTKTijdTfhZyrOzR3siaWr1/KbHpdLh7Z2P8Or0M7w6dYATQ9u/NOGxN4PuK7HVT3e+iVi6FCkEUgj6ix5rrZQ0z3uPkyjIM0XgSkJPkikzB7VjqIjrbM26+1IRMrvSYmaxwf6xMuXApR5lLDZiPjy3xlI9xncd2mlGPTbB0F0HvmLgslCPr/iY3Raxs6st4kwx3hcghWSxHtGIM57YOcBQybeb+ZuAtWK3WCyWry5WMN2DKKX594dm+X//5CSrzZhmnBHnVizdDWyrLfDSiUO8PHOQF05/QCmNNj1urjLMq1PP8Or0AX66+3FaV9iEfdWQmLwkKSHpjHG5Egq+S5rntNMv/pxLjG2+AOOUt8H4xOt06GlhrLkzDQv1mCzXxFlOJXSotdc3u2mucaXGlYLxvpB9YyW4BuvujWzcbAsh6Ct49BU8PEfwxrElslyR5pp2krOtYx4xVPKpR+kV7b03tohtHyhwrtomcB2kEPgln5Vmwsxig8HioN3M3wSsFbvFYrF8dbH/st9jHF+o87+9dZo/fP887SRDCmhnVizdKdw84+lzn/DyiYO8NHOQB5ZOb3pcJiSHtj9oqkjTB/hsZLetIm3AEeBKQao0ouNo1xdK4wgXePQVXBpRRjtNLruv8cMzXNSQekmlyXHAQZDkmnangrTWTvE6znJD/SFjlZCFekyuFEmucaTgvvEy+8YqLDeT67bavtJme+dgkf1jZc4sN/FchwO7B9k2YETV1ey9N7aIaQ2ulKS5InCN8185dFlpJtSjDCGwm/kbxFqxWywWy1cX+7/nPcTxhTr/8ieneHNmmSjLEGja9oLxbWe0scJLJw7x0omDfPPk+1SS1qbHLRYHeG3qAK9OH+Ane56gFpZv80rvHVzHzAu5jmS07HPfRIWC6/Dq54u005yxSkBQliw1kp4o2jiKc2k0lQa61xG6gkogERKk0oSuQ6YUaaZwfYdi4PLo9n7Kgcv7Z6rUoxRHCjSwY7DIcjO5zGr7WrJ4rrTZFkIwPVri7Gob3zUuebnWtOPsqvbeG6tWUsBQ0WehHuGXJEIIPMcIzjjLWW2ldjN/g1grdovFYvnqYgXTPUK3/eZctUWcZaSZxnbh3R6kynli7nNemjnIyycO8uj8zKbHKQSHt93Hq1PG9vuj8Sm0kLd5tfcmuYL+kstQySfLNeerbRwpcaQwdt9SkF/iZ6K0acG7WhqzI7uPoRDaCIlt/QH1JCfJFH2hy57hEjsHiwgheHLXADMLTZaaMbV2ymor5endgxdZbV9rFs8XbbaXmymP7xxgrBxQbacs1OMt2XtfWrWaHitRj1NWmgnl0EVpIyTPVdudLCe7mb9RrBW7xWKxfDWxgukeodt+M1j0qLZTK5ZuMYOtNb558j1ePnGQb514j8Govulx1bDMj/c+zY+mD/D63qdYLfbf5pXem6xXfehkI0mkEFQ61Rczb5MzVPRYbmrqUYoU4uL+u84fu3NPXc8TB9iYYqUUBJ4kyxVKm/kl33NImgmOFPSFHtMbbKKHSgGDe3zm1iJWmjF/7VtTHNg91BMb15vFc6XN9iPb+nlsZz/DJd+0IIYulcC7qr33pVWroVLAEzuN2Ftuxqy1U4ZKAc/uGeLnH5mwm/mbhLVit1gslq8eVjDdI3Tbb3wpiBJrHX6zEVrx8PwJXp55l5dPHOSJ858jr+C1dnR82lSRpg5weNt9KOnc5tXe++gNv+ca4lSxohK0UpRCjzRTNOOMgifZO1Ii9BxOLjZ6rXcCMwImMWIrU6onmEJfkilNkml05zGU1oSeg+dICp7L2dU2oSu5b7xCMXAZLPrra9OaWjtlbq3NQ9v6eGrn4EVteDeSxXPpZnupHnP4TJU/fO/cZZWqq23AN6ta9RU87p8oc2JJsG+szF9+dhcvdjKcLDcPa8VusVgsXy2sYLpHKPkuSab46EINK5duDn1Rg6+fOszLMwd56eRBRpvVTY+r+wXe2PMkr04f4Md7n2ahMnx7F/oVIc01i82UhUaKwBg4LNZjJvsLtJOcVpJfJLS0NsfoXCGEMY4QHfMIY5qQo7TJWyr4LqPlgNFKQNF32TZQ4DsPjjFWCfnXb57qCY4ozfnsQp25tQjXEYSew+++fqLXanczsni6m+3jC3X+69EL11yp2siVqlbP7R22LWIWi8VisdwkrGC6y9hskBzgxFKD4wsNzlY3t6m2bAGtuX/pNC93ZpGePvsxrt5cfn46spvXpp7mtekDHNz+EJljvyq3AqejOXTX0a7ze7fVLs01751exXPNPFPXNryL6NxXaXCkoD908VxJO8lwpKTkOYxXAobLAb/5nX0MFP3LWqh+/fk9/IdDsxw5t8aZZWPgMTkQcv94H6EnLxIwmdI3JYvnRitVG7EtYhaLxWKx3FrsLvAuYrNB8oGih1aa148vcXalZWeXrpFi0ubF0x+YKtKJg2yrL216XMsL+OnuJ3h1+gCvTT3N+b6x27zSryZ5x7ihl5UkzfyRUsasQWnjdqdSRcGXxsBBrWctddGAEJpca7IkByEph4LhUkCaKWZXW9SijK9NjVz0+McX6vzg43kWahEX1tpEacZYJWTnQIGRsm/suTcImF96bPKmZPFcWqnSWlOPMpJc4TuSib7gmoJmbYuYxWKxWCy3DiuY7hIuHSQveCEziw1+NrNErjS1VoKNW9oCWrN39XxPID03+yFBvvnV/hOD23q23+/sfITY9Tc9znJr2VgxyjvObgIo+i6tJCPvtN5FqcJ1JL4rUEqRa41SJuSWTpUpzhRF36HgGce9gu8QpRmL9ZyDp1b47gPjm5o3KKVoRDmZgtnVNhdqEXtGWjy6fYChkt9rtRNwU7J4NlqCrzRjZhaarLQSMqVwpWSg4OG70gbNWiwWi8VyF2AF012AUpr/+uEcxxfqDJd8zq62qLVTji82aUQpca4vy5mxrBOkMV+bPcpLJw7y8sxB9lTnNj0udjze2vUor06ZKtKpoe23eaWWq6G1EUCOFLiO6AgS8+EXQF/o4jkCMHbjUaYo+pK+wOXUSpvxSsBA0cd3Za9y04xzJgdCFmtxr2KzsSVuuOTz1skV2mlOOXCRAlpJzpmVFlmueXLXIH0Fl/laRCvNb0oWT9cS/Hy1xbGFBu0kpxy6eI5Lmivm1tpIIViqxzBxy192i8VisVgsX4AVTHcB//7QLP/rm6dppzm50r3cGSkg7jh9WS5mx9p8LxfphdNHKGTxpsed7Rvj1WnjaPfmrsdo++FtXqnlWghc403ouRJXGqtxSec7IIzbXaboWIRrtNYUfZeRSsjZaoTqlKc0kGQ5jSij4DvcP15hrZ1Sj1NmV1rMLDY4cq7KZF/IZ/MN0kwRuBKEaW8LfYc0U9SjjJnFBvePl3utdjuHijecxbN9oMDUaIk/PnyeXCmGy0GvWuU7EtcxM1sfzFZ5wbrcWSwWi8VyR7GC6Q7zyifz/PNXj1OLUsqBS5zmpJqeJbLF4OUpB85+3DNs2L88u+lxqXR4d8fDvSrSsZFdxjrNck+QKYXnOhQ8x1SZJMSYnCUB1NoZGtOKZ+aWoBinJLnPtoECfQWPVpLTjI3pw1hfyPRoCc+RLNRj/ui9cyw1EhYaEScXmsxXItailMGiR640zSTD8RwcIUiB0JOsNGJOOILn9g73Wu1u1GhBSsHjOwf4j4fOojQkucJzJGmuaEQZRd9l/1iJmcXmlueYLBaLxWKx3BqsYLqDZJniX/30FK0kp+Q7KKVppet5Ml91xurLvHTiEC+fOMjXT71PJWlvetx8eaiXi/TTPU/QCOzm8l6lawPuCCMicg2uY9rycmXmhLqBtwACQbWd49diDuwZpJ0oJvoCUqXxHUklNP/EvX+mSi1KcaVk20BIOXCZq0Ys1CIane/fUMknyRXtNMfpKDQhoNpKmRorX9Zqd6NGC6OVgJ1DRZJMUW2nNOIMtyfyyvQVXE4tNe0ck8VisVgsdxgrmO4gB8+scHyhTugK1tqaepzf6SXdURyV88T5z3i5M4v08MKJTY/LheS9bQ+YXKSpp/lobMpWke5xpICiJ3GEJMs11SzFEYLRcsDekSKHZ9doxJmxG+9Um1xHELoSx5FIKRgseBQ8zXw97s0WNeKM89U2tSilr+Bx33i5N9s0Vgk5l7dQUcZSM2XXYIGJvpCVZky1nRK4kjRTDJd8/rtnd930TKOS7zJSDugvuIDoOeRVQmMmUY/SLTnuWSwWi8ViubXY/4lvE5fmK7WTnN/98Qnm67Fx+LrTC7xDDLXW+FanivTNk+8xEDU2PW650GdykaYO8Prep1gr2EDOux0BuBIyxVXbS5U2DnmBJ0AJQqnxHEnRl6y2UsqhS8F3KPoubqcC5TgSVwg00IgzzlUj/ofnd3Nkdu2i2aLdwyUypdk1VOzNCQkh2DdWph6lrLUy6u2UdsnHcQSB57A9cNk3VqYRZzy7Z5gXpke++AlcB9sHCj3HvY1ZTHBtjnsWi8VisVhuLVYw3QaOL9T50w8v8OG5NZpphso1c7WI+bXoK9d+J7Ti0QvHe7NIj80dQ15hO/3BxP6e7feRiX0o6dzm1VquFwH4rqkAATQTY9n9RcdrrWklisATZErQTnNWWxmeIwk982u47CMvqSYqrSGGVpoxWgn4Gy9NX3Rxoh6l/LNXj1O8pFIzVPJ5ctcgUsDxxSbn1yIGih6jlYBt/SHtVLFjsMjPP3J117vrQUpxUxz3LBaLxWKx3FqsYLrFHF+o849/eIzP5+vkShOnOYv1mPgrlEDbFzX45sn3ePnEQb514hAjrbVNj6sFJV7f+xSvTh3gx1NPsVQavM0rtdwshIBt/SHl0MMRgkxpPrtQI91ENBlzOlMp8h3Ico0jBTsGQ3zXYaURU22b3KJS4NJfuDgvK83NSYueS8l3L5stml1pXTFsdqjk8/TuQSqhx0R/SCPOcISxLb8W17vrZd9Y5YYd9ywWi8VisdxarGC6hSil+f23zvDBbBXflXiOYLGWfvnFktY8uHiyFx779LlPcfTm5YVPRvfw6vQBXps6wKHtD5LbKtI9jwRcR5Ipk6fkOZIkynCkEU6uNC14UoDvSkLPoRnnaK2JM43nGHe8gucSeA6yYgJpW4livhbRF3q99jWtNfXOuR/bsXn72sbWt83CZi/UYl7cN8L/+I0p5mrRdbne3Qg36rhnsVgsFovl1mIF0y1kdrXFWydXkEIwVPSYXW3TTL6cxg7luMWLpw/3spEmGiubHtf0Qn6y54mO7fcBLvTd/NkQy51lrOIjpckRqkfG4S3JTLZY0RcMFgNqUUroyo6wUoAJZ9ZaE/gOWkPeSWv2XYdS4BJ4mtVmyrnVFsOVABCstVKU1jy+c4Cff2RiU5Gx1dY315V3zL77Rh33LBaLxWKx3DqsYLqFnFxqUm0nVAKX44tNqq30y5OtpDXTy2d5+cS7vHziIM/MfoyvNrc/nhnawWtTT/Oj6Wd4d8fDJK636XGWex9HwHAl4Gt7hxkoehw9V6OVZggEZd9BSEEzzvAcgZQCIdbb8ZTWOI7AcQS5otMaZ1ruCr7LfeMVjpytIoVguZEA0F/weX5qiF977otd7Gzrm8VisVgsluvFCqZbTJTkLNUiki+BDV6YRjx/5sOeYcPOtflNj4tcnzd3PdqrIp0ZnLzNK7XcCYSAwJVMj5b5ted2MTWy3mZW9Bz++PB53j65ggDqUUY7zSl6pgVTaVNlCV1JnGkqgYvvSrTWNKKMsb6Q4ZLHkzsH+MvP7qTdGYbaO1Ji52BxS+1rtvXNYrFYLBbL9WAF0y1F04ize1os7Vqd6+UiPX/mCEGebnrcbP84r04d4EfTB3hr16NEXnibV2q5Xkws7I0hBfiO5KFtffytb+/rVWw2tpn9wqMTzNUi6DzeuWqbtXYGwgik0JPUogy0pr/okuSKRpRR8B2mRopcqMU8ur2fZ/YMX7fIsa1vFovFYrFYrhUrmG4CGzOWip6DBppJxh+8c4bsHvMN97OUZ2eP8vIJY9gwvXJu0+MS6fL2zkdMNtL0AWaGdtjw2HsQKcDpmDDkmwh7AZ22OZOTJIUxdcg6H2tXQOg79IUuD0z28Xd/4UHuG9+8vW1jW9zxhTrlwGGpkeJIwWR/iO9KVpsJF9YilhsJpcDtWXwvN1Nrs22xWCwWi+WOYAXTDXJ8oc73j85zbL7GyaUmy80E1xEMFlw+vtC4J3KWttUWeOnEIV6eOcgLpz+glEabHne+MsJrU0/z6vQz/GzXYzQDe6X+nkeDKyVKaRS6J5AcYaoxWgMCtDK3jfWHPDhR5qPzdUAz2R8yXAp6pgtXmwW6tC2u4DkIoJXmlHyXyb6QN08u88on88ytRbfV4ttisVgsFotlM6xgugGOL9T5vZ+e4tMLNc4st6i2EnINaDgD3K2deG6e8dT5T80s0sy7PLB0etPjMiE5tOMhXu2Ex342sttWke5x5IZqEax/RrcPFih4DiutFLQRTs1U0U6N3bcUmsB1GK8EONLh5fvH+IVHJxitBNc8C3S1trhv7B/lxekRO2tksVgsFovlrsAKputEKc33j87z6YUaJxabNOKMzsV47kbj8NHGKt86eYiXZg7yzVPv0xc3Nz1usTjA61NP8aOpZ3hj75PUwvJtXqnlVhG4pmKU5euVpOmRIn/lxb18Y/8oUZbzT145zgezVaSAyYJHO81ZbSZkSlMKXQZLPo/tuPXVHjtrZLFYLBaL5W7BCqbr5Fy1zbH5GnPVNlGaI9AobWZBbsYQ/Y0iVc7jc8d46YRxtHvswvFNj1MIDm+7r+dod3RiGi3kbV6t5VbjCmPTrYUmV0Ys7R4q8k//+6d4YKK/d9zf/u5+fv+tM7x1coW1trHu3jFY4OHt/fzcQxM8ONlnqz0Wi8VisVi+UljBdJ00k4y5ekw9yghcST1SPZF0pwTTQLvGN0++x8szB/nWyUMMteubHlcNy7y+9yl+NP0Mr+99ipVi/6bHWe59HAFOJ+8oyRVKG+G0Y6jA//xLD10klsDMGP39X36I2dUWJ5dMFXJqpMSOLVp3WywWi8VisXzZsILpOin5LihNrjSeI3vteJ0RptuC0IqH5k/0bL+fmPscR28+OXV0fNrMIk0d4PC2+1DSuU2rtNwsHGCiPwBgoZ6QdhxFJBfPy0lgsj9gvC+kmSjSLKeRZKatznd4bmqY//Eb09w3sXlLnZSC3cMldg+XbunzsVgsFovFYrkXsILpOtk+UGBqtMSRc2sopS+qKt1KwVSJm7x46nAvPHasubrpcQ2/wBt7nuRH0wf48d6nWagM38JVWa6HvtDl6/tGyJTm1HKTdpKx2kpppzmqo4AE4DmCwHMIPQfPlfiuw/6Cz1IzoZ3meMZIjlxD0XPYMVhgx2CR/eMVvvvgOIEnbbXIYrFYLBaL5Tqxguk6kVLw6y/s5dXPFllpJkhh5pduujOe1ty3dLpXRXr63Cd4anNbic9GdplZpOkDHNr+IKnj3ezVWG4QT8JQyacUuGwbKDLRH1LwHbYPhJxYalIOXH716e002zmfLdTpCz2++9AYaar5/75/lplFY1U/UPD4pbEKj+7o61nX7x4u4gjRs+jeOGtkq0UWi8VisVgs14fQWt9pf4Lrplar0d/fz9raGn19fXdkDf+fN0/xj394jGorQeub05JXSCJeOPNBx/b7INvri5se13IDfrb7MV6dfobXpg5wrn/sBh/ZcqMIIHQxnwUBvhRsHyyye7jIo9sHeWh7H/tGy0RZzg8+WmBmsUGc5QSuw76x8he6z20MSLZW2xaLxWKxWCwXc6u0ga0w3SD/5+f3MNkf8o9/cIyZpQZprsiuo8y0Z+Vcp4r0Ll+bPYqfZ5sed3JwklennuHV6QO8s/MRYte/wWdguVZGSy7P7h3i8/km8/UIrcF1JH2hy1DZpxx4FDzJnuEyB/YMXtFZbt9o5ZoEkLXatlgsFovFYrn9WMF0E/juQxO8dN8Yf3zkPP/u3TMcPLVK1ikzdfNu1CVlpyBLeO7Mhz2RtKd6YdNzx47H2zsf5kfTz/La1NOcGtp+a5/MVwwHuG+8jAJOLTVJc40Q4DqCku9S8iXFwGXPcIkHt1V4bu8wz+wexnUlWaZ4b3aV5WbCcMnnie0DzDdiK4AsFovFYrFYvkRYwXSTcF3JYzv6+eHHPkXfpZVm0GnLyjsVp+1rC7x84iDfPv4Oz585QiFLNj3X+coIr0w/w6vTz/Dmrsdo++FtfCZfTjxp3geFEUkFX7JvtMSvfW0Pf+HJHczVIj48X+W/HpljvhYjJUxUQu6b6Ltim5zrSp7de7GZhhVAFovFYrFYLF8urGC6SSil+f7ReZpJzlDJI28oiBMem/2Yl4+/y7dn3mXfytlN75tKh/e2PcAr+57l1akDHBvZZcpSli3hOQJHQJLpi0w3Cq7giZ0D/OpTOxmu+KCgkaY4UjJaDnhq5yCua0J6dw4V2TlU5BcemrRzQhaLxWKxWCyWHlYw3STOVdvMLDZ4TDR55oMf8MChH/O1k4cpJ+1Nj18sDvDq9AF+NP0MP93zBPXAupiBCVoFY5F9Kb4jmOgL+O6DYwyUArTW7B0pMz1SplJwSZXi0KlVLtQiJvtCntk7xK6h0jUJHtsmZ7FYLBaLxWLZiBVMN4Pz5yn83/6f/NYf/jE7Zo9tekguBEcm9vPDfc/y2vQzfDy2Fy3kbV7o3YUvIfRdHCnYNlDgew+NIYXkw3NrrDYTlNbsHCqwbSBkoBiwbSDkew9M4PtXDt2dHt3cYc5isVgsFovFYrke7rhg+hf/4l/wj/7RP2Jubo6HH36Yf/yP/zHf+MY37vSyro00ZeSf/D8uu7kaVnh96ilemX6WH+99kmrhzlif32p8B4aLHvsnKsZCe6jEg5MV5msxR85Vef/0KheqbVqpRkrYMRDym9+9j7FK2DNM6LbHWetsi8VisVgsFsvdxB0VTH/wB3/A3/7bf5t/8S/+BS+++CK/+7u/yy/+4i/y8ccfs2vXrju5tGtj9270ww8jPvqIM7vv5/yL3+bEcy/x7xnn5GpMmuc0k5seaXvTEYAEHMcEnX7voXF+7uFxji80+enni3y2UKcV5+QqZ7RS4Jv3j/Lc3mH6ix6VwNtU3PzFZ3Zd5ia3cXboUmxLnMVisVgsFovlbuKOBtc+99xzPPXUU/zO7/xO77YHH3yQX/mVX+G3f/u3r3r/uyG4tsfBg5wMB/h/HWuz0kyY7A9ppznvnTZCQQpoxRntVPUsxgU3J+j2i3CFCVFVncdxBPiupBK43DdeYrhs1hlnijRXTPYX+PNPbOMb+0YvEj+28mOxWCwWi8ViuZv50gXXJknCoUOH+Lt/9+9edPv3vvc9fvazn216nziOieO49/darXZL13hNHDjAXuA3xup8/+g8M4sN4ixn51CRsb6QwJUkmeJ8tU2cKQq+ZLgU8Mi2Pl6YHuHo3BpvzSyz0ky4UItZbaVbeliBEUGiI4QKnktfwWX/eIXxSsip5SaNOKPkO9w3/v9v796Doir/P4C/Dywsl4VVJFhXLoJfy3DFC3hnEIuyiS5OjmkSaI5NNqGY5i0rzfI6Y1rTbWyatKJsmsSxxikXUssgKJBEzWsEXhbJG2AmIPv5/eFwfq6wCgjsLrxfM8zIcz579jm8Z3U/Podn/dAnSAdjN29EBPoitPv1lZzmNEJc+SEiIiKirshhDdO5c+dQX1+P4OBgm/Hg4GCUlzf9Ia6rVq3C66+/3hHTa7X/BfkhMkFn04T09PeCpeoq/q29Bh8PdwiA/+rqbRqUsfcG44WE66s41TV1OHi6ElmHzqL0whXU1NVD56VBaHdv3NPTD25wQ6CfJ7w93eHh5o4eOk8E+WpRdun6jnwtbYbYCBERERERNc3hmz4oN33ekIg0GmuwePFizJ07V/2+qqoKoaGh7Tq/1mhqNaY5TcmNj4vqqceEIaEtug0uMrjxDnFshoiIiIiIWs9hDVNgYCDc3d0brSZVVFQ0WnVqoNVqodVqO2J6ToG3wREREREROZbDPgjI09MTMTExMJvNNuNmsxmjRo1y0KyIiIiIiIj+n0NvyZs7dy5SUlIQGxuLkSNHYuPGjSgrK8PMmTMdOS0iIiIiIiIADm6YJk2ahPPnz2P58uWwWCwwmUzYsWMHwsPDHTktIiIiIiIiAA7+HKY75VSfw0RERERERA7TXr2Bw36HiYiIiIiIyNmxYSIiIiIiIrKDDRMREREREZEdbJiIiIiIiIjsYMNERERERERkBxsmIiIiIiIiO9gwERERERER2cGGiYiIiIiIyA42TERERERERHawYSIiIiIiIrKDDRMREREREZEdGkdP4E6ICACgqqrKwTMhIiIiIiJHaugJGnqEtuLSDVN1dTUAIDQ01MEzISIiIiIiZ1BdXQ29Xt9m51OkrVuwDmS12AyykgAAECJJREFUWnHmzBn4+flBUZQWP76qqgqhoaE4efIk/P3922GG1FaYletgVq6DWbkOZuU6mJXrYFauo7lZiQiqq6thNBrh5tZ2v3nk0itMbm5uCAkJuePz+Pv784XiIpiV62BWroNZuQ5m5TqYletgVq6jOVm15cpSA276QEREREREZAcbJiIiIiIiIju6dMOk1WqxdOlSaLVaR0+FboNZuQ5m5TqYletgVq6DWbkOZuU6HJ2VS2/6QERERERE1J669AoTERERERHRrbBhIiIiIiIisoMNExERERERkR1smIiIiIiIiOzosg3T+++/j4iICHh5eSEmJgY///yzo6fUqa1atQpDhw6Fn58fgoKCMH78eBw5csSmRkSwbNkyGI1GeHt7IyEhAQcPHrSpqampwaxZsxAYGAhfX1889thjOHXqlE3NxYsXkZKSAr1eD71ej5SUFFy6dKm9L7HTWrVqFRRFwZw5c9QxZuU8Tp8+jaeffho9evSAj48PBg0ahIKCAvU4s3IO165dwyuvvIKIiAh4e3sjMjISy5cvh9VqVWuYlWP89NNPePTRR2E0GqEoCrZt22ZzvCNzKSsrw6OPPgpfX18EBgZi9uzZqK2tbY/Ldkm3yqqurg4LFy7EgAED4OvrC6PRiNTUVJw5c8bmHMyqY9zudXWj5557DoqiYMOGDTbjTpWVdEFbtmwRDw8P+eijj+TQoUOSnp4uvr6+Ulpa6uipdVrjxo2TTz75RA4cOCBFRUWSlJQkYWFhcvnyZbVm9erV4ufnJ998840UFxfLpEmTpGfPnlJVVaXWzJw5U3r16iVms1kKCwtl7NixMnDgQLl27Zpa89BDD4nJZJKcnBzJyckRk8kkjzzySIdeb2eRn58vvXv3lujoaElPT1fHmZVzuHDhgoSHh8u0adMkLy9PSkpKJCsrS44fP67WMCvn8Oabb0qPHj3ku+++k5KSEvn6669Fp9PJhg0b1Bpm5Rg7duyQJUuWyDfffCMAJDMz0+Z4R+Vy7do1MZlMMnbsWCksLBSz2SxGo1HS0tLa/WfgKm6V1aVLlyQxMVG++uorOXz4sOTm5srw4cMlJibG5hzMqmPc7nXVIDMzUwYOHChGo1HWr19vc8yZsuqSDdOwYcNk5syZNmP9+vWTRYsWOWhGXU9FRYUAkD179oiIiNVqFYPBIKtXr1Zrrl69Knq9Xj788EMRuf6XoYeHh2zZskWtOX36tLi5ucn3338vIiKHDh0SAPLrr7+qNbm5uQJADh8+3BGX1mlUV1dL3759xWw2y5gxY9SGiVk5j4ULF0pcXJzd48zKeSQlJcn06dNtxp544gl5+umnRYRZOYub39h1ZC47duwQNzc3OX36tFrz5ZdfilarlcrKyna5Xld2qzfhDfLz8wWA+h/izMox7GV16tQp6dWrlxw4cEDCw8NtGiZny6rL3ZJXW1uLgoICPPjggzbjDz74IHJychw0q66nsrISABAQEAAAKCkpQXl5uU0uWq0WY8aMUXMpKChAXV2dTY3RaITJZFJrcnNzodfrMXz4cLVmxIgR0Ov1zLeFXnjhBSQlJSExMdFmnFk5j+3btyM2NhYTJ05EUFAQBg8ejI8++kg9zqycR1xcHLKzs3H06FEAwB9//IG9e/fi4YcfBsCsnFVH5pKbmwuTyQSj0ajWjBs3DjU1NTa32VLzVVZWQlEUdOvWDQCzciZWqxUpKSmYP38++vfv3+i4s2WlafEVurhz586hvr4ewcHBNuPBwcEoLy930Ky6FhHB3LlzERcXB5PJBADqz76pXEpLS9UaT09PdO/evVFNw+PLy8sRFBTU6DmDgoKYbwts2bIFhYWF+O233xodY1bO46+//sIHH3yAuXPn4uWXX0Z+fj5mz54NrVaL1NRUZuVEFi5ciMrKSvTr1w/u7u6or6/HihUr8NRTTwHg68pZdWQu5eXljZ6ne/fu8PT0ZHatcPXqVSxatAhTpkyBv78/AGblTNasWQONRoPZs2c3edzZsupyDVMDRVFsvheRRmPUPtLS0rB//37s3bu30bHW5HJzTVP1zLf5Tp48ifT0dOzcuRNeXl5265iV41mtVsTGxmLlypUAgMGDB+PgwYP44IMPkJqaqtYxK8f76quv8Pnnn+OLL75A//79UVRUhDlz5sBoNGLq1KlqHbNyTh2VC7NrG3V1dZg8eTKsVivef//929Yzq45VUFCAt99+G4WFhS3+eTkqqy53S15gYCDc3d0bdZUVFRWNOlBqe7NmzcL27duxa9cuhISEqOMGgwEAbpmLwWBAbW0tLl68eMuas2fPNnref/75h/k2U0FBASoqKhATEwONRgONRoM9e/bgnXfegUajUX+OzMrxevbsiaioKJuxe++9F2VlZQD4unIm8+fPx6JFizB58mQMGDAAKSkpePHFF7Fq1SoAzMpZdWQuBoOh0fNcvHgRdXV1zK4F6urq8OSTT6KkpARms1ldXQKYlbP4+eefUVFRgbCwMPV9RmlpKebNm4fevXsDcL6sulzD5OnpiZiYGJjNZptxs9mMUaNGOWhWnZ+IIC0tDVu3bsWPP/6IiIgIm+MREREwGAw2udTW1mLPnj1qLjExMfDw8LCpsVgsOHDggFozcuRIVFZWIj8/X63Jy8tDZWUl822m+++/H8XFxSgqKlK/YmNjkZycjKKiIkRGRjIrJzF69OhG2/MfPXoU4eHhAPi6ciZXrlyBm5vtP7nu7u7qtuLMyjl1ZC4jR47EgQMHYLFY1JqdO3dCq9UiJiamXa+zs2holo4dO4asrCz06NHD5jizcg4pKSnYv3+/zfsMo9GI+fPn44cffgDghFk1e3uITqRhW/GPP/5YDh06JHPmzBFfX1/5+++/HT21Tuv5558XvV4vu3fvFovFon5duXJFrVm9erXo9XrZunWrFBcXy1NPPdXk1q0hISGSlZUlhYWFct999zW5xWR0dLTk5uZKbm6uDBgwgFvq3qEbd8kTYVbOIj8/XzQajaxYsUKOHTsmGRkZ4uPjI59//rlaw6ycw9SpU6VXr17qtuJbt26VwMBAWbBggVrDrByjurpa9u3bJ/v27RMA8tZbb8m+ffvUndU6KpeG7Y/vv/9+KSwslKysLAkJCeFW1Te4VVZ1dXXy2GOPSUhIiBQVFdm816ipqVHPwaw6xu1eVze7eZc8EefKqks2TCIi7733noSHh4unp6cMGTJE3d6a2geAJr8++eQTtcZqtcrSpUvFYDCIVquV+Ph4KS4utjnPf//9J2lpaRIQECDe3t7yyCOPSFlZmU3N+fPnJTk5Wfz8/MTPz0+Sk5Pl4sWLHXCVndfNDROzch7ffvutmEwm0Wq10q9fP9m4caPNcWblHKqqqiQ9PV3CwsLEy8tLIiMjZcmSJTZv5JiVY+zatavJf5+mTp0qIh2bS2lpqSQlJYm3t7cEBARIWlqaXL16tT0v36XcKquSkhK77zV27dqlnoNZdYzbva5u1lTD5ExZKSIizV+PIiIiIiIi6jq63O8wERERERERNRcbJiIiIiIiIjvYMBEREREREdnBhomIiIiIiMgONkxERERERER2sGEiIiIiIiKygw0TERERERGRHWyYiIiIiIiI7GDDREREDnX48GGMGDECXl5eGDRoUJudNyEhAXPmzGl2/bRp0zB+/Pg2e34iIuoc2DAREVGrVFRU4LnnnkNYWBi0Wi0MBgPGjRuH3NzcFp1n6dKl8PX1xZEjR5CdnY1NmzahW7dut33c7eq2bt2KN954o9nzePvtt7Fp06Zm1xMRUdegcfQEiIjINU2YMAF1dXXYvHkzIiMjcfbsWWRnZ+PChQstOs+JEyeQlJSE8PDwNp1fQEBAi+r1en2bPj8REXUOXGEiIqIWu3TpEvbu3Ys1a9Zg7NixCA8Px7Bhw7B48WIkJSWpdceOHUN8fDy8vLwQFRUFs9kMRVGwbds2AICiKCgoKMDy5cuhKAoSEhLwzDPPoLKyEoqiQFEULFu2rFVzvPGWvMWLF2PEiBGNaqKjo7F06VIAjW/JS0hIwOzZs7FgwQIEBATAYDA0msvhw4cRFxenXl9WVpbN9RERketjw0RERC2m0+mg0+mwbds21NTUNFljtVrxxBNPwN3dHb/++is+/PBDLFy40KbGYrGgf//+mDdvHiwWC7Zv344NGzbA398fFosFFosFL7300h3PNzk5GXl5eThx4oQ6dvDgQRQXFyM5Odnu4zZv3gxfX1/k5eVh7dq1WL58Ocxms3p948ePh4+PD/Ly8rBx40YsWbLkjudKRETOhQ0TERG1mEajwaZNm7B582Z069YNo0ePxssvv4z9+/erNVlZWfjzzz/x2WefYdCgQYiPj8fKlSttzmMwGKDRaKDT6WAwGODv7w+9Xg9FUWAwGGAwGKDT6e54viaTCdHR0fjiiy/UsYyMDAwdOhR333233cc1rED17dsXqampiI2NRXZ2NgBg586dOHHiBD799FMMHDgQcXFxWLFixR3PlYiInAsbJiIiapUJEybgzJkz2L59O8aNG4fdu3djyJAh6sYJf/75J8LCwhASEqI+ZuTIkQ6a7fVVpoyMDACAiODLL7+85eoScL1hulHPnj1RUVEBADhy5AhCQ0NhMBjU48OGDWvjWRMRkaOxYSIiolbz8vLCAw88gNdeew05OTmYNm2a+jtBItKoXlGUjp6iasqUKTh69CgKCwuRk5ODkydPYvLkybd8jIeHh833iqLAarUCuH59jrweIiLqGGyYiIiozURFReHff/9V/1xWVoYzZ86ox5uz5binpyfq6+vbfG4hISGIj49HRkYGMjIykJiYiODg4Fafr1+/figrK8PZs2fVsd9++60tpkpERE6E24oTEVGLnT9/HhMnTsT06dMRHR0NPz8//P7771i7di0ef/xxAEBiYiLuuecepKamYt26daiqqmrWpgi9e/fG5cuXkZ2djYEDB8LHxwc+Pj5N1tbX16OoqMhmzNPTE1FRUU3WJycnY9myZaitrcX69etbdtE3eeCBB9CnTx9MnToVa9euRXV1tXp9XHkiIuo8uMJEREQtptPpMHz4cKxfvx7x8fEwmUx49dVX8eyzz+Ldd98FALi5uSEzMxM1NTUYNmwYZsyY0axNEUaNGoWZM2di0qRJuOuuu7B27Vq7tZcvX8bgwYNtvh5++GG79RMnTsT58+dx5coVmy3EW8Pd3R3btm3D5cuXMXToUMyYMQOvvPIKgOu3KhIRUeegSFM3mRMREbUTRVGQmZl5xw2LM/rll18QFxeH48ePo0+fPo6eDhERtQHekkdERNRKmZmZ0Ol06Nu3L44fP4709HSMHj2azRIRUSfChomIiKiVqqursWDBApw8eRKBgYFITEzEunXrHD0tIiJqQ7wlj4iIiIiIyA5u+kBERERERGQHGyYiIiIiIiI72DARERERERHZwYaJiIiIiIjIDjZMREREREREdrBhIiIiIiIisoMNExERERERkR1smIiIiIiIiOz4P2cpJvFzfhhgAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Plotting the regression line\n",
+ "data = pd.concat([X_train, y_train], axis=1)\n",
+ "plt.figure(figsize=(10, 6))\n",
+ "sns.regplot(x='sqft_living', y='price', data=data, scatter_kws={'alpha':0.5}, line_kws={'color':'red', 'linewidth':2})\n",
+ "plt.title('Linear Regression: Price vs Sqft Living')\n",
+ "plt.xlabel('Sqft Living')\n",
+ "plt.ylabel('Price')\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Log transformation**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We applied a log transformation on house prices (target variable) to stabilize variance, reduce the impact of outliers and ensure the target variable follows a normal distribution as much as possible."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAALACAYAAAB2GH/sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABEDUlEQVR4nO3de1hVZd7/8Q+InETykIBZmukooggaKJako9nMaPZEjlMm5imyMBxtPGT6pD5p2sgEni1FabKUCofKdMqspqkxT2QnJNPU8oiRYYIbBPn94Y89bkEFBNaG+/26Lq9krbXX/m6xfLu699ouxcXFxQIAAAAM5Gr1AAAAAIBViGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGgCrkDJ9j5AwzAEBtQQwDMMawYcPUvn17+4/AwEB16dJF9913n15++WUVFRU5HN+nTx89+eST5T7/li1bNGXKlKse9+STT6pPnz6Vfp7LKSgo0Ny5c/X2229f9rmcQXx8vLp3767Q0FClpaWV2n/48GGH79Ol36s33njjqs+xaNEitW/fvhqmB1DXuFk9AADUpKCgIM2YMUOSVFRUpJycHP3rX//Ss88+q127dikhIUEuLi6SpMWLF8vHx6fc505OTi7XcbGxsXrooYcqPPvVZGVlKTk5WXPnzq3256qsvXv3asWKFfrTn/6k//mf/9Ett9xy2WMfe+wx9e7dW9KFq925ubl6/fXXNW3aNBUWFuqBBx647GMHDx6syMjIqh4fQB1EDAMwio+Pj0JDQx229enTR61bt9bcuXPVp08f3XPPPZIuhHN1aNmyZbWc1+rnKo9ffvlFkjRgwACFhYVd8diWLVuW+l7ddtttyszMVHJy8hVjOCAgQAEBAdc6LgADsEwCAHRhCYWfn5/WrVtn33bp8oWNGzfqnnvuUefOnRUREaGJEycqKyvL/vjt27dr+/btat++vbZt26Zt27apffv2WrdunX7729/qtttu0yeffFLm0oVz585p9uzZCg8PV3h4uKZMmaKff/7Zvr+sx5QsJ1i/fr0OHz6svn37SpKmTp1qP/bSxxUVFemVV17RwIED1blzZ/Xu3Vvx8fHKz893eK4RI0YoNTVVv/vd79SpUyfdc889+te//nXVX8eNGzfqvvvuU5cuXXT77bfr6aefVk5OjqQLSxeGDRsmSRo+fHillm+4urqqQ4cOOnr0qMOvwerVq/WHP/xB3bp10/r168tcJvHOO+/ovvvuU0hIiHr37q358+eroKDAvn/v3r0aM2aMunbtqq5du2rs2LH68ccfKzwjgNqFGAYASfXq1VOPHj305ZdfqrCwsNT+Xbt2aeLEibrrrru0YsUKTZ06VZ999pn+8pe/SJJmzJihoKAgBQUFKSUlRR07drQ/NiEhQVOmTNGUKVNKXekssWnTJn399deaN2+eJk+erI8++kixsbHlnt/Pz0+LFy+WdGF5QcnPL/X000/r2WefVZ8+fbRs2TINHTpUa9asUWxsrMMb777++mslJSVp3LhxWrJkidzc3DRu3Dh72JZl6dKlmjBhgkJCQrRw4UKNHTtW7777roYNGyabzabBgwfr6aefts9xuRmv5sCBA6WueCckJGj06NGaPXu2IiIiSj1m3bp1euKJJ9ShQwctXrxYY8aM0auvvqqZM2faz/nAAw8oOztb8+bN05w5c/Tjjz9qyJAhys7OrtScAGoHlkkAwP93/fXX69y5c/rll190/fXXO+zbtWuXPDw8FBMTIw8PD0lSo0aN9NVXX6m4uFht27a1ry++NHgfeOAB/f73v7/ic/v6+mrlypX2czRu3Fhjx47VJ598op49e151dnd3d3Xo0EHSheUFZS3x2Ldvn9544w2NHz9ejz32mCTp9ttvl5+fnyZPnqyPP/5YvXr1kiT9+uuvWr9+vT06vb29FR0drc8++0y/+93vSp07JydHy5Yt0+DBg+1rsiWpXbt2Gjp0qNavX68HH3xQbdu2lSS1bdv2qstQzp8/b/+Lyfnz53XixAm9/PLLyszMdHgOSbrrrrv0xz/+8bLnWbRokfr166c5c+bYt+fn5+sf//iHCgoKtHjxYnl6eio5Odn+PejRo4fuvPNOrVy5slxvjARQO3FlGAAuUfIGuouFh4fLZrNp4MCBSkhI0K5du9SzZ089/vjjZR5/sfLc1aBXr14Ob9br06eP6tevr//85z8VfwGXsX37dknSwIEDHbYPGDBA9erV07Zt2+zbmjRp4nD1tWT97dmzZ8s89+7du1VQUFDq3GFhYWrRooXDuctr2rRp6tixozp27Kjg4GDdeeedSk1N1aOPPlpqvXC7du0ue54DBw7op59+0p133umwfcSIEXrzzTfl7u6uzz77TN27d5enp6cKCwtVWFgoHx8fhYWFVen3AIDz4cowAPx/J06ckKenpxo1alRqX5cuXfTiiy8qOTlZSUlJWr58uZo1a6aYmBgNHz78iudt2rTpVZ/70ivRrq6uatSokU6fPl2h13AlJUscmjVr5rDdzc1NjRs31q+//mrf5uXl5XBMSfCfP3/+iue+9HWUbLv43OX1+OOP2+8m4erqqoYNG6pFixaqV69emc9xOSVv2rvS9+GXX37Rxo0btXHjxlL7mjRpUrHBAdQqxDAA6MIby7Zv366uXbuWGVuSFBkZqcjISJ09e1afffaZ/v73v+vZZ59VaGioQkJCrun5L43eoqIinTp1yh5wLi4upe6DnJeXV6HnuO666yRJJ0+e1I033mjffu7cOZ06dUqNGzeuzOgO5/7pp5/Upk0bh30nT57UTTfdVOFztmjRQsHBwZWeqYSvr68kObwhUboQwN98841CQ0PVsGFD3XbbbRo5cmSpx7u58UclUJexTAIAdOENVllZWRoyZEiZ+5977jn98Y9/VHFxsby8vPTb3/7Wvo702LFjki5cvays//znPw5v3Hv33XdVWFio7t27S5IaNGigU6dOOdz1IT093eEcl4v4Et26dZMkhw/lkC7cZaGoqEi33nprpecPCQmRu7t7qXPv3LlTR48eVdeuXSt97mt1yy23qHHjxtqyZYvD9rffflsxMTHKz89Xt27dtG/fPnXo0EHBwcEKDg5Wp06dlJycrM2bN1s0OYCawF93ARjlzJkz2r17t6QL/8v/1KlT+uSTT5SSkqJ77rlHd911V5mP69Gjh1avXq0nn3xS99xzj86dO6eVK1eqUaNG9rsX+Pr66vPPP9fWrVsrfI/in376SXFxcRo2bJgOHjyo559/Xrfffrt69OghSfrtb3+rl19+WU899ZQGDx6s7777TqtWrXII4IYNG0qStm7dqjZt2pS6Wt22bVtFRUVp8eLFstls6t69u/bs2aPFixere/fu1/QhFY0aNdIjjzyixYsXq379+urbt68OHz6sBQsWqG3btrrvvvsqfe5rVa9ePcXFxen//u//NHPmTPXr108HDx5UYmKihgwZoiZNmig2NlYPPPCAxowZoyFDhsjDw0MpKSl6//33tXDhQstmB1D9iGEARsnIyND9998v6cKV3KZNm6p169aaN29eqTd/XeyOO+5QfHy8Vq1aZX/T3K233qq///3v9jXGQ4cO1ddff62YmBjNnTtXfn5+5Z7rT3/6k2w2m8aOHSt3d3cNHDhQkyZNsq/Vvf322zVlyhS9/PLLeu+999SxY0ctXrzY4Y1kPj4+GjlypFJSUvTRRx/p008/LfU8c+bMUatWrZSamqqkpCT5+flp2LBhGjt27DVd2ZakuLg4XX/99VqzZo1ef/11NWrUSL///e81fvz4UmuQa9rQoUPl7e2tpKQkvfHGG/L399eoUaP0yCOPSJICAwP1yiuvKCEhQZMnT1ZxcbHatWunJUuW2O/fDKBucim++MaSAAAAgEFYMwwAAABjEcMAAAAwFjEMAAAAYxHDAAAAMBYxDAAAAGMRwwAAADAW9xmuhLCwMBUUFKhZs2ZWjwIAAIAynDx5Uu7u7tq5c+cVjyOGKyE/P19FRUVWjwEAAIDLKCwsVHk+ToMYroSST5W69HPuAQAA4BzK++mRrBkGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGDbQirSvrB4BAADAKRDDBsqzFVo9AgAAgFMghgEAAGAsYhgAAADGIoYBAABgLGIYAAAAxiKGAQAAYCw3qwdAzUlcmy4vD77lAAAAJSgjg+TaClUsydXFxepRAAAAnALLJAAAAGAsYhgAAADGIoYBAABgLGIYAAAAxiKGAQAAYCxiGAAAAMYihgEAAGAsYhgAAADGIoYBAABgLGIYAAAAxiKGAQAAYCxiGAAAAMYihgEAAGAsYhgAAADGIoYBAABgLGIYAAAAxiKGAQAAYCxiGAAAAMYihgEAAGAsYhgAAADGIoYBAABgLGIYAAAAxiKGAQAAYCxiGAAAAMYihgEAAGAsYhgAAADGIoYBAABgLGIYAAAAxiKGAQAAYCxiGAAAAMYihgEAAGAsYhgAAADGIoYBAABgLGIYAAAAxiKGAQAAYCxiGAAAAMZyqhheunSphg0b5rBtz549io6OVmhoqHr37q2kpCSH/efPn9fChQsVGRmpkJAQjRo1SocOHarQOeqyFWlfWT0CAACA03KaGE5OTtbChQsdtp06dUojR47UzTffrNTUVMXFxWnBggVKTU21H7N06VKtW7dOs2fPVkpKilxcXBQTE6OCgoJyn6Muy7MVWj0CAACA03KzeoATJ05o2rRp2rVrl1q3bu2w77XXXpO7u7tmzpwpNzc3tWnTRocOHdKKFSs0aNAgFRQUaNWqVZo0aZJ69eolSUpISFBkZKQ2b96sAQMGXPUcpktcmy5JGj+kq8WTAAAA1DzLrwx/8803uu666/TWW28pJCTEYd/OnTsVHh4uN7f/NntERIQOHDig7OxsZWZmKjc3VxEREfb9vr6+CgoK0o4dO8p1DtPl2gqVy9VjAABgKMuvDPfp00d9+vQpc9/x48fVrl07h21+fn6SpKNHj+r48eOSpObNm5c65tixY+U6R9OmTa/9RQAAAKBWsvzK8JXYbDa5u7s7bPPw8JAk5efn6+zZs5JU5jH5+fnlOgcAAADM5dQx7OnpaX8jXImSgPX29panp6cklXmMl5dXuc4BAAAAczl1DAcEBCgrK8thW8nX/v7+9uURZR0TEBBQrnMAAADAXE4dw+Hh4dq1a5eKiors27Zu3arWrVuradOmCgwMlI+Pj7Zt22bff/r0aWVkZCgsLKxc5wAAAIC5nDqGBw0apDNnzmjatGnat2+f1q9fr5deekljxoyRdGGtcHR0tOLj47VlyxZlZmZqwoQJCggIUL9+/cp1DgAAAJjL8rtJXEnTpk21cuVKzZkzR1FRUWrWrJkmT56sqKgo+zHjxo1TYWGhpk+fLpvNpvDwcCUlJdnfNFeecwAAAMBMThXD8+bNK7Wtc+fOSklJuexj6tWrp0mTJmnSpEmXPeZq5wAAAICZnHqZBAAAAFCdiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGMvN6gFQvbw83JS4Nl1eHnyrAQAALkUhGSDXVqhiq4cAAABwQiyTAAAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhyNvTTYlr05W4Nt3qUQAAAGqUm9UDwDnk2gqtHgEAAKDGcWUYAAAAxiKGAQAAYCxiGAAAAMYihgEAAGAsYhgAAADGIoZRCrdZAwAApuDWaiiF26wBAABTcGUYAAAAxiKGAQAAYCxiGAAAAMYihgEAAGAs3kBXRyWuTZeXh5tcXFysHgUAAMBpcWW4jsq1FSovn7tCAAAAXAkxDAAAAGMRwwAAADAWMQwAAABjEcMAAAAwFjEMAAAAYxHDAAAAMBYxDAAAAGMRwwAAADAWMQwAAABjEcMAAAAwlpvVA6DmeXm4KXFturw8+PYDAACzUUOGyrUVqtjqIQAAACzGMgkAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYhp23p5te3phh9RgAAAA1hhiGg7P5RVaPAAAAUGOIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsWpFDJ87d04JCQnq3bu3unTpogcffFDp6en2/Xv27FF0dLRCQ0PVu3dvJSUlOTz+/PnzWrhwoSIjIxUSEqJRo0bp0KFDNf0yAAAA4GRqRQwvW7ZMqampmj17ttLS0nTLLbcoJiZGJ06c0KlTpzRy5EjdfPPNSk1NVVxcnBYsWKDU1FT745cuXap169Zp9uzZSklJkYuLi2JiYlRQUGDhqwIAAIDVakUMb9myRXfffbd69uypVq1a6cknn9SZM2e0e/duvfbaa3J3d9fMmTPVpk0bDRo0SCNGjNCKFSskSQUFBVq1apXi4uLUq1cvBQYGKiEhQSdOnNDmzZstfmUAAACwUq2I4UaNGunDDz/U4cOHVVRUpJSUFLm7u6tDhw7auXOnwsPD5ebmZj8+IiJCBw4cUHZ2tjIzM5Wbm6uIiAj7fl9fXwUFBWnHjh1WvBwAAAA4CberH2K9adOmacKECerbt6/q1asnV1dXLViwQC1bttTx48fVrl07h+P9/PwkSUePHtXx48clSc2bNy91zLFjx2rmBQAAAMAp1YoY3r9/v3x9fbVkyRL5+/vr9ddf15QpU7RmzRrZbDa5u7s7HO/h4SFJys/P19mzZyWpzGNycnJq5gUAAADAKTl9DB85ckSTJk1ScnKywsLCJEnBwcHat2+fFi1aJE9Pz1JvhMvPz5ckeXt7y9PTU9KFtcMlPy85xsvLq4ZeBQAAAJyR068Z/vLLL3Xu3DkFBwc7bA8JCdHBgwcVEBCgrKwsh30lX/v7+9uXR5R1TEBAQDVODgAAAGfn9DFcErPffvutw/a9e/eqVatWCg8P165du1RUVGTft3XrVrVu3VpNmzZVYGCgfHx8tG3bNvv+06dPKyMjw36lGQAAAGZy+hju3LmzwsLCNGXKFH322Wc6ePCgEhMTtXXrVj3yyCMaNGiQzpw5o2nTpmnfvn1av369XnrpJY0ZM0bShbXC0dHRio+P15YtW5SZmakJEyYoICBA/fr1s/jVAQAAwEpOv2bY1dVVS5cuVWJioqZOnaqcnBy1a9dOycnJCg0NlSStXLlSc+bMUVRUlJo1a6bJkycrKirKfo5x48apsLBQ06dPl81mU3h4uJKSkkq9qQ4AAABmcSkuLi62eojapm/fvpIufBiIs5qzeru8Pd3UwLO+Tv5yVt6ebsqzFV5226X7JGnayG4WvwoAAIDKKW+vOf0yCQAAAKC6EMMAAAAwFjEMAAAAYxHDAAAAMBYxDAAAAGMRwwAAADAWMQwAAABjEcMAAAAwFjEMAAAAYxHDAAAAMBYxDAAAAGMRwwAAADAWMQwAAABjEcMAAAAwFjEMAAAAY7lZPQCqVuLadHl58G0FAAAoD6qpjsm1FarY6iEAAABqCZZJAAAAwFjEMAAAAIxFDAMAAMBYxDDK5O3ppsS16Upcm271KAAAANWGN9DhsnJthVaPAAAAUK24MgwAAABjEcMAAAAwFjEMAAAAYxHDAAAAMBYxjHLhzhIAAKAu4m4SKBfuLAEAAOoirgwDAADAWMQwAAAAjEUMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUM44q8Pd308sYMq8cAAACoFsQwrupsfpGkC2GcuDZdiWvTLZ4IAACgarhZPQBql1xbodUjAAAAVBmuDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMAwAAwFjEMAAAAIxFDAMAAMBYlYrhHTt2KDc3t8x9p0+f1jvvvHNNQwEAAAA1oVIx/NBDD2n//v1l7svIyNDUqVOvaaiypKWlqX///goODtaAAQO0adMm+749e/YoOjpaoaGh6t27t5KSkhwee/78eS1cuFCRkZEKCQnRqFGjdOjQoSqfEQAAALWLW3kPnDJlio4dOyZJKi4u1syZM+Xj41PquIMHD+r666+vugklvfnmm3rqqac0ZcoU9e7dWxs2bNATTzyhgIAA3XzzzRo5cqTuvPNOzZo1S7t379asWbPUqFEjDRo0SJK0dOlSrVu3TnPnzpW/v7/mz5+vmJgYbdiwQe7u7lU6KwAAAGqPcl8Z/t3vfqfi4mIVFxfbt5V8XfLD1dVVoaGhmjt3bpUNWFxcrAULFmj48OEaPny4WrVqpbFjx+q2227T9u3b9dprr8nd3V0zZ85UmzZtNGjQII0YMUIrVqyQJBUUFGjVqlWKi4tTr169FBgYqISEBJ04cUKbN2+usjlN4u3ppsS16Upcm271KAAAANek3FeG+/Tpoz59+kiShg0bZo/P6vb999/ryJEjGjhwoMP2kqUQMTExCg8Pl5vbf19KRESEXnjhBWVnZ+vIkSPKzc1VRESEfb+vr6+CgoK0Y8cODRgwoNpfQ12Uayu0egQAAIBrVqk1wy+//HKNhLB0YdmFJOXl5Wn06NHq0aOHBg8erA8++ECSdPz4cQUEBDg8xs/PT5J09OhRHT9+XJLUvHnzUseULPsAAACAmcp9ZfhiZ8+e1fLly/Xhhx/q7NmzOn/+vMN+FxcXvf/++1Uy4JkzZyRdWLP8+OOPa+LEiXr33XcVGxur1atXy2azlVr36+HhIUnKz8/X2bNnJanMY3JycqpkRgAAANROlYrhOXPmKDU1Vd26dVOHDh3k6lp9tyuuX7++JGn06NGKioqSJHXo0EEZGRlavXq1PD09VVBQ4PCY/Px8SZK3t7c8PT0lXVg7XPLzkmO8vLyqbW4AAAA4v0rF8HvvvacJEybokUceqep5SilZAtGuXTuH7W3bttVHH32kFi1aKCsry2Ffydf+/v4qLCy0b2vZsqXDMYGBgdU5OgAAAJxcpS7pFhYWqnPnzlU9S5mCgoLUoEEDffHFFw7b9+7dq5YtWyo8PFy7du1SUVGRfd/WrVvVunVrNW3aVIGBgfLx8dG2bdvs+0+fPq2MjAyFhYXVyGsAAACAc6pUDPfs2VMff/xxVc9SJk9PTz388MNasmSJNmzYoB9++EHLli3Tp59+qpEjR2rQoEE6c+aMpk2bpn379mn9+vV66aWXNGbMGEkX1gpHR0crPj5eW7ZsUWZmpiZMmKCAgAD169evRl4DAAAAnFOllkn0799fM2bM0M8//6yQkJAy197ee++91zqbXWxsrLy8vOz3B27Tpo0WLVqk7t27S5JWrlypOXPmKCoqSs2aNdPkyZPt64slady4cSosLNT06dNls9kUHh6upKQkPnADAADAcC7FF3+KRjldba2ti4uL9uzZU+mhnF3fvn0lSVu2bLF4ktLmrN4ub0835dkK5e3ppgae9XXyl7NX3VaZ4yVp2shuFr9iAACA0srba5W6MuyMEQgAAABUVKViuEWLFlU9BwAAAFDjKhXDixcvvuoxjz/+eGVODQAAANSYKo9hHx8f+fn5EcMAAABwepWK4czMzFLb8vLytGvXLs2cOVP/+7//e82DAQAAANWtyj5H2dvbW5GRkRo7dqz++te/VtVpAQAAgGpTZTFconnz5tq/f39VnxYAAACocpVaJlGW4uJiHTt2TCtWrOBuExZIXJsuL48q+3YCAAAYoVL1FBgYKBcXlzL3FRcXs0zCArm2QlX401MAAAAMV6kYHjt2bJkx7OPjo969e+vmm2++1rkAAACAalepGI6Li6vqOQAAAIAaV+lFpgUFBVq/fr22bdum06dPq3HjxgoLC1NUVJQ8PDyqckY4KW9PN61I+0ox9wZbPQoAAEClVCqGT58+rYceekiZmZm64YYb1KxZMx04cEAbNmzQK6+8oldffVUNGzas6lnhhPJshVaPAAAAUGmVurXa3/72Nx0/flxr1qzRBx98oJSUFH3wwQdas2aNsrOztWDBgqqeEwAAAKhylYrhLVu2aPz48QoLC3PYHhYWpnHjxum9996rkuEAAACA6lSpGM7NzdVNN91U5r6bbrpJv/zyy7XMBAAAANSISsXwLbfcog8//LDMfVu2bFGrVq2uaSgAAACgJlTqDXSjR4/WE088oYKCAg0cOFDXX3+9fvrpJ7399tt6/fXXNXPmzCoeEwAAAKh6lYrh/v376+DBg1q+fLlef/11+/b69etr7Nixuv/++6tsQAAAAKC6VCqG8/LyFBsbq+joaO3evVs5OTk6duyY7r//fl133XVVPSMAAABQLSq0ZnjPnj269957lZycLEny9fXVHXfcoTvuuEOJiYl68MEHtX///uqYEwAAAKhy5Y7hH3/8USNGjFBOTo7atm3rsM/d3V1PPfWUcnNz9eCDD+r48eNVPigAAABQ1codwy+++KIaN26sf/zjH7rrrrsc9nl5eSk6Olqpqany9vbW8uXLq3xQAAAAoKqVO4a3bt2qhx9+WI0aNbrsMU2bNtXIkSO1devWqpgNAAAAqFbljuGTJ0+W6/7B7dq1Y5kEAAAAaoVyx3CTJk2UlZV11eN+/vnnK149BgAAAJxFuWM4PDxc69evv+pxaWlp6tChwzUNBQAAANSEcsfwsGHDtG3bNs2bN0/5+fml9hcUFOi5557Tv//9bw0dOrRKhwQAAACqQ7k/dCM4OFhTp07Vs88+qzfffFM9evTQjTfeqKKiIh09elTbtm3TqVOn9Oc//1mRkZHVOTMAAABQJSr0CXRDhw5VYGCgkpKStGXLFvsV4gYNGqhnz54aNWqUQkJCqmVQAAAAoKpV+OOYb731Vt16662SpFOnTsnV1ZWPYAYAAECtVOEYvljjxo2rag4AAACgxpX7DXQAAABAXUMMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMo8okrk1X4tp0q8cAAAAoNzerB0DdkWsrtHoEAACACuHKMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjOVm9QCo3bw83JS4Nl1eHvxWAgAAtQ8Fg2uWaytUsdVDAAAAVALLJAAAAGAsYhgAAADGIoYBAABgLGIYAAAAxiKGAQAAYCxiGAAAAMYihgEAAGAsYhgAAADGIoZRpbw93bQi7SurxwAAACgXYhhVLs9WaPUIAAAA5UIMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMAwAAwFi1KoYPHDigLl26aP369fZte/bsUXR0tEJDQ9W7d28lJSU5POb8+fNauHChIiMjFRISolGjRunQoUM1PToAAACcUK2J4XPnzmnixInKy8uzbzt16pRGjhypm2++WampqYqLi9OCBQuUmppqP2bp0qVat26dZs+erZSUFLm4uCgmJkYFBQVWvAwAAAA4kVoTw4sWLVKDBg0ctr322mtyd3fXzJkz1aZNGw0aNEgjRozQihUrJEkFBQVatWqV4uLi1KtXLwUGBiohIUEnTpzQ5s2brXgZAAAAcCK1IoZ37NihlJQUPffccw7bd+7cqfDwcLm5udm3RURE6MCBA8rOzlZmZqZyc3MVERFh3+/r66ugoCDt2LGjxuYHAACAc3L6GD59+rQmT56s6dOnq3nz5g77jh8/roCAAIdtfn5+kqSjR4/q+PHjklTqcX5+fjp27Fg1Tg0AAIDawOljeObMmQoNDdXAgQNL7bPZbHJ3d3fY5uHhIUnKz8/X2bNnJanMY/Lz86tpYgAAANQWblc/xDppaWnauXOn3n777TL3e3p6lnojXEnkent7y9PTU9KFtcMlPy85xsvLq5qmBgAAQG3h1DGcmpqq7Oxs9e7d22H7jBkzlJSUpBtuuEFZWVkO+0q+9vf3V2FhoX1by5YtHY4JDAys3uEBAADg9Jw6huPj42Wz2Ry23XXXXRo3bpz69++vd955R+vWrVNRUZHq1asnSdq6datat26tpk2bqmHDhvLx8dG2bdvsMXz69GllZGQoOjq6xl8PAAAAnItTx7C/v3+Z25s2baoWLVpo0KBBWrlypaZNm6aHH35YX375pV566SXNmjVL0oW1wtHR0YqPj1eTJk3UokULzZ8/XwEBAerXr19NvhQAAAA4IaeO4atp2rSpVq5cqTlz5igqKkrNmjXT5MmTFRUVZT9m3LhxKiws1PTp02Wz2RQeHq6kpKRSb6oDAACAeWpdDH/77bcOX3fu3FkpKSmXPb5evXqaNGmSJk2aVN2jAQAAoJZx+lurAQAAANWFGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGEaV8/JwU+LadCWuTbd6FAAAgCtys3oA1E25tkKrRwAAALgqrgwDAADAWMQwAAAAjEUMo9p4e7J2GAAAODdiGNUq11bosH54RdpXFk4DAADgiBhGjcrjjXUAAMCJEMMAAAAwFjEMAAAAYxHDAAAAMBYxDAAAAGMRwwAAADAWMQwAAABjEcMAAAAwFjEMAAAAYxHDAAAAMBYxDAAAAGMRwwAAADAWMQwAAABjEcMAAAAwFjEMAAAAYxHDAAAAMBYxDAAAAGMRwwAAADAWMQwAAABjEcMAAAAwFjEMAAAAYxHDAAAAMBYxDAAAAGMRwwAAADAWMQwAAABjEcMAAAAwFjEMAAAAYxHDAAAAMBYxDAAAAGMRwwAAADAWMQwAAABjEcMAAAAwFjEMAAAAYxHDAAAAMBYxDAAAAGMRw3XAyxszrB4BAACgViKG64Cz+UVWjwAAAFArEcMAAAAwFjGMGuXl4abEtelKXJtu9SgAAABys3oAmCfXVmj1CAAAAJK4MgwAAACDEcMAAAAwFjEMAAAAY7FmGNXO2/PCm+a8PNzk4uJi9TgAAAB2XBlGjci1FSovnzfOAQAA50IMAwAAwFjEMAAAAIxFDMMSJeuI+fANAABgJd5AB8vw4RsAAMBqXBkGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGIalvD3dtCLtK6vHAAAAhiKGYbk8W6HVIwAAAEMRwwAAADAWMQwAAABjEcMAAAAwFjEMAAAAYxHDAAAAMBYxDAAAAGMRwwAAADAWMQwAAABjEcOwnJeHmxLXpitxbbrVowAAAMO4WT0AIEm5fAodAACwAFeGAQAAYCxiGAAAAMYihgEAAGAs1gzXYolr0+Xl4SYXFxerRwEAAKiVuDJci+XaCpWXzxvPAAAAKosYBgAAgLGcPoZ/+eUXPf3007rjjjvUtWtXDRkyRDt37rTv37Nnj6KjoxUaGqrevXsrKSnJ4fHnz5/XwoULFRkZqZCQEI0aNUqHDh2q6ZcBAAAAJ+T0MfzEE0/oiy++0PPPP6833nhDHTt21OjRo7V//36dOnVKI0eO1M0336zU1FTFxcVpwYIFSk1NtT9+6dKlWrdunWbPnq2UlBS5uLgoJiZGBQUFFr4qAAAAOAOnfgPdoUOH9Omnn2rt2rXq2rWrJGnatGn6+OOPtWHDBnl6esrd3V0zZ86Um5ub2rRpo0OHDmnFihUaNGiQCgoKtGrVKk2aNEm9evWSJCUkJCgyMlKbN2/WgAEDrHx5AAAAsJhTXxlu3LixXnzxRXXq1Mm+zcXFRcXFxcrJydHOnTsVHh4uN7f/Nn1ERIQOHDig7OxsZWZmKjc3VxEREfb9vr6+CgoK0o4dO2r0tQAAAMD5OHUM+/r6qlevXnJ3d7dv27Rpk3744Qf17NlTx48fV0BAgMNj/Pz8JElHjx7V8ePHJUnNmzcvdcyxY8eqeXoAAAA4O6eO4Uvt2rVLTz31lPr27as+ffrIZrM5hLIkeXh4SJLy8/N19uxZSSrzmPz8/JoZGgAAAE6r1sTw+++/r9GjR6tz5856/vnnJUmenp6l3ghXErne3t7y9PSUpDKP8fLyqoGpAQAA4MxqRQyvWbNGcXFxuuOOO7RixQp75AYEBCgrK8vh2JKv/f397csjyjrm0uUVAAAAMI/Tx/Crr76qZ555RkOHDlViYqLDkofw8HDt2rVLRUVF9m1bt25V69at1bRpUwUGBsrHx0fbtm2z7z99+rQyMjIUFhZWo68DAAAAzsepY/jAgQN69tln1a9fP40ZM0bZ2dk6efKkTp48qV9//VWDBg3SmTNnNG3aNO3bt0/r16/XSy+9pDFjxki6sFY4Ojpa8fHx2rJlizIzMzVhwgQFBASoX79+Fr86AAAAWM2p7zP87rvv6ty5c9q8ebM2b97ssC8qKkrz5s3TypUrNWfOHEVFRalZs2aaPHmyoqKi7MeNGzdOhYWFmj59umw2m8LDw5WUlFTqTXUAAAAwj1PH8KOPPqpHH330isd07txZKSkpl91fr149TZo0SZMmTarq8QAAAFDLOfUyCQAAAKA6EcMAAAAwFjEMAAAAYxHDAAAAMBYxDKeUuDZdiWvTrR4DAADUcU59NwmYK9dWaPUIAADAAFwZBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYi49jhtPw9nRT4tp0eXnw2xIAANQMqgNOJddWqGKrhwAAAMZgmQQAAACMRQzDaXl7umlF2ldWjwEAAOowYhhOLc9WaPUIAACgDiOGAQAAYCxiGAAAAMYihgEAAGAsYhgAAADGIoYBAABgLGIYAAAAxiKGAQAAYCxiGAAAAMYihgEAAGAsYhgAAADGIoYBAABgLGIYtUbi2nQlrk23egwAAFCHuFk9AFBeubZCq0cAAAB1DFeGAQAAYCyuDMOpeXm4KXFturw8+K0KAACqHoUBp5drK1Sx1UMAAIA6iWUSAAAAMBYxjFrF29NNK9K+snoMAABQRxDDqHXyuKsEAACoIsQwAAAAjEUMAwAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwarXEtelKXJtu9RgAAKCW4uOYUavlcs9hAABwDbgyDAAAAGMRwwAAADAWMQwAAABjEcMAAAAwFjEMAAAAYxHDAAAAMBYxDAAAAGNxn+FaKHFturw8+NYBAABcK4qqFsq1FarY6iEAAADqAJZJAAAAwFjEMAAAAIxFDAMAAMBYxDAAAACMRQwDAADAWMQwAAAAjEUMo85JXJuuxLXpVo8BAABqAe4zjDon11Zo9QgAAKCW4MowAAAAjEUMAwAAwFjEMAAAAIxFDMMovLkOAABcjDfQwSi8uQ4AAFyMK8MAAAAwFjGMOm9F2ldWjwAAAJwUMYw6L68SSyNYWwwAgBmIYRjtcleNc22FrC8GAMAAxDCMdvFVY64GAwBgHu4mUcu8vDHD6hFqHS8PNyWuTZeXx5V/u3MlGAAA8xDDtczZ/CKrR3Bql/vLQq6tUMVlbC9vKAMAgLqJAkCdUpm/LFwulAEAQN1HDKPWufRqrrfnf792cXGp1udekfaVYu4NrtbnAAAANYcYRq106dXckq8beNa/6mOvJZ4rc5s2AADgvIhh1ElXC96KxDMAAKi7uLUa6qxcW6Hy8rmSCwAALo8YBgAAgLGIYQAAABiLNcO1RE3dLQFl417EAADUTfzpXkvwhi9rlfz6u1bTX0ZKPgZ6/JCu1XJ+AABQNpZJABfx9nSr8Eder0j7qlL7LpZrK+TjoAEAsABXhoFLlPdT7C5eunK5K7vFxVz1BQDAmRHDQCVdvHTl0qu6F4cyV3wBAHBeLJMAqsGV7nFc3qUTAACg+hHDQA3jI50BAHAeLJMALuPij3Qu4eVRetu1KM+5VqR9pZh7gyu8DwAAXB0xDFxBybrgq227mrLCurznutKV5Mvt4017AACUDzEM1JDqvlfxpc8FAACujhgGqsjlrv5W5PEvb8xQdo5NUtlXdUvOfza/sNTzVOXVYK4sAwBMYcwb6M6fP6+FCxcqMjJSISEhGjVqlA4dOmT1WKhjrnQXifI4m19kv4KcuDZdL6z/sszzl/U81/LBHYlr0+0BfOm5Lt13tbthXHo8AADOzJgrw0uXLtW6des0d+5c+fv7a/78+YqJidGGDRvk7u5u9XhAKRffx/hyV5wvfUNfZT5Br+S5yrvvanfDuNK5rLjizFVuAMCVGHFluKCgQKtWrVJcXJx69eqlwMBAJSQk6MSJE9q8ebPV48EwJQF76VXfK7nSFedL95X3E/SuprJhfamLryRb8bHT5XlOrmYDgLmMiOHMzEzl5uYqIiLCvs3X11dBQUHasWOHhZPBVNe6nKKyKvqBHxX5aOrLxWTJR1KXFf8vb8yoUIhWxQeWlHWOykR6eeYmsgHA+bkUFxdX9C5Rtc57772nuLg4ffHFF/L09LRv//Of/yybzaYXXnihQucLDg5WUVGRmjdvXtWjXlbOmQK5ukguLi4qOl8sVxfpfLEuu+1K+zjejOMl6TofxyVAv+YVqKG3u/3nLnKRi4tUWHThHHKRXPTfc158/pJ9klSsYrnIxf7PkmNcXV1UWOT43GfyzpWa8eJzXXx+SWro7a5f8wrsP7/YmbxzDs9d1jFl/btz8TwX/xpc7piLf33kIvl41b/qecvz3Be73GusiKvNWB3P6Szq0msBUD2OHTumevXq6auvrnwhxYg1w2fPnpWkUmuDPTw8lJOTU+HzeXh4qKCgoEpmK68r/YELlNfF4VBTEeHjffVIu9TlZqvMuS79d6esc5f179fVfn3K8+/klY6pil//ip6jLoVjXXotAKqHm5tbud4XZkQMl1wNLigocLgynJ+fLy8vrwqfb+fOnVU2GwAAAKxjxJrhkuUMWVlZDtuzsrIUEBBgxUgAAABwAkbEcGBgoHx8fLRt2zb7ttOnTysjI0NhYWEWTgYAAAArGbFMwt3dXdHR0YqPj1eTJk3UokULzZ8/XwEBAerXr5/V4wEAAMAiRsSwJI0bN06FhYWaPn26bDabwsPDlZSUxAduAAAAGMyIW6sBAAAAZTFizTAAAABQFmIYAAAAxiKGAQAAYCxiGAAAAMYihgEAAGAsYhgAAADGIoYBAABgLGLYSZw/f14LFy5UZGSkQkJCNGrUKB06dMjqsZza0qVLNWzYMKvHcDq//PKLnn76ad1xxx3q2rWrhgwZop07d1o9ltPJzs7WpEmTFBERoS5duuiRRx7Rvn37rB7LqR04cEBdunTR+vXrrR7F6Rw5ckTt27cv9eP111+3ejSnk5aWpv79+ys4OFgDBgzQpk2brB7JqWzbtq3M30vt27dX3759rR7PqZw7d04JCQnq3bu3unTpogcffFDp6ekVPg8x7CSWLl2qdevWafbs2UpJSZGLi4tiYmJUUFBg9WhOKTk5WQsXLrR6DKf0xBNP6IsvvtDzzz+vN954Qx07dtTo0aO1f/9+q0dzKo899ph+/PFHrVixQm+88YY8PT01YsQInT171urRnNK5c+c0ceJE5eXlWT2KU/r222/l4eGhf//73/rkk0/sPwYOHGj1aE7lzTff1FNPPaX7779fGzZsUP/+/fXEE0/o888/t3o0p9GlSxeH30OffPKJVq1aJTc3Nz366KNWj+dUli1bptTUVM2ePVtpaWm65ZZbFBMToxMnTlToPMSwEygoKNCqVasUFxenXr16KTAwUAkJCTpx4oQ2b95s9XhO5cSJE3r44Ye1YMECtW7d2upxnM6hQ4f06aefasaMGQoLC9Mtt9yiadOmyd/fXxs2bLB6PKdx6tQp3XjjjXrmmWcUHBysNm3aKDY2VidPntR3331n9XhOadGiRWrQoIHVYzitvXv3qnXr1vLz81OzZs3sPzw9Pa0ezWkUFxdrwYIFGj58uIYPH65WrVpp7Nixuu2227R9+3arx3Ma7u7uDr+HGjVqpLlz5+quu+7S4MGDrR7PqWzZskV33323evbsqVatWunJJ5/UmTNntHv37gqdhxh2ApmZmcrNzVVERIR9m6+vr4KCgrRjxw4LJ3M+33zzja677jq99dZbCgkJsXocp9O4cWO9+OKL6tSpk32bi4uLiouLlZOTY+FkzqVx48Z6/vnn9Zvf/EaS9NNPPykpKUkBAQFq27atxdM5nx07diglJUXPPfec1aM4rW+//ZbfO1fx/fff68iRI6WuliclJWnMmDEWTeX8XnnlFR07dkxTp061ehSn06hRI3344Yc6fPiwioqKlJKSInd3d3Xo0KFC53GrpvlQAcePH5ckNW/e3GG7n5+fjh07ZsVITqtPnz7q06eP1WM4LV9fX/Xq1cth26ZNm/TDDz+oZ8+eFk3l3P73f/9Xr732mtzd3bVs2TJ5e3tbPZJTOX36tCZPnqzp06eX+m8U/mvv3r1q1qyZHnzwQR08eFCtWrVSbGysIiMjrR7NaRw8eFCSlJeXp9GjRysjI0M33nijHnvsMf67fhn5+flavny5hg8fLj8/P6vHcTrTpk3ThAkT1LdvX9WrV0+urq5asGCBWrZsWaHzcGXYCZSsUXR3d3fY7uHhofz8fCtGQh2xa9cuPfXUU+rbty9/2FzG8OHDlZqaqnvuuUdjx47VN998Y/VITmXmzJkKDQ1l7esVFBQU6ODBgzpz5ozGjx+vF198UcHBwYqJidHWrVutHs9pnDlzRpI0ZcoU3X333Vq1apVuv/12xcbG8ut0GW+++aby8/N5s/hl7N+/X76+vlqyZIlSUlJ03333acqUKcrMzKzQebgy7ARK1pQVFBQ4rC/Lz8+Xl5eXVWOhlnv//fc1ceJEhYSE6Pnnn7d6HKdV8r+2n3nmGe3evVtr1qzR3LlzLZ7KOaSlpWnnzp16++23rR7Fqbm7u2vHjh1yc3OzX9To1KmT9u/fr6SkJPXo0cPiCZ1D/fr1JUmjR49WVFSUJKlDhw7KyMjQ6tWr+XUqQ1pamu666y41btzY6lGczpEjRzRp0iQlJycrLCxMkhQcHKx9+/Zp0aJFWrJkSbnPxZVhJ1Dyvx6zsrIctmdlZSkgIMCKkVDLrVmzRnFxcbrjjju0YsUK3sRziezsbG3YsEFFRUX2ba6urmrTpk2pfw9NlpqaquzsbPtti7p06SJJmjFjhgYMGGDxdM7F29u71P/da9euXYXf1V6Xlfx51q5dO4ftbdu21eHDh60Yyan9/PPP+vzzz9W/f3+rR3FKX375pc6dO6fg4GCH7SEhIfYlOeVFDDuBwMBA+fj4aNu2bfZtp0+fVkZGhv1vO0B5vfrqq3rmmWc0dOhQJSYmlvoDGhf+ovmXv/zF4R3s586dU0ZGhtq0aWPhZM4lPj5eGzduVFpamv2HJI0bN04vvviitcM5kczMTHXp0qXU/by//vpr3lR3kaCgIDVo0EBffPGFw/a9e/dWeI2nCdLT0+Xi4qJu3bpZPYpTKrmQ+O233zps37t3r1q1alWhc7FMwgm4u7srOjpa8fHxatKkiVq0aKH58+crICBA/fr1s3o81CIHDhzQs88+q379+mnMmDHKzs627/P09FTDhg0tnM55BAYGqmfPnpo1a5Zmz54tX19fLV++XKdPn9aIESOsHs9p+Pv7l7m9adOmatGiRQ1P47zatWun3/zmN5o1a5ZmzJihxo0b67XXXtPu3bv1xhtvWD2e0/D09NTDDz+sJUuWyN/fX507d9Y777yjTz/9VMnJyVaP53QyMzN10003sVzyMjp37qywsDBNmTJFM2bMUEBAgNLS0rR161a9+uqrFToXMewkxo0bp8LCQk2fPl02m03h4eFKSkriqh4q5N1339W5c+e0efPmUveojoqK0rx58yyazLm4uLgoMTFRf/vb3zR+/Hj9+uuvCgsL0yuvvKIbbrjB6vFQy7i6umr58uWKj4/X+PHjdfr0aQUFBWn16tVq37691eM5ldjYWHl5ednvpd+mTRstWrRI3bt3t3o0p/PTTz+pUaNGVo/htFxdXbV06VIlJiZq6tSpysnJUbt27ZScnKzQ0NAKnculuLi4uHrGBAAAAJwba4YBAABgLGIYAAAAxiKGAQAAYCxiGAAAAMYihgEAAGAsYhgAAADGIoYBAABguaVLl2rYsGEVflxaWpr69++v4OBgDRgwQJs2barQ44lhAKjlhg0bpvbt2zv86NSpk3r37q1Zs2YpJyfnso89fPiw2rdvr/Xr19fgxADgKDk5WQsXLqzw495880099dRTuv/++7Vhwwb1799fTzzxhD7//PNyn4NPoAOAOiAoKEgzZsywf33u3Dl98803ev7557Vnzx6tXbtWLi4upR7n5+enlJQUtWzZsibHBQBJ0okTJzRt2jTt2rVLrVu3rtBji4uLtWDBAg0fPlzDhw+XJI0dO1bp6enavn27unTpUq7zEMMAUAf4+PiU+gjS8PBw5ebmauHChfriiy/K/IhSd3f3Cn90KQBUlW+++UbXXXed3nrrLS1ZskRHjhxx2P/hhx9q0aJF2rdvn/z9/TVgwADFxsbK3d1d33//vY4cOaKBAwc6PCYpKalCM7BMAgDqsE6dOkmSjh49qmHDhmnixIkaN26cunbtqkceeaTMZRI//PCDxo0bp27duik8PFwxMTH67rvv7Pvz8/P117/+Vb169VKnTp00cOBAbdy4scZfG4Dar0+fPvrb3/6mm266qdS+jz/+WH/+8581ePBgbdiwQTNmzNCmTZs0adIkSdLBgwclSXl5eRo9erR69OihwYMH64MPPqjQDMQwANRhBw4ckCT7HzSbNm1S/fr1tWTJEj300EOljs/KytLgwYP1/fffa8aMGYqPj1dOTo5GjBihn3/+WcXFxRo7dqzWrVunkSNHatmyZerSpYsmTJigtLS0mnxpAOq45cuX649//KOGDBmili1bqmfPnpo1a5b++c9/6vDhwzpz5owkacqUKbr77ru1atUq3X777YqNjdXWrVvL/TwskwCAOqC4uFiFhYX2r3NycrR9+3YtW7ZMoaGh9ivErq6ueuaZZ+Tt7S3pwhvoLrZ69WrZbDatXr1azZo1kyR16NBB999/v3bv3i0PDw/9+9//VkJCgvr37y9JioyM1NmzZxUfH6+7775bbm780QLg2mVkZOjLL7/UP/7xD/u24uJiSdL+/ftVv359SdLo0aMVFRUl6cJ/rzIyMrR69Wr16NGjXM/Df7EAoA7YsWOHOnbs6LDN1dVVPXr00DPPPGN/89yNN95oD+Gy7Nq1S6GhofYQli68ye7DDz+UJMXHx8vFxUW9evVyiO8+ffrorbfe0nfffacOHTpU5UsDYKjz58/r4YcftofuxZo1a6bMzExJUrt27Rz2tW3bVh999FG5n4cYBoA6oGPHjpo1a5YkycXFRR4eHmrevLl8fHwcjrv++uuveJ5ffvlFN9544xX3FxcXq2vXrmXuz8rKIoYBVInf/OY3+v7779WqVSv7tu3bt+ull17SzJkzFRQUpAYNGuiLL75QWFiY/Zi9e/dW6A45xDAA1AENGjRQcHDwNZ+nYcOG+vnnn0tt37p1q2688UY1bNhQ3t7e+vvf/17m4y/+QwsArkVMTIzGjx+vRYsW6e6779bx48c1ffp03XDDDfb/e/Xwww9ryZIl8vf3V+fOnfXOO+/o008/VXJycrmfhzfQAQDswsLCtHv3bmVnZ9u3/fzzz4qJidGWLVvUrVs35eXlqbi4WMHBwfYf3333nZYsWeKwdAIArsXvf/97JSQkaMuWLRo4cKAmTpyoHj16aPHixfZjYmNjFRcXZ38fwz//+U8tWrRI3bt3L/fzcGUYAGA3YsQIpaWlafTo0Xr00Ufl4eGhF154QX5+frr33nvl6+ur8PBwxcbGKjY2Vm3atNGXX36pRYsWqWfPnmrSpInVLwFALTVv3rxS2/7whz/oD3/4wxUfN3LkSI0cObLSz0sMAwDsmjdvrldffVXz58/X1KlT5e7urm7dumn+/Plq1KiRJOnFF1/UggUL9MILLyg7O1v+/v4aMWKExo4da+3wAFAJLsUl96gAAAAADMOaYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLGIYQAAABiLGAYAAICxiGEAAAAYixgGAACAsYhhAAAAGIsYBgAAgLH+H3XXb5RfV+RoAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "#Since price is our target, we will explore it first\n",
+ "#view distribution of price using histogram\n",
+ "sns.set(style = 'white')\n",
+ "fig, ax = plt.subplots(figsize = (8,8))\n",
+ "sns.histplot(data = df, x = 'price', palette = 'Dark', )\n",
+ "ax.set_xlabel('Price')\n",
+ "ax.set_ylabel('Count')\n",
+ "ax.set_title('Distribution of Price')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We notice from the histogram that the price data is skewed to the right, indicating a non-normal distribution.\n",
+ "\n",
+ "To normalize the price data, we log-transformed (base of e) the data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#Since the data is skewed to the right, transform the price data using log\n",
+ "df['log_price'] = np.log(df['price'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiAAAAImCAYAAABq0DEBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABE+UlEQVR4nO3deXyM9/7//2cWkUQEIRIHRakliNAELSFN0X5tpaqbqK1KBYdq7LWcUu1J7LELiqp8NJr2UG3Rqi4apNXloEXRKhGEWLPn94df5phkEknENVke99stt5u5rmuueV0TSZ7z3i6bzMzMTAEAABjI1toFAACAsocAAgAADEcAAQAAhiOAAAAAwxFAAACA4QggAADAcAQQAABgOAIIAAAwHAEEuIvisFZfcaihuOK9AUomAghKtP79+6tRo0amr8aNG6tly5Z6+umntWHDBqWnp5sdHxgYqIkTJ+b7/Lt379aECRPuetzEiRMVGBhY6NfJTUpKiubMmaP//Oc/ub5WcRAWFqY2bdrIx8dH0dHROfafOXNGjRo10tNPP620tLQc+2NiYtSoUSPFxMQU6HW3bNmid955p7BlF1jWdWzdujXXY4rj98eSmJgYPfHEE2rWrJmGDBli8ZjsP1+NGjVSs2bNFBAQoJkzZyoxMTHP18jP+4Wyy97aBQD3ysvLS9OnT5ckpaenKzExUV999ZXeeustxcbGav78+bKxsZEkhYeHy8XFJd/nXrduXb6OGzFihF566aUC13438fHxWrdunebMmXPfX6uwfv/9d61atUrPPvusnnrqKT344IO5Hvvf//5Xq1at0quvvlokr71s2TK1bt26SM5V1rzzzjvKyMjQypUrVbVq1VyPu/PnS5JSU1P13//+V/PmzdORI0f0/vvvm36+sqtevboiIyP1wAMPFHn9KPkIICjxXFxc5OPjY7YtMDBQ9erV05w5cxQYGKiePXtKuv3L9H4w8hdscftlfuXKFUlSt27d5Ovrm+exrq6uWrJkiTp16qSHHnrIgOqQmytXrsjPz0+PPvponsdZ+vny8/PTjRs3tGjRIv3000859mdxcHDIdR9AFwxKrf79+6t69eravHmzaVv2rpFPPvlEPXv2lLe3t9q2bavXX39d8fHxpufv379f+/fvN3UPZHUVbN68WY899pgeffRRffPNNxab3VNTUzVr1iz5+fnJz89PEyZMUEJCgmm/pefc2WR95swZPf7445KkSZMmmY7N/rz09HS999576tGjh7y9vRUQEKCwsDAlJyebvdbAgQMVFRVlanbv2bOnvvrqq7u+j5988omefvpptWzZUu3atdO0adNMTe+LFy9W//79JUkDBgy4a9fDsGHD5OLiookTJ+boHsvu6NGjGjlypNq2baumTZvK399fs2bNUlJSkqTb38u///5bH374oRo1aqQzZ85o69atpn/fKfv3vVGjRgoPD1efPn308MMPa+nSpZKkAwcOaMiQIfLz81OzZs0UGBioxYsXKyMj467vU0H98ssvGjJkiNq0aaNWrVpp+PDhOnbsmNkxJ06c0NChQ9WqVSs9+uijmj9/viZNmmR6z3Nz6tQpjR49Wu3atZOPj4/69++v2NhYSf/7P/b3338rOjq6UF1fktSsWTNJ0tmzZyXd/nl5/fXXNXr0aLVq1UqvvPKKxS6YP//8U6NHj1br1q3l5+enoUOHml13cnKy/v3vf6tjx45q1qyZevTooU8++aTA9aH4I4Cg1LKzs9Mjjzyin3/+2eK4g9jYWL3++uvq0qWLVq1apUmTJun777/XuHHjJEnTp0+Xl5eXvLy8FBkZqaZNm5qeO3/+fE2YMEETJkzI9RPejh079Ouvv+rtt9/W+PHjtWfPHo0YMSLf9VevXl3h4eGSpFdffdX07+ymTZumt956S4GBgVq2bJn69eunjRs3asSIEWYDNH/99VdFRERo9OjRWrJkiezt7TV69Og8+/GXLl2qsWPHqkWLFlq0aJGCg4P12WefqX///kpKSlLfvn01bdo0Ux251ZjFzc1N06ZN06+//qrVq1fnelx8fLz69eunW7du6e2339aqVav0//7f/9OGDRtM3WLh4eFyd3dXx44dFRkZqerVq+f52tktW7ZMTzzxhObNm6fHH39cR48e1cCBA1W5cmXNnz9fy5YtU6tWrRQeHq7t27cX6Nx38/333+uFF15QRkaGZs+erVmzZuncuXN6/vnndeLECUlSQkKCgoKCdO7cOc2ZM0dTp07Vp59+qm3btuV57uPHj+vpp5/WX3/9palTpyosLEw2NjYaMGCA9u/fb+oWufO9u/P/dn6dPHlSklS7dm3Tth07dqhcuXJasmSJxW7C+Ph49e3bV3/88YemT5+usLAwJSYmauDAgUpISFBmZqaCg4O1efNmDRo0SMuWLVPLli01duxYi2OLULLRBYNSrVq1akpNTdWVK1dUrVo1s32xsbEqX768hg4dqvLly0uSKleurF9++UWZmZlq0KCBabxI9pDx/PPP68knn8zztV1dXbV69WrTOapUqaLg4GB98803at++/V1rd3BwUJMmTSTd7nax1H10/PhxffDBBxozZoxpXEW7du1UvXp1jR8/Xnv37lXHjh0lSdeuXdPWrVtNXTjOzs4KCgrS999/ryeeeCLHuRMTE7Vs2TL17dvXbAxAw4YN1a9fP23dulUvvviiGjRoIElq0KBBvrq4unbtqk8//VTh4eEKDAy02BXz+++/q0mTJlq4cKHp/Xv00Ue1b98+HThwQMOHD5eXl5ccHBzk5uZWqGZ+b29vvfLKK6bH0dHRevTRRxUaGipb29ufzdq1a6c9e/bowIED6tGjR4FfIzdz585V7dq1tXr1atnZ2UmS2rdvr86dO2vx4sVasGCBNmzYoBs3big6OloeHh6SpBYtWlj8Xt0pPDxc5cqV0/r161WxYkVJUkBAgLp3767Q0FBt2bJFPj4++X7vMjMzzQJ8YmKi9u/fr2XLlsnHx8fUEiJJtra2evPNN+Xs7CxJOVqi1q5dq6SkJK1du1bu7u6SpCZNmui5557ToUOHVL58eX399deaP3++unbtKkny9/fXrVu3FBYWpu7du8venj9bpQUtICgTLA2S8/PzU1JSknr06KH58+crNjZW7du318iRI3MdVJelUaNGd33Njh07mg14DQwMVLly5fTdd98V/AJysX//fknK8cexW7dusrOzM2tad3NzMxs/4unpKUm6deuWxXMfOnRIKSkpOc7t6+urmjVrFqrZPsv06dPl7OysSZMmWeyKad++vTZu3Kjy5cvr5MmT+vLLL7V8+XIlJCQoJSWl0K97p4YNG5o97tWrl1atWqXU1FQdO3ZMu3bt0uLFi5Wenq7U1NQieU1Junnzpn755Rd17drVFD6k24H1scceM72v33//vVq2bGkKH5JUs2ZNtWzZMs/z79+/X4899pgpfEiSvb29unXrpl9++UU3btwoUL0HDhxQ06ZNTV+PPvqoXnvtNTVt2lTz5s0z+1mpVauWKXxYEhsbKx8fH1P4kG639H355ZcKDAzUvn37ZGNjo44dOyotLc30FRgYqAsXLuTookLJRpREqXb+/Hk5OjqqcuXKOfa1bNlSK1eu1Lp16xQREaHly5fL3d1dQ4cO1YABA/I8b16zBrJkb3GxtbVV5cqVdfXq1QJdQ16yuk/u/IUu3f6DU6VKFV27ds20zcnJyeyYrD8cuY1vyDp39uvI2nbnuQuqatWqeuONNzRu3DhFRESoRYsWZvszMjI0b948vffee7p586Zq1Kghb29vU0tVUch+XUlJSXrzzTf10UcfKS0tTbVq1VLLli1lb29fpGuNXLt2TZmZmXd9XxMSEix2jbi7u+vChQu5nj8xMTHXc2dmZur69euqUKFCvutt2rSpZs6cKen2/5ny5curRo0aFmeTWXrdO125ckW1atXKc39mZqZatWplcX98fLypVRAlHwEEpVZ6err279+vVq1amX3SvJO/v7+piff777/X+vXr9dZbb8nHxyfHH8WCyh400tPTdfnyZVN4sbGxyfHp/+bNmwV6jUqVKkmSLly4YPaLPTU1VZcvX1aVKlUKU7rZuS9evKj69eub7btw4YJZ339hdO/eXZ9++qkWL16cY82UrGA4Y8YMPfHEE6ZP888880ye58wtVOXnU//s2bP12WefacGCBXr00UdNn+QfeeSRfF9TflSsWFE2Nja6ePFijn0XLlwwhWVPT09dunQpxzGWtt2pUqVKuZ5bUoH/T1SoUEHNmzcv0HNyU7FiRbOB2Fn27dunWrVqqWLFinJ2dtb69estPr9OnTpFUgeKB7pgUGpt3rxZ8fHxeuGFFyzuf+edd/TMM88oMzNTTk5Oeuyxx0yLjp07d06STGMBCuO7774z6zv/7LPPlJaWpjZt2ki6/Yv98uXLZrNVfvjhB7Nz5BacsmStgXHnQmWStH37dqWnp+vhhx8udP0tWrSQg4NDjnMfPHhQZ8+ezfVTakHMmDFDzs7Omj9/vtn22NhYNWjQQM8884wpfJw/f16///67WbjI/v3J+lSe9f2TpD/++MM0VTgvsbGxatOmjTp16mQKH7/++qsSEhKKdBaMs7OzmjVrpk8++cQsgF67dk179uwxfc/8/Pz0448/mrV2XLhwQYcOHcrz/H5+fvryyy/NWqjS09O1fft2NW/eXA4ODkV2LQXl6+urQ4cOmYWohIQEDR06VLt371br1q118+ZNZWZmqnnz5qavY8eOacmSJRYHk6PkogUEJd7169dNv5QzMjJ0+fJlffPNN4qMjFTPnj3VpUsXi8975JFHtHbtWk2cOFE9e/ZUamqqVq9ercqVK6tt27aSbvfL//jjj9q3b1+B1xC5ePGiRo0apf79++vUqVOaN2+e2rVrZ/pE/dhjj2nDhg2aPHmy+vbtq2PHjmnNmjVmoSPrj+++fftUv379HK0yDRo0UO/evRUeHq6kpCS1adNGR44cUXh4uNq0aSN/f/8C1XynypUr65VXXjENanz88cd15swZLVy4UA0aNNDTTz9d6HNnqVatmqZMmaKQkBCz7d7e3lq6dKlWrlwpHx8fnT59WitWrFBKSorZmBVXV1cdPnxY+/fvN02ldnJy0ttvv60xY8boxo0bCg8Pt9gFl523t7d27Nih999/X/Xr19fRo0e1bNky2djY5DpOJjfXr1+3uIidp6ennnzySY0bN05DhgzRyy+/rKCgIKWmpmrlypVKSUnRyJEjJUkvvfSS3nvvPQ0ZMkTBwcGSpCVLliglJSXPMUojR47U3r179dJLL+mVV16Rg4ODNm7cqL/++ivPmUdGGDhwoKKjozVkyBANHz5c5cuX14oVK1S9enX16tVLrq6u8vPz04gRIzRixAjVr19fP//8sxYvXqz27dvLzc3NqvWjaBFAUOIdPnxYzz33nKTbn4irVq2qevXq6e23385z5kKHDh0UFhamNWvWmAaePvzww1q/fr3pD1a/fv3066+/aujQoZozZ06Bpno+++yzSkpKUnBwsBwcHNSjRw+FhISY/ni0a9dOEyZM0IYNG/T555+radOmCg8P1/PPP286h4uLiwYNGqTIyEjt2bNH3377bY7XmT17turUqaOoqChFRESoevXq6t+/v4KDg++pBUeSRo0apWrVqmnjxo3asmWLKleurCeffFJjxozJMaaksHr27KlPP/1Uu3fvNm0bNmyYLl++rPXr12vJkiWqUaOGnnrqKdnY2GjFihVKTExUpUqVNHjwYL311lsaMmSI1q5dK19fXy1atEhz585VcHCwatasqZEjR+ZrCufEiROVmpqqBQsWKCUlRbVq1dKrr76q48eP64svvrjruiV3SkxMNFu9Nkvr1q315JNPmsLvokWL9Nprr8nBwUG+vr565513TLOCXF1dtX79es2ePVvjx49XhQoV9OKLL8rZ2TnPgZ4PPfSQNm3apHnz5mny5MmysbGRt7e31q9ff9eF4u63GjVqaNOmTQoNDdWkSZPk4OCg1q1bKzQ01PQzt3LlSi1cuFArVqzQpUuX5OHhoYEDB5pCGEoPm0zu5AQAxc5PP/2kK1eumKZRS1JaWpoCAgLUrVs3TZo0yYrVAfeOFhAAKIbOnj2rsWPHKjg4WK1bt9atW7e0efNmXbt2Tc8++6y1ywPuGS0gAFBMvf/++9q0aZP++usvlStXTi1atNA///nPIpuVAlgTAQQAABiOabgAAMBwBBAAAGA4AggAADAcs2Cy8fX1VUpKSo57awAAgLxduHBBDg4OOnjw4F2PJYBkk5ycXKAFhwAAwG1paWn5vnkjASSbrJUu71yVEQAA3N3jjz+e72MZAwIAAAxHAAEAAIYjgAAAAMMRQAAAgOEIIAAAwHAEEAAAYDgCCAAAMBwBBAAAGI4AAgAADEcAAQAAhiOAAAAAwxFAAACA4QggAADAcAQQAABgOAIIAAAwHAEEAAAYjgACAAAMRwABAACGI4AAAADDEUAAAIDh7K1dAID7K3rPccUl3DQ99nRzVq+ABlasCAAIIECpF5dwU3/GXbN2GQBghi4YAABgOAIIAAAwHAEEAAAYjgACAAAMRwABAACGI4AAAADDEUAAAIDhCCAAAMBwBBAAAGA4AggAADAcAQQAABiOAAIAAAxHAAEAAIYjgAAAAMMRQAAAgOEIIAAAwHAEEAAAYDgCCAAAMBwBBAAAGI4AAgAADEcAAQAAhiOAAAAAwxFAAACA4eytXQCAohW957jiEm5Kkrzqulm5GgCwjAAClDJxCTf1Z9w1SZKHm7OVqwEAy+iCAQAAhiOAAAAAwxFAAACA4QggAADAcAQQAABgOAIIAAAwHAEEAAAYjgACAAAMRwABAACGYyVUoJi4cwl1Tzdn9QpoYOWKAOD+IYAAxcSdS6gDQGlHFwwAADAcLSBACXZnt43E3W8BlBwEEKAEy95tw91vAZQUdMEAAADDEUAAAIDhCCAAAMBwBBAAAGA4AggAADAcAQQAABiOabgALLK0xkjC1SSWiwdQJAggACyytMbIeZaLB1BE6IIBAACGI4AAAADDEUAAAIDhrB5AUlNTNX/+fAUEBKhly5Z68cUX9cMPP5j2HzlyREFBQfLx8VFAQIAiIiLMnp+RkaFFixbJ399fLVq00ODBg3X69GmjLwMAABSA1QPIsmXLFBUVpVmzZik6OloPPvighg4dqvPnz+vy5csaNGiQ6tatq6ioKI0aNUoLFy5UVFSU6flLly7V5s2bNWvWLEVGRsrGxkZDhw5VSkqKFa8KAADkxeoBZPfu3erevbvat2+vOnXqaOLEibp+/boOHTqk//u//5ODg4NmzJih+vXrq0+fPho4cKBWrVolSUpJSdGaNWs0atQodezYUY0bN9b8+fN1/vx57dy508pXBgAAcmP1AFK5cmV9+eWXOnPmjNLT0xUZGSkHBwc1adJEBw8elJ+fn+zt/zdbuG3btjp58qQuXbqko0eP6saNG2rbtq1pv6urq7y8vHTgwAFrXA4AAMgHq68DMmXKFI0dO1aPP/647OzsZGtrq4ULF+qBBx5QXFycGjZsaHZ89erVJUlnz55VXFycJKlGjRo5jjl37pwxFwAAAArM6gHkxIkTcnV11ZIlS+Th4aEtW7ZowoQJ2rhxo5KSkuTg4GB2fPny5SVJycnJunXrliRZPCYxMdGYCwAAAAVm1QDy999/KyQkROvWrZOvr68kqXnz5jp+/LgWL14sR0fHHINJk5OTJUnOzs5ydHSUdHssSNa/s45xcnIy6CoAAEBBWXUMyM8//6zU1FQ1b97cbHuLFi106tQpeXp6Kj4+3mxf1mMPDw9T14ulYzw9Pe9j5QAA4F5YNYBkBYjffvvNbPvvv/+uOnXqyM/PT7GxsUpPTzft27dvn+rVq6eqVauqcePGcnFxUUxMjGn/1atXdfjwYVOLCgAAKH6sGkC8vb3l6+urCRMm6Pvvv9epU6e0YMEC7du3T6+88or69Omj69eva8qUKTp+/Li2bt2qd999V8OGDZN0e+xHUFCQwsLCtHv3bh09elRjx46Vp6enOnfubM1LAwAAebDqGBBbW1stXbpUCxYs0KRJk5SYmKiGDRtq3bp18vHxkSStXr1as2fPVu/eveXu7q7x48erd+/epnOMHj1aaWlpmjp1qpKSkuTn56eIiIgcA1MBAEDxYfVZMJUqVdL06dM1ffp0i/u9vb0VGRmZ6/Pt7OwUEhKikJCQ+1UiAAAoYlZfiAwAAJQ9BBAAAGA4AggAADAcAQQAABiOAAIAAAxn9VkwAIqH6D3HFZdwU5LkVdfNytUAKO0IIAAkSXEJN/Vn3DVJkoebs5WrAVDa0QUDAAAMRwABAACGI4AAAADDEUAAAIDhCCAAAMBwBBAAAGA4AggAADAcAQQAABiOAAIAAAxHAAEAAIYjgAAAAMMRQAAAgOEIIAAAwHAEEAAAYDgCCAAAMBwBBECh2NraWLsEACWYvbULAFAyuVd2UvSe44pLuGna5unmrF4BDaxYFYCSggACoNDiEm7qz7hr1i4DQAlEFwwAADAcAQQAABiOAAIAAAzHGBCgBLlz0KdXXTcrVwMAhUcAAUqQOwd9erg5W7kaACg8AghgBdmnr9KaAaCsIYAAVpB9+iqtGQDKGgahAgAAwxFAAACA4QggAADAcAQQAABgOAIIUMZwF1sAxQGzYIAyxtJdbJkGDMBoBBCgDGIaMABrowsGAAAYjhYQwADcwwUAzBFAAANwDxcAMEcXDAAAMBwBBAAAGI4AAgAADEcAAQAAhiOAAAAAwxFAAACA4QggAADAcAQQAABgOAIIAAAwHAEEAAAYjgACAAAMRwABAACGI4AAAADDEUAAAIDhCCAAioytrY21SwBQQthbuwCgtInec1xxCTdNj73qulmxGmO5V3Yyu/5/VHVWz44NrFwVgOKIAAIUsbiEm/oz7prpsYebsxWrMd6d1+/h5pwjkHm6OatXAKEEKOsIIADuq+yBDAAkxoAAAAArIIAAAADDEUAAAIDhCCAAAMBwBBAAAGA4AggAADAcAQQAABiOAAIAAAxHAAEAAIYjgAAAAMMRQAAAgOEIIAAAwHDcjA4oAO7sCgBFgwACFIBRd3a1tbW5768BANZEAAGKIffKTjlaW7zqulmxIgAoWgQQoJjK3tri4eZsxWoAoGgxCBUAABiOAAIAAAxHAAEAAIYjgAAAAMMRQAAAgOEIIAAAwHAEEAAAYDgCCAAAMFyxCCDR0dHq2rWrmjdvrm7dumnHjh2mfUeOHFFQUJB8fHwUEBCgiIgIs+dmZGRo0aJF8vf3V4sWLTR48GCdPn3a6EsAAAAFYPUA8tFHH2ny5Ml67rnntG3bNnXt2lWvvfaafvzxR12+fFmDBg1S3bp1FRUVpVGjRmnhwoWKiooyPX/p0qXavHmzZs2apcjISNnY2Gjo0KFKSUmx4lUBAIC8WHUp9szMTC1cuFADBgzQgAEDJEnBwcH64YcftH//fu3fv18ODg6aMWOG7O3tVb9+fZ0+fVqrVq1Snz59lJKSojVr1igkJEQdO3aUJM2fP1/+/v7auXOnunXrZs3LAwAAubBqC8gff/yhv//+Wz169DDbHhERoWHDhungwYPy8/OTvf3/clLbtm118uRJXbp0SUePHtWNGzfUtm1b035XV1d5eXnpwIEDhl0HAAAoGKsGkFOnTkmSbt68qSFDhuiRRx5R37599cUXX0iS4uLi5Onpafac6tWrS5LOnj2ruLg4SVKNGjVyHHPu3Ln7XD0AACgsqwaQ69evS5ImTJig7t27a82aNWrXrp1GjBihffv2KSkpSQ4ODmbPKV++vCQpOTlZt27dkiSLxyQnJxtwBQAAoDCsOgakXLlykqQhQ4aod+/ekqQmTZro8OHDWrt2rRwdHXMMJs0KFs7OznJ0dJQkpaSkmP6ddYyTk5MRlwAAAArBqi0gWd0rDRs2NNveoEEDnTlzRp6enoqPjzfbl/XYw8PD1PVi6ZjsXTcAAKD4sGoA8fLyUoUKFfTTTz+Zbf/999/1wAMPyM/PT7GxsUpPTzft27dvn+rVq6eqVauqcePGcnFxUUxMjGn/1atXdfjwYfn6+hp2HQAAoGCs2gXj6Oiol19+WUuWLJGHh4e8vb21fft2ffvtt1q3bp0aNGig1atXa8qUKXr55Zf1888/691339XMmTMl3R77ERQUpLCwMLm5ualmzZoKDQ2Vp6enOnfubM1LAwAAebBqAJGkESNGyMnJSfPnz9f58+dVv359LV68WG3atJEkrV69WrNnz1bv3r3l7u6u8ePHm8aLSNLo0aOVlpamqVOnKikpSX5+foqIiMgxMBUAABQfVg8gkjRo0CANGjTI4j5vb29FRkbm+lw7OzuFhIQoJCTkfpUHAACKmNWXYgcAAGUPAQQAABiOAAIAAAxHAAEAAIYjgAAAAMMRQAAAgOGKxTRcoDiI3nNccQk3JUmebs7qFdDAyhUBQOlFAAH+f3EJN/Vn3DVrlwEAZQJdMAAAwHAEEAAAYDgCCAAAMBxjQAAUSwwKBko3AggAq7szbEiSV103BgUDpRwBBIDVZQ8bHm7OVqwGgBEYAwLcA1tbG2uXAAAlEi0gwD1wr+xk1n3gVdfNyhUBQMlAAAHu0Z3dB3QdAED+0AUDAAAMRwABAACGI4AAMBQDdwFIjAEBYDAG7gKQCCAArICBuwDoggEAAIYjgAAAAMMRQAAAgOEIIAAAwHAEEAAAYDgCCAAAMBwBBAAAGK5QAeTAgQO6ceOGxX1Xr17V9u3b76koAABQuhUqgLz00ks6ceKExX2HDx/WpEmT7qkoAABQuuV7JdQJEybo3LlzkqTMzEzNmDFDLi4uOY47deqUqlWrVnQVAgCAUiffLSBPPPGEMjMzlZmZadqW9Tjry9bWVj4+PpozZ859KRYAAJQO+W4BCQwMVGBgoCSpf//+mjFjhurXr3/fCgMAAKVXoW5Gt2HDhqKuAwAAlCGFCiC3bt3S8uXL9eWXX+rWrVvKyMgw229jY6Ndu3YVSYEAAKD0KVQAmT17tqKiotS6dWs1adJEtrYsJwIAAPKvUAHk888/19ixY/XKK68UdT0AAKAMKFTTRVpamry9vYu6FgAAUEYUKoC0b99ee/fuLepaAABAGVGoLpiuXbtq+vTpSkhIUIsWLeTk5JTjmF69et1rbQAAoJQqVAAZM2aMJCk6OlrR0dE59tvY2BBAAABArgoVQHbv3l3UdQAAgDKkUAGkZs2aRV0HAAAoQwoVQMLDw+96zMiRIwtzagAAUAYUeQBxcXFR9erVCSAAACBXhQogR48ezbHt5s2bio2N1YwZM/TGG2/cc2EAAKD0KrI11J2dneXv76/g4GD9+9//LqrTAgCAUqjIb+JSo0YNnThxoqhPCwAASpFCdcFYkpmZqXPnzmnVqlXMkgEAAHkqVABp3LixbGxsLO7LzMykCwYAAOSpUAEkODjYYgBxcXFRQECA6tate691AQCAUqxQAWTUqFFFXQcAAChDCj0GJCUlRVu3blVMTIyuXr2qKlWqyNfXV71791b58uWLskbAcLa2lrsYAQBFo1AB5OrVq3rppZd09OhR/eMf/5C7u7tOnjypbdu26b333tOmTZtUsWLFoq4VMIx7ZSdF7zmuuISbpm1edd2sWBEAlC6FCiBz585VXFycNm7cKF9fX9P2gwcPavTo0Vq4cKGmTp1aZEUC1hCXcFN/xl0zPfZwc7ZiNQBQuhRqHZDdu3drzJgxZuFDknx9fTV69Gh9/vnnRVIcAAAonQoVQG7cuKHatWtb3Fe7dm1duXLlXmoCAAClXKECyIMPPqgvv/zS4r7du3erTp0691QUAAAo3Qo1BmTIkCF67bXXlJKSoh49eqhatWq6ePGi/vOf/2jLli2aMWNGEZcJAABKk0IFkK5du+rUqVNavny5tmzZYtperlw5BQcH67nnniuyAgEAQOlTqABy8+ZNjRgxQkFBQTp06JASExN17tw5Pffcc6pUqVJR1wigjGNdFqD0KVAAOXLkiCZNmqQuXbpoxIgRcnV1VYcOHZSYmKhHHnlEH330kRYtWqT69evfr3oBlEGW1mXxdHNWr4AGVqwKwL3I9yDUv/76SwMHDlRiYqIaNDD/oXdwcNDkyZN148YNvfjii4qLiyvyQgGUbVnrsmR93RlGAJQ8+Q4gK1euVJUqVfThhx+qS5cuZvucnJwUFBSkqKgoOTs7a/ny5UVeKAAAKD3yHUD27dunl19+WZUrV871mKpVq2rQoEHat29fUdQGALliXAhQsuV7DMiFCxfytb5Hw4YN6YIBcN8xLgQo2fIdQNzc3BQfH3/X4xISEvJsJQGAopL9fj0ASo58d8H4+flp69atdz0uOjpaTZo0uaeiAABA6ZbvANK/f3/FxMTo7bffVnJyco79KSkpeuedd/T111+rX79+RVokAAAoXfLdBdO8eXNNmjRJb731lj766CM98sgjqlWrltLT03X27FnFxMTo8uXL+uc//yl/f//7WTMAACjhCrQQWb9+/dS4cWNFRERo9+7dppaQChUqqH379ho8eLBatGhxXwoFAAClR4GXYn/44Yf18MMPS5IuX74sW1tbll8HAAAFUqh7wWSpUqVKUdUBAADKkHwPQgUAACgqBBAAAGA4AggAADAcAQQAABiOAAIAAAxHAAEAAIYjgAAAAMMRQAAAgOEIIAAAwHAEEAAAYLhiFUBOnjypli1bauvWraZtR44cUVBQkHx8fBQQEKCIiAiz52RkZGjRokXy9/dXixYtNHjwYJ0+fdro0gEAQAEUmwCSmpqq119/XTdv3jRtu3z5sgYNGqS6desqKipKo0aN0sKFCxUVFWU6ZunSpdq8ebNmzZqlyMhI2djYaOjQoUpJSbHGZQAAgHwoNgFk8eLFqlChgtm2//u//5ODg4NmzJih+vXrq0+fPho4cKBWrVolSUpJSdGaNWs0atQodezYUY0bN9b8+fN1/vx57dy50xqXAcCKbG1trF0CgHwqFgHkwIEDioyM1DvvvGO2/eDBg/Lz85O9/f9u2tu2bVudPHlSly5d0tGjR3Xjxg21bdvWtN/V1VVeXl46cOCAYfUDKB7cKzspes9xLd/6s5Zv/VnRe45buyQAubC/+yH319WrVzV+/HhNnTpVNWrUMNsXFxenhg0bmm2rXr26JOns2bOKi4uTpBzPq169us6dO3cfqwZQXMUl3NSfcdesXQaAu7B6C8iMGTPk4+OjHj165NiXlJQkBwcHs23ly5eXJCUnJ+vWrVuSZPGY5OTk+1QxAAC4V1ZtAYmOjtbBgwf1n//8x+J+R0fHHINJs4KFs7OzHB0dJd0eC5L176xjnJyc7lPVAADgXlk1gERFRenSpUsKCAgw2z59+nRFREToH//4h+Lj4832ZT328PBQWlqaadsDDzxgdkzjxo3vb/EAAKDQrBpAwsLClJSUZLatS5cuGj16tLp27art27dr8+bNSk9Pl52dnSRp3759qlevnqpWraqKFSvKxcVFMTExpgBy9epVHT58WEFBQYZfDwAAyB+rBhAPDw+L26tWraqaNWuqT58+Wr16taZMmaKXX35ZP//8s959913NnDlT0u2xH0FBQQoLC5Obm5tq1qyp0NBQeXp6qnPnzkZeCgAAKACrz4LJS9WqVbV69WrNnj1bvXv3lru7u8aPH6/evXubjhk9erTS0tI0depUJSUlyc/PTxERETkGpgIAgOKj2AWQ3377zeyxt7e3IiMjcz3ezs5OISEhCgkJud+lAQCAImL1abgAAKDsIYAAAADDEUAAAIDhCCAAAMBwBBAAAGA4AggAADAcAQQAABiOAAIAAAxHAAEAAIYjgAAAAMMRQAAAgOEIIAAAwHAEEAAAYLhidzdcwAjRe44rLuGm6bFXXTcrVgMAZQ8BBGVSXMJN/Rl3zfTYw83ZitUAQNlDFwwAADAcLSAodbJ3r3i6OatXQAMrVgQAyI4AglIne/cKAKD4oQsGAAAYjgACAAAMRwABAACGI4AAAADDEUAAAIDhCCAAAMBwBBAAAGA4AggAADAcAQSlnq2tjbVLAABkw0qoKPXcKzuZLc/OnW8BwPoIICgT7lyenTvfAoD10QUDAAAMRwABAACGI4AAAADDEUAAAIDhCCAAAMBwBBAAAGA4AggAADAcAQQAABiOAAIAAAxHAAFQanEfIKD4Yil2AKVW9vsASZKnm7N6BTSwYlUAJAIIgFLuzvsAASg+6IIBAACGI4AAAADDEUAAAIDhCCAAAMBwBBAAAGA4AggAADAcAQQAABiOAAIAAAxHAAEAAIYjgAAAAMMRQAAAgOEIIAAAwHAEEAAAYDgCCAAAMBwBBAAAGI4AAgAADEcAAQAAhiOAAAAAwxFAAJQptrY21i4BgCR7axcAAEZyr+yk6D3HFZdwU5Lk6easXgENrFwVUPYQQACUOXEJN/Vn3DVrlwGUaXTBAAAAwxFAAACA4QggAADAcAQQAABgOAahosS7c0aDV103K1cDAMgPAghKvDtnNHi4OVu5GgBAftAFAwAADEcAAQAAhiOAAAAAwxFAAACA4QggAADAcAQQAABgOAIIAAAwHAEEAAAYjgACAAAMRwABUKbZ2tpYuwSgTGIpdgBlmntlJ7P7CUmSp5uzegU0sGJVQOlHAAFQ5t15PyEAxqALBgAAGI4AAgAADEcAAQAAhrN6ALly5YqmTZumDh06qFWrVnrhhRd08OBB0/4jR44oKChIPj4+CggIUEREhNnzMzIytGjRIvn7+6tFixYaPHiwTp8+bfRlAACAArB6AHnttdf0008/ad68efrggw/UtGlTDRkyRCdOnNDly5c1aNAg1a1bV1FRURo1apQWLlyoqKgo0/OXLl2qzZs3a9asWYqMjJSNjY2GDh2qlJQUK14VAADIi1VnwZw+fVrffvut3n//fbVq1UqSNGXKFO3du1fbtm2To6OjHBwcNGPGDNnb26t+/fo6ffq0Vq1apT59+iglJUVr1qxRSEiIOnbsKEmaP3++/P39tXPnTnXr1s2alwcAAHJh1RaQKlWqaOXKlWrWrJlpm42NjTIzM5WYmKiDBw/Kz89P9vb/y0lt27bVyZMndenSJR09elQ3btxQ27ZtTftdXV3l5eWlAwcOGHotAAAg/6waQFxdXdWxY0c5ODiYtu3YsUN//vmn2rdvr7i4OHl6epo9p3r16pKks2fPKi4uTpJUo0aNHMecO3fuPlcPAAAKy+pjQO4UGxuryZMn6/HHH1dgYKCSkpLMwokklS9fXpKUnJysW7duSZLFY5KTk40pGgAAFFixCSC7du3SkCFD5O3trXnz5kmSHB0dcwwmzQoWzs7OcnR0lCSLxzg5ORlQNQAAKIxiEUA2btyoUaNGqUOHDlq1apUpWHh6eio+Pt7s2KzHHh4epq4XS8dk77oBAADFh9UDyKZNm/Tmm2+qX79+WrBggVl3ip+fn2JjY5Wenm7atm/fPtWrV09Vq1ZV48aN5eLiopiYGNP+q1ev6vDhw/L19TX0OgAAQP5ZNYCcPHlSb731ljp37qxhw4bp0qVLunDhgi5cuKBr166pT58+un79uqZMmaLjx49r69atevfddzVs2DBJt8d+BAUFKSwsTLt379bRo0c1duxYeXp6qnPnzta8NAAAkAerrgPy2WefKTU1VTt37tTOnTvN9vXu3Vtvv/22Vq9erdmzZ6t3795yd3fX+PHj1bt3b9Nxo0ePVlpamqZOnaqkpCT5+fkpIiIix8BUAABQfFg1gAwfPlzDhw/P8xhvb29FRkbmut/Ozk4hISEKCQkp6vIAAMB9YvUxIAAAoOwhgAAAAMMRQAAAgOEIIAAAwHAEEAAAYDgCCAAAMBwBBAAAGI4AAgAADEcAAQAAhiOAAAAAwxFAAACA4QggAADAcFa9GR1QUNF7jisu4abpsVddNytWAwAoLAIISpS4hJv6M+6a6bGHm7MVqwEAFBZdMAAAwHAEEAAAYDgCCAAAMBwBBAAAGI4AAgAADEcAAQAAhmMaLgDcR3euXePp5qxeAQ2sXBFQPBBAAOA+yr52DYDb6IIBgGxsbW2sXQJQ6tECAgDZuFd2Mus6+UdVZ/XsSNcJUJQIIABgwZ1dJx5uzjnuQ8R4DuDeEEAAIB/yM5aDmyUC+UcAAYAiws0SgfxjECoAADAcAQQAABiOAAIAAAxHAAEAAIZjECqKDaY5AkDZQQBBscGS1QBQdtAFAwAADEcAAQAAhiOAAAAAwxFAAACA4QggAADAcAQQACgEW1sba5cAlGhMwwWAQnCv7GS2dg13vgUKhgACAIV059o13PkWKBi6YAAAgOEIIAAAwHAEEAAAYDgCCIotZhkAQOnFIFQUW8wyQGlDqAb+hwCCYo1ZBihNsodqSfpHVWf17NjAilUB1kEAAQAD3RmqpdvBOnso8XRzVq8AQglKNwIIAFhZ9lAClAUMQgUAAIajBQRWwwBTwDIGq6IsIIDAahhgCliWfbAqY0JQGhFAAKAYYlwISjvGgAAAAMMRQAAAgOEIIAAAwHCMAYEhsi+0xKwXACjbCCAwhKXVHwHkT36n5bKiKkoSAggAFHOW7iHjVddNCVeTzNbSYeYMShICCIoc3S1A0bPUinietXRQghFAUOTobgEA3A2zYAAAgOEIIAAAwHAEEAAAYDgCCAAAMBwBBAAAGI5ZMABQhrBYGYoLAggAlCEsVobigi4YAABgOAIIAAAwHAEEAEqp/N7EDrAGxoAAQCmV/SZ2lu7LREiBtRBAAKAUi7vLDeuyhxRmxcAoBBAAKOOYGQNrYAwIAAAwHC0gKBAWMQLKpjt/9v9R1Vk9O/Jzj3tDAEGB0FQLlE3Zx5LwYQT3igCCe8IIeqBs4sMI7hUBBHm62xS+/EzzA1D68WEEBUUAQZ7uNoUvv8cAKN2yfxiRbn8gSbiaVOApvnTvlA0EEABAkcjeLePh5qzzheiqoXunbCCAlFKFWVjI0qcXAADuBwJIKXXnJ4j89s1a+vQCoGy5n2M5GCeCOxFAygBLfbP0qQKwJLexHPfr3PwuKrtKRQDJyMhQeHi4tmzZoqtXr+rhhx/W9OnTVadOHWuXVmxkb93gkwiA3NzP1tCiGt9BkCn5SkUAWbp0qTZv3qw5c+bIw8NDoaGhGjp0qLZt2yYHBwdrl5dvRv5AMX0WQHGQnw9Dlo5hoGrJV+IDSEpKitasWaOQkBB17NhRkjR//nz5+/tr586d6tatm5UrzF32AFDYVorCNpcyfRaAteXnw1B+jrH0+zL770aWkC9eSnwAOXr0qG7cuKG2bduatrm6usrLy0sHDhwo1gGkoLfJliz/ADF4FEBJVhTrDVkKKZZ+NxZmhiDuD5vMzMxMaxdxLz7//HONGjVKP/30kxwdHU3b//nPfyopKUkrVqwo0PmaN2+u9PR01ahRo0jrTE5JV/odb7W9na3S0tKVln57m0M5O2VkZJge57XNRjKdK/t5LD0vP+c28hhrvz7XUbxen+soXq9flq7D3s5Gzo7lVBjZf6fb2diovINdgZ6X3+eUJOfOnZOdnZ1++eWXux5b4ltAbt26JUk5xnqUL19eiYmJBT5f+fLllZKSUiS1mZ3Xwn8yB3vbbFss/Ue8+3/OnOex9Lz8nNvIY6z9+lxH8Xp9rqN4vX5Zuo7CKWxwKG2BIzt7e/t8j70s8QEkq9UjJSXFrAUkOTlZTk5OBT7fwYMHi6w2AABgmaWPziVKVldJfHy82fb4+Hh5enpaoyQAAHAXJT6ANG7cWC4uLoqJiTFtu3r1qg4fPixfX18rVgYAAHJT4rtgHBwcFBQUpLCwMLm5ualmzZoKDQ2Vp6enOnfubO3yAACABSU+gEjS6NGjlZaWpqlTpyopKUl+fn6KiIgoUYuQAQBQlpT4abgAAKDkKfFjQAAAQMlDAAEAAIYjgAAAAMMRQAAAgOEIIAAAwHAEEAAAYDgCCAAAMBwBBIZYunSp+vfvb7btiy++UJ8+fdSyZUsFBgbqnXfeUVJSkpUqLF0svd/bt29Xjx495O3trU6dOmnlypViGaCiYen9vtPUqVMVGBhoYEWlm6X3e9KkSWrUqJHZV4cOHaxUYeli6f2Oj4/Xa6+9Jl9fX7Vp00bjxo1TQkJCgc5LAMF9t27dOi1atMhs28GDBzVy5Eg98cQTio6O1owZM7Rjxw7NnDnTSlWWHpbe76+++krjx4/X888/r+3bt2v8+PFatmyZ3n33XStVWXpYer/vtGvXLm3ZssXAikq33N7v3377TcOHD9c333xj+oqOjja+wFLG0vudkpKiwYMH66+//tLatWu1YsUKHT58WBMmTCjQuUvFUuwons6fP68pU6YoNjZW9erVM9u3efNmtW3bVq+88ookqU6dOho7dqwmT56smTNnsox+IeT1fl+4cEFDhw5Vv379JEm1a9fWRx99pO+++04DBw60QrUlX17vd5b4+Hi98cYbat26tf7++2+DKyxd8nq/09PTdfz4cY0YMULu7u5WqrB0yev93rZtm/7++2/t3LlT1apVkyTT7+7r16/LxcUlX69BCwjum//+97+qVKmSPv74Y7Vo0cJs3+DBgzV+/Pgcz0lLS9P169eNKrFUyev9fuaZZzRmzBhJt39Z7927V/v371e7du2sUGnpkNf7LUmZmZmaOHGinnrqKbVu3doKFZYueb3fp06dUnJysurXr2+l6kqfvN7vr7/+Wm3btjWFD0ny9/fXrl278h0+JFpAcB8FBgbm2u/t5eVl9jglJUVr165V06ZN5ebmZkR5pU5e73eWs2fPqlOnTkpPT1f79u31wgsvGFRd6XO393vdunW6cOGCli9frhUrVhhYWemU1/v9+++/y8bGRu+++6727t0rW1tbdezYUWPGjFHFihUNrrR0yOv9PnXqlHx9fbVkyRJFR0crLS1N7du3V0hIiFxdXfP9GrSAwOrS0tI0fvx4HT9+XNOnT7d2OaWaq6urPvjgAy1cuFC//fabxVYo3LujR48qPDxcoaGhdCca4NixY7K1tVXNmjW1fPlyTZgwQV999ZVGjBihjIwMa5dX6ly/fl3R0dH67bffNHfuXP3rX/9SbGysRowYUaCB7bSAwKquX7+uMWPGKCYmRosWLbLYlI2i4+LiIi8vL3l5eSkjI0Njx45VSEiIatasae3SSo3k5GS9/vrrevXVV9W4cWNrl1MmjBo1SgMHDjR9+m7YsKHc3d313HPP6ZdffuH3ShErV66cnJ2dNXfuXJUrV06SVKlSJfXt21e//PKLvL2983UeWkBgNfHx8erXr59+/PFHrVq1immK99HBgwf1yy+/mG176KGHJN3+PqDo/PTTTzp27JjCw8PVsmVLtWzZUitWrNDZs2fVsmVLffzxx9YusdSxsbHJ0fTfsGFDSVJcXJw1SirVPD09Va9ePVP4kP73++TMmTP5Pg8tILCKxMREDRgwQNevX9emTZvUqFEja5dUqq1Zs0ZXrlzRpk2bTNt++ukn2dvbq27dutYrrBTy9vbW559/brZtw4YN+vzzz7VhwwZVrVrVSpWVXuPGjdOVK1cUERFh2pYVuBs0aGCtskotX19frV+/XklJSXJ0dJR0exyOdHtGY37RAgKrmDNnjv766y+FhobKzc1NFy5cMH2lp6dbu7xSZ/DgwTp06JAWLVqk06dP65NPPlFoaKheeuklValSxdrllSqOjo6qU6eO2VelSpVkb2+vOnXqFGiWAPKne/fu+vbbb7Vs2TL9+eef+uqrrzR58mR1796dmTH3wfPPPy87OzuNGzdOv//+u2JjYzV16lS1adNGTZs2zfd5aAGB4TIyMvTJJ58oNTVVAwYMyLF/9+7dqlWrlhUqK718fX21YsUKLViwQBEREXJzc9PgwYM1dOhQa5cG3LPHHntMCxcu1PLly7V8+XJVrFhRPXr0ME09R9Fyc3PTe++9pzlz5ujZZ5+Vg4ODOnXqpEmTJhXoPDaZrMUMAAAMRhcMAAAwHAEEAAAYjgACAAAMRwABAACGI4AAAADDEUAAAIDhCCBAGcGMewDFCQEEKGb69+8vLy+vHPduyRIYGKiJEycW6JzHjx/XCy+8UBTl5Vv//v3Vv3//XPfHxMSoUaNGiomJMbCqgrt+/bpeffVVtWjRQn5+fjp16lSOY7Zu3apGjRqZfTVp0kR+fn4aPHiwYmNj7/o6d3u/gNKGlVCBYig9PV2TJk3S1q1bi+R27jt27NCPP/5YBJWVPdHR0friiy80bdo0PfTQQ3mu0hseHi53d3dJt1f8vXjxopYsWaIBAwbogw8+yPPuuNOnTy/y2oHijAACFEMVK1bUsWPHtGTJEo0dO9ba5ZRpV65ckSS9+OKLsrGxyfPYJk2a5AgoXl5e6ty5szZt2qR//etfuT6Xm6ahrKELBiiGmjRpol69emn16tX69ddf8zw2KSlJc+fOVZcuXdSsWTO1atVKgwYN0pEjRyRJixcvVnh4uCSpUaNGWrx4cY5/Z1m8eLHZnYknTpyoAQMGaPr06fL19VXv3r2VlpamhIQEzZw5U4899piaNWum1q1bKzg4uEC34s6va9euac6cOerUqZOaN2+u7t2764MPPjA7JjU1VWFhYerQoYO8vb01ZMgQRUdHq1GjRnnWlJycrCVLlujJJ59U8+bN1aVLF61cuVIZGRmSbneLZL1HjRs3LnDXlyTVqlVLVapU0dmzZyXd7q7x8vLSli1b1L59e3Xo0EHHjh3L0QWTmpqqJUuWqFOnTvL29la3bt0UFRVldu5du3bp6aefVvPmzdWuXTvNmjVLN2/eLHCNgDXQAgIUU1OmTNF3332nSZMmKSoqKteumPHjx+vAgQMaN26cHnjgAZ06dUoLFy7U2LFjtWPHDvXt21dxcXH64IMPFBkZKU9PzwLVcfDgQdnY2Gjx4sW6ceOG7OzsNGzYMCUmJmrcuHFyd3fXkSNHtHDhQk2bNk1r1qwpisuXdDtcvfjii7p48aJGjRql2rVra9euXZoyZYouXryo4cOHS5KmTZumbdu2adSoUWrSpIm2bdumN954I89zZ2Zmavjw4Tp06JCCg4PVpEkTxcTEaMGCBfrrr7/05ptvavr06Vq7dq3pvXNzcyvwNVy+fFmXL1/WAw88YNqWnp6u5cuXa9asWUpISLDY+jFhwgTt3r3bNP7k66+/1uTJk2VnZ6devXrpP//5j15//XXTTdf+/vtvzZ8/X8ePH9fatWvv2loDWBsBBCimXF1dNXPmTL366qu5dsWkpKToxo0beuONN9S1a1dJUuvWrXXjxg29/fbbunDhgjw9PU2hw8fHp8B1pKWlaebMmapTp44k6fz583JyctKECRPk6+srSWrTpo3OnDmjzZs3F/JqLdu6dat+//13bdq0SQ8//LAkyd/fX2lpaVq6dKmef/55Xb16VR9++KEmTJigQYMGmY65ePGivvnmm1zPvXfvXn333XcKDQ1Vz549JUnt2rWTo6OjFi5cqAEDBqhBgwYFeu8yMjKUlpYm6XbryunTpxUaGipbW1s999xzZscOHz5cAQEBFs9z7Ngxbd++XVOmTNFLL70kSXrkkUd09uxZxcTE6KmnnlJYWJj8/f0VFhZmel7dunU1cOBAffXVV7meGyguCCBAMRYYGKiePXtq9erV6tKli5o2bWq238HBQREREZKk+Ph4nT59Wn/88Ye+/PJLSbeb8e+Vo6Oj2ad3Dw8PrV+/XpJ09uxZnT59WidOnNAPP/xQJK93p/3796tmzZqm8JGlZ8+e+uCDD/TTTz8pPj5emZmZevLJJ82O6d69e54BZP/+/bKzszMFtzvPvXDhQsXExBR4XEbnzp1zbKtZs6ZCQ0PNurYkqWHDhrme5+DBgxbPt2DBAknSiRMnFBcXp2HDhpkCjyT5+fnJxcVF3377LQEExR4BBCjmpk6dqn379mnixIk5xgBI0tdff6233npLf/zxhypUqKBGjRqpQoUKkopm7Y+qVavmaM7/+OOPNW/ePJ07d06VK1dW48aN5ejoeM+vlV1iYqKqVauWY3vWtqtXryohIcFUp6Vj8jp3lSpVZG9v/mswaxbLtWvXClzvsmXLTM8vV66cqlSpIg8PD4vHZq/3TlkDX3M7Jmv/zJkzNXPmzBz74+PjC1A1YB0EEKCYq1SpkmbMmKHg4GAtW7bMbN+ff/6p4OBgPf7441qxYoWppeK9997T119/fddzp6enmz3OzwDGgwcPasKECQoKCtKQIUNMXRT//ve/87XeRUFUqlRJp0+fzrH9woULkqQqVaqYruHSpUuqUaOG6ZhLly7d9dyXL19WWlqaWQjJ+uNdpUqVAtfbsGHDPKfp5perq6skKSEhwWzMzh9//KGEhARVqlRJ0u3xP61bt87x/Kz9QHHGLBigBOjUqZO6d++ulStXmj7xS9Kvv/6q5ORkDRs2zKybJCt8ZLWA2Nrm/FF3cXFRXFyc2bYffvjhrrX8+OOPysjI0OjRo01/HNPT0/Xdd99JkmkGSVHw8/PT33//nSPYfPzxxypXrpy8vb318MMPy87OTp9//rnZMdkfZ9e6dWulp6frk08+yXFuSTm6fYyU9dq7du0y2z5//ny9+eabevDBB1W1alWdOXNGzZs3N315enpq7ty5Onz4sDXKBgqEFhCghHjjjTf0/fff6+LFi6ZtTZs2lb29vUJDQzV48GClpKRo69at2rNnj6T/tWhkfaLetm2bWrRoodq1aysgIEDbt2+Xt7e36tWrpw8//NBia0N23t7ekqR//etf6tOnj65evaqNGzfq6NGjptd0cXHJ93V99tlnpinDd3rmmWf09NNPa9OmTRo5cqRGjx6t2rVr64svvlBUVJRGjhwpV1dXubq6qk+fPpo3b55SU1PVuHFj7dy50zQOxlL4kqQOHTqoTZs2mj59uuLj4+Xl5aX9+/dr1apV6t27t1XX5WjcuLGefPJJhYWFKSkpSU2bNtU333yjnTt3asGCBbKzs9PYsWM1bdo02dnZ6bHHHtPVq1e1dOlSnT9/PsdYIaA4IoAAJUTlypU1Y8YMjRw50rStTp06mjt3rsLDw/Xqq6+qUqVK8vHx0YYNG9S/f38dPHhQjRo1UpcuXfTRRx9p4sSJeuaZZzRjxgxNmjRJaWlpCg0Nlb29vbp27apx48Zp6tSpedbRpk0bTZs2TWvXrtWnn36qatWqqU2bNgoPD1dwcLBiY2PVsWPHfF/Xe++9Z3F7p06dVKtWLW3YsEFz587VokWLdP36dT344IOaPXu2nnnmGdOxb7zxhpydnbVmzRpdv35djzzyiGn2kLOzs8Xz29jYaMWKFVq0aJHWr1+vhIQE1apVS2PHjjXNprGm0NBQhYeHa8OGDbp8+bLq1aunBQsWmAbb9u3bVxUqVNDq1asVGRkpZ2dntWrVSmFhYapdu7aVqwfuziaTO1QBKMGuXLmivXv3yt/f32zcxjvvvKOtW7cW+3vNAGUVLSAASjQnJyfNnj1bTZo00YABA+Ts7KwffvhBGzZsMC1UBqD4oQUEQIl35MgRLViwQIcOHdKtW7f0wAMP6Pnnn1e/fv1YERQopgggAADAcEzDBQAAhiOAAAAAwxFAAACA4QggAADAcAQQAABgOAIIAAAwHAEEAAAYjgACAAAMRwABAACG+/8AuJ5IHDoBcMwAAAAASUVORK5CYII=",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "#view distribution of log base e for price using histogram\n",
+ "sns.set(style = 'white')\n",
+ "fig, ax = plt.subplots(figsize = (6,6))\n",
+ "sns.histplot(data = df, x = 'log_price', palette = 'Dark')\n",
+ "ax.set_xlabel('Natural Log of Price')\n",
+ "ax.set_ylabel('Count')\n",
+ "ax.set_title('Distribution of Natural Log of Price')\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Upon applying the log transformation, we observed that the distribution of house prices became more symmetrical and closer to a normal distribution as shown in the above histogram."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "**Visualizing and Transforming Numeric Features**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Before the predictive model, we have to understand the distribution of numeric features in the dataset to identify any skewness or outliers. Here, we plotted histograms for each feature to provide the spread and shape of the data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAJICAYAAACaHhuvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACH4UlEQVR4nO3deVhV1f4/8PdhRhGnGLyaaeoBUSYRoYwUFO06XdHMNMxZnDAzZ03zOpaIioimonnLAafMuYuWX61MgWuWCpkDOAKKCKjAEVi/P/yx8xxADnBGeL+eh0dYe+21P2e79j6fs/ba+8iEEAJEREREJDHRdwBEREREhoYJEhEREZEKJkhEREREKpggEREREalggkRERESkggkSERERkQomSEREREQqmCARERERqWCCREQGhc+uJeJxYAiYIGlRQEAAZs6caXRtE1WUJvpjdnY2ZsyYgfj4eKlsyJAhGDJkSFXDIzJoR44cgb+/P1xdXTFv3jxcvXoVgwYNqnA7M2fOREBAgPR3RY9LHm/KzPQdABERACQmJmL//v3o16+fvkMh0qkFCxagWbNmWLZsGRwcHHDw4EGcP3++yu1GRkbCxsZG7frz58+v8jarEyZIREREevTo0SN07NgRPj4+Gm3XxcWlQvVbtmyp0e0bO15i07Jnz55h0aJF8Pb2hre3N2bMmIGHDx9Ky+Pj4xEcHAx3d3d06NChxHIASEpKwvDhw+Hp6Ql/f38cOHCgxHacnJwQGRmJ/v37w8vLC1FRUQCA5ORkTJo0CR07doSHhweGDBmChIQEpXVzcnKwdOlSdO3aFa6urujVqxf27NmjVCcgIACRkZFYunQpfHx84OnpiU8++QRPnjzBhg0b8Pbbb8PLywuhoaHIzMyU1rt06RKGDh0KLy8veHp6YtiwYbhw4UKV9ysZnvL6+u7du9GvXz94eHjAzc0N//rXv3DkyBEAwNmzZ/Hhhx8CAD788EOlYX4hBDZu3IjOnTvDzc0NAwcOxB9//CEtX7NmDQIDAxEZGQkfHx907doVmZmZKCwsxLZt29C7d2+4ubmhc+fOCAsLQ35+vlLcP//8MwYPHgwvLy/4+Pjgk08+wb1796Tl+/btg6urKxISEtC/f3+4urqie/fu+OGHH3D9+nUMHToU7u7uCAwMxOHDh6X1ioqKsHr1agQEBKBt27YICAhAeHg4nj17ptkdT3pV3jnu2LFj6NOnD9zc3NC3b1+cP38eLi4u2LdvH86ePQsnJycAwNq1a+Hk5ISZM2ciMjISwPPz+po1ayod24uX2Lp3744JEyaUqDNgwACMGTMGQMlLbE5OTti2bRvmzJmDDh06wNPTE5MmTcKDBw+U2oiOjkaXLl3g5uaG999/Hz/88AOcnJxw9uzZSsduCJggadnRo0dx8eJFLFu2DNOnT8fJkycxfvx4AEBcXByGDRsGKysrrFq1CrNnz8a5c+fw4YcfIi8vDwCQlpaG4OBgZGVlYfny5fjoo48QFhaGtLS0Ettat24dunfvjvDwcHTp0gVXr15Fv379cOvWLcydOxdhYWGQyWQYOnQozp07BwDIy8vD4MGDceDAAYwYMQJRUVHw8vLCnDlzsH79eqX2t2zZgrt372LlypUYO3YsDh06hP79++Pnn3/GwoULERoaihMnTiAiIgIA8PjxY4waNQr169dHREQEVq5cidzcXIwcORI5OTna3O2kBy/r69u2bcO8efPQpUsXfPnll1i+fDnMzc0xbdo03L17F23atMG8efMAAPPmzVMa6k9ISEBsbCw+/fRTfP7550hLS8PYsWNRUFAg1bl79y5iY2MRHh6OyZMno379+pg3bx6WLFmCgIAArFu3Dh988AG++eYbjB8/XpoA+91332HEiBFwcHBAeHg4Zs2ahfPnz2PgwIHIyMiQ2i8oKMCUKVPw/vvvIyoqCpaWlpg6dSrGjh2Lzp07Y/Xq1bCzs8OMGTOQmpoKANi4cSO2bduGCRMmYPPmzRg0aBA2bdpU4rgi41XeOe7EiRP46KOP0KpVK0RGRqJbt24YN24cioqKAABt2rRBTEwMAODdd99FTEwMQkND8e677wIAYmJiMGDAAI3E+q9//QunTp3C48ePpbKbN2/i999/x7/+9a8y11u5ciWKiooQHh4uHddLliyRlkdGRiIsLAz//Oc/ERUVBXd3d3z88ccaiVnvBGmNv7+/8PHxETk5OVJZbGyskMvl4vTp02LgwIGiV69eoqCgQFp+/fp10bp1a/HNN98IIYRYtmyZcHd3Fw8ePJDq/Pbbb0Iul4sZM2ZIZXK5XLz//vtK2//oo49Ehw4dRHZ2tlT27Nkz0b17d/Huu+8KIYTYtm2bkMvlIj4+Xmnd2bNnC1dXV5GZmSm9Fj8/P/Hs2TOpTvfu3YWnp6dS+yEhIaJPnz5CCCHOnz9fou2UlBTx+eefi7t376q5F8kYlNfXly5dKr744guldS5evCjkcrk4ePCgEEKIX3/9VcjlcvHrr79KdYKDg4Wbm5vUD4UQYteuXUIul4vExEQhhBARERFCLpeLn3/+Warz119/CblcLqKiopS2uX//fiGXy8XJkydFYWGh6Nixoxg2bJhSnZSUFNGmTRsp3r179wq5XC62b98u1Tl06JCQy+Vi1apVUtkff/wh5HK5iI2NFUIIMWLEiBJtf/311+Lbb799+c4ko1HeOS4oKEj069dPaZ2oqCghl8vF3r17pTK5XC4iIiKkv4v7dEXNmDFD+Pv7S3/7+/tL7xO3bt0STk5OYt++fdLyyMhI4enpKXJzc4UQz4+34OBgpbgGDRqktI2ZM2cKDw8PIYQQT548EW5ubmLhwoVKdT799NMSx7Ix4giSlnXq1ElpklxAQADMzc3xyy+/4MKFC+jUqROEECgoKEBBQQFeffVVtGjRAj///DOA55+ePTw80LBhQ6kNd3d3/OMf/yixLblcrvT3uXPn4O/vjzp16khlZmZm6NmzJ/744w88efIE586dQ+PGjeHl5aW0bp8+fZCfn680VOzm5gYzs7+nrdnZ2eH1119Xar9evXrS6FCrVq3QoEEDjBs3DvPnz8cPP/wAOzs7TJ8+HY0aNarQfiTD97K+PnPmTEybNg05OTn4448/cPDgQWzbtg0Ayr3k1LJlS9SrV0/6u0mTJgBQYhTyxf5fPELau3dvpTo9e/aEqakpzp49ixs3buD+/fsl6jRt2hSenp4lLg94enpKv7/yyisAAA8PD6msOMbs7GwAgI+PD3755RcMHjwYW7ZswbVr1xAcHIy+ffu+9PWS8XjZOa5evXq4dOkSunTporROnz599BJrkyZN4OXlpXQZ+PDhw+jevTusrKzKXO/FPg4Ajo6OyM3NBQD89ttvyMvLwzvvvKNUp1evXpoLXI+YIGlZ8Ym0mImJCerVq4fs7GwUFRVh48aNaNOmjdLPlStXkJ6eDgDIyspCgwYNSrRrZ2dX7raysrJKlBXXE0Lg8ePHL60D/H2yB1Dq3RDW1talvWwAQO3atbFt2zZ06tQJR44cwbhx4/DGG29g3rx5JeaBkPF7WV+/efMmhg0bBm9vbwwaNAgbN26UEiNRzvNeatWqVaJdANJlitK2n5WVBaDkcWJmZob69esjJycHjx49KjXu4jLVBKy0/v+yN5ZRo0Zh3rx5yMvLw+eff44ePXqgd+/eOHPmTJnrkHF52Tmu+Nypev52cHDQR6gAgL59++LMmTPIzMxEYmIirl279tLLa0DJc7yJiYl0zBbPMVR9jaUdU8aId7Fp2YsJBgAUFhYiMzMTNjY2kMlkGDZsGHr27FliveJOWb9+/RIT4gBIJ/eXqVu3bqnr3r9/X2q7bt26SElJeWmdqnj99dexfPlyFBYW4vfff8d3332HHTt2oEmTJtLEQKoeyurr9evXx5gxY2Bubo5du3bBxcUFZmZmuHr1aqk3HGhC3bp1ATzvx8UjTsDz0arimIpHfMo6Rqra901MTPDBBx/ggw8+QEZGBv7v//4P69evR2hoKH755RdYWFhUqX0yDGWd4+zt7WFiYlKif6lz7taWd955BwsXLkRsbCxSUlLQqFEjdOjQodLtOTo6AnieKL3++utSueqNRsaKI0ha9ssvvyhNJv3+++9RUFCAt99+Gy4uLrh+/TpcXV2ln+LJfMXD+76+vjh//rzSpOyrV6/i1q1b5W7b29sbP/74o9In4cLCQhw+fBiurq6wsLCAt7c37ty5U+LOtgMHDsDc3Bxubm6Vfu3Hjh2Dr68v7t+/D1NTU3h6euKzzz6Dra2tNJGVqo+y+nrr1q1x48YNvPvuu0qXaU+dOgXg75EgU1NTjcVSfNI/ePCgUvnhw4dRWFgILy8vNG/eHHZ2diXq3Lp1C7/99hvatWtXpRjef/99LFq0CADQsGFD9OvXDx988AFycnKUJsqS8XrZOe7hw4fw9PTE999/rzTa+eOPP5bbbvEoqabVqVMH/v7+OHHiBI4dO4bevXtXaVvOzs6oU6cO/vvf/yqVf//991UN1SBwBEnLHjx4gNDQUAwZMgTJyckIDw9Hx44d8cYbb2DKlCkYM2YMPvnkE/Tp0weFhYXYvHkzLly4gHHjxgEAhg4dij179mDkyJEIDQ1FYWEhVq1aBXNz83K3PXHiRJw6dQoffvghxowZAwsLC3zzzTe4desWNm3aBADo168ftm/fjokTJ2LSpEl49dVX8cMPP2Dv3r2YOHEibG1tK/3a27Vrh6KiIkyYMAFjxoxB7dq1cfToUeTk5KBbt26VbpcMU1l9/Z///CfCwsKwbds2ODo6wtbWFj/99BO2bt0KANJ8huK5bCdPnkTdunXh7Oxc6VhatmyJoKAgREZGIi8vDz4+PkhMTJQeBeDn5wcTExNMmTIFs2bNwscff4y+ffsiMzMTkZGRqFu3LoYPH16l/eHt7Y3NmzfjlVdegaenJ9LS0rBlyxZ06NCh1MvmZHzKO8f16NEDw4YNw/jx4zFo0CDcvHkTq1evLrfd4vPuoUOH4O7ujldffVVjMfft2xcTJkxAYWFhledD2djYYNSoUYiIiIC1tTU6dOiAc+fOYceOHQC0l+jpChMkLXvvvfeQl5eHCRMmwMLCAr1798a0adMgk8nw1ltvITo6GpGRkZg0aRLMzc3Rpk0bbNmyRZoYV79+fezYsQOLFy/GzJkzUbt2bYwaNUp6fszLtGrVCtu3b0d4eDhmz54NmUwGNzc3/Oc//0H79u0BPL+U9/XXX2PFihWIiIjA48eP8frrr2Px4sXSraaVZW9vj02bNmH16tWYM2cOcnNz0apVK6xZswa+vr5VapsMz8v6elRUlNSHLSws0LJlS6xbtw5LlixBfHw8hgwZglatWqFXr17Ytm0bTp8+jUOHDlUpnsWLF+O1117D3r17ER0dDXt7ewwZMgQTJkyQTtz9+vVD7dq18eWXX2LChAmwsbGBn58fpkyZUuo8v4r46KOPYGFhgb1792Lt2rWoU6cOAgIC8Mknn1SpXTIc6pzjoqOjsXz5ckyYMAGvvfYaZsyYgblz57603W7duuG7777DzJkz8e677+Kzzz7TWMx+fn6oW7cuHB0d0apVqyq3FxISgqKiIsTExCA6Ohru7u6YOnUqli5dWmL+oLGRifJmSBIREZFG3L59G126dMHSpUuN/mt1CgoKcOjQIfj4+Cjdmbxt2zYsWrQIZ8+erdJVCH3jCBIREZGBEkKgsLCw3HqmpqaQyWQ6iOhvZmZm2LhxI7Zu3Ypx48ahfv36SEpKwurVq9G3b1+jTo4AJkhEREQG69tvv8WsWbPKraevEan169cjPDwcn332GbKzs/GPf/wDw4YNQ0hIiM5j0TReYiMiIjJQmZmZuH37drn1mjRpUuVHU5AyJkhEREREKip0D96jR48wb948vP3222jXrh0GDRqE+Ph4aXliYiKCg4Ph4eGBzp07Izo6Wmn9oqIiREREwM/PD+7u7hgxYkSJhxRqog0iIiKiqqhQgjRlyhRcuHAB4eHh2LNnD9q0aYORI0fi2rVryMzMxPDhw9GsWTPs3bsXoaGhWL16Nfbu3SutHxUVhZ07d2LRokWIiYmBTCbD6NGjoVAoAEAjbRARERFVldqX2FJSUtCtWzfs2LFDesKsEALdu3dHz549YWVlhW3btuGHH36QnpQbHh6O//73vzh27BgUCgV8fX0xbdo0DBo0CMDzrybw8/PDkiVL0LNnT3z55ZdVbqMy2rdvD4VCUeXnnpD+3b9/HxYWFkojm1QS+3z1oc0+HxUVhTNnzuDrr7+WyhITE7F48WJcvHgR9erVw5AhQzBy5EhpeVFRESIjI7F7925kZ2fDy8sL8+fPx2uvvabRNiqC/b360OU5Xu0RpPr162PDhg1o27atVCaTySCEQFZWFuLj4+Ht7a30be++vr64ceMGMjIykJSUhCdPnig9INDW1hYuLi6Ii4sDAI20URn5+fkoKCiAEAL5+fnlfnlmdWbs+6CgoIBfhKuG4j6vT4bU1wwllsrEoa0+/9VXXyEiIkKpzFivFLzY3w3l/9oYGcK+0+U5Xu3b/G1tbdGpUyelsqNHj+LmzZt46623sHLlSsjlcqXl9vb2AIC7d+9K37314sOkiuvcu3cPAJCamlrlNirD3t4eQgjs3r0bycnJaNas2Uu/pb46y83NNep90KtXL50/C8QYFR9XJ06c0FsMT58+RWJiIlq3bq33J+4aSiyViaNLly4ajSEtLQ1z5sxBQkICmjdvrrRs165dsLCwwGeffQYzMzO0aNECKSkp2LhxI/r37w+FQoHNmzdj2rRp0vvFypUr4efnh9jYWPTs2VMjbVTUi/3dUP6vjZEh7DtN9/eXqfRzkBISEjB79mx06dIFAQEBWLp0aYlvp7a0tATwPHsv/r6l0upkZWUBAPLy8qrcRmUpFAokJycDgPRvTWas+0ChUEh9hogq7tKlS6hbty4OHDiAtWvX4s6dO9Kyskb5v/zyS2RkZODOnTsvHeXv2bOnRtog0oVKJUjHjx/H1KlT4e7ujvDwcACAlZVVieHP4mGwWrVqwcrKCsDzN7Di34vrFI9UaKKNyrKwsECzZs2URk8qMhJRXYZrjX0ESTV5JsMlk8kqfJyR9gUEBCAgIKDUZZoY5dfXlQKiiqpwgvTNN99g8eLFCAwMRFhYmPSG5OjoiPT0dKW6xX87ODhI13/T09PRtGlTpTrF39qtiTYqq/hkDTz/AtdatWqhqEjAxKT8k7e69YxJ8T4wNnyzNTxlHR/W1tZwcXEptx4ZDk2M8uvrSoEQAk+fPpXaL/5XHTKZDBaWljBV89vpC4uKoKiG85wqs+80TQihs/N8hRKk7du3Y+HChRgyZAhmz54tfSM2AHh7e2Pnzp0oLCyEqakpAODMmTNo3rw5GjZsiDp16sDGxgZnz56Vkpvs7GxcvnwZwcHBGmtDk0xMZAjbloDbaTll1mniUAdTP/DS+LaJqgseR9WHMV8pUCgUSExMlP6uyDSC4mS+vH4M/N2Xb9y4oddEQpv0OQVDl9Mo1E6Qbty4gSVLliAwMBAhISHIyMiQlllZWaF///7YtGkT5syZg1GjRuH333/H1q1bsWDBAgDPPw0EBwcjLCwMDRo0QOPGjbF8+XI4OjoiMDAQADTShqbdTsvBtTtVm99EVNPxOKoejPlKgYWFBVq3bl2paQTFIxYV6cfNmzevliNI+p6CoctpFGonSN9//z2ePXuG2NhYxMbGKi0LCgrCsmXLsGnTJixevBhBQUGws7PD9OnTERQUJNWbNGkSCgoKMHfuXOTl5cHb2xvR0dHSC27YsGGV2yAiIu0w5isFMplMadqAtqcRGOMcTnXpcwqGLqdRqJ0gjR07FmPHjn1pHTc3N8TExJS53NTUFNOmTcO0adO02gYREWledb1SQFSaSt/mT0RENYsmRvl5pYCMBRMkIiIq1bJly0qU8UoB1RQV+rJaIiIiopqACRIRERGRCiZIRERERCqYIBERERGpYIJEREQ1VlFR9XqYI2kO72IjIqIaS52vwmnnbI8Pe7iUuZyqJyZIRERUo5X3FSJN7G10GA0ZCl5iIyIiIlLBBImIiIhIBRMkIiIiIhVMkIiIiIhUMEEiIiIiUsEEiYiIiEgFEyQiIiIiFUyQiIiIiFQwQSIiIiJSwQSJqIru3LkDJyenEj+7d+8GACQmJiI4OBgeHh7o3LkzoqOjldYvKipCREQE/Pz84O7ujhEjRiAlJUWpTnltEBGRZvGrRoiq6M8//4SlpSWOHz8OmUwmldepUweZmZkYPnw4unbtigULFuC3337DggULUK9ePfTv3x8AEBUVhZ07d2Lp0qVwcHDA8uXLMXr0aBw6dAgWFhZqtUFERJrFBImoiq5cuYLmzZvD3t6+xLKtW7fCwsICn332GczMzNCiRQukpKRg48aN6N+/PxQKBTZv3oxp06ahU6dOAICVK1fCz88PsbGx6NmzJ3bt2vXSNoiISPN4iY2oiv7880+0bNmy1GXx8fHw9vaGmdnfn0V8fX1x48YNZGRkICkpCU+ePIGvr6+03NbWFi4uLoiLi1OrDSIi0jwmSERVdOXKFWRkZGDw4MF48803MWjQIJw+fRoAkJqaCkdHR6X6xSNNd+/eRWpqKgCgUaNGJercu3dPrTaIiEjzeImNqAoUCgWSk5NhbW2N6dOno1atWjhw4ABGjx6NLVu2IC8vDxYWFkrrWFpaAgDy8/ORm5sLAKXWycrKAoBy26gsIQSePn1a6fXVIZPJYG1trXb93NxcCCG0GFHZ233xX32pTBxCCKW5b0SkGUyQiKrAwsICcXFxMDMzk5KYtm3b4tq1a4iOjoaVlRUUCoXSOsVJTa1atWBlZQXgeaJV/HtxneLEorw2KkuhUCAxMbHS66vD2toaLi4uate/ceOGXpOU5ORkvW37RRWJQ6FQSAkzEWkOEySiKiotSZHL5fjpp5/g6OiI9PR0pWXFfzs4OKCgoEAqa9q0qVIdZ2dnACi3jcqysLBA69atK72+Oio6stG8eXO9jSAlJyejWbNmFRrxMoQ4VEcXiUgzmCARVUFSUhIGDRqEjRs3on379lL5xYsX0bJlS7Ru3Ro7d+5EYWEhTE1NAQBnzpxB8+bN0bBhQ9SpUwc2NjY4e/aslCBlZ2fj8uXLCA4OBgB4e3u/tI3KkslkVRqB0gZ9JifF2zeEfVKROHh5jUg7OEmbqArkcjlatWqFBQsWID4+HteuXcPSpUvx22+/YezYsejfvz8eP36MOXPm4OrVq9i3bx+2bt2KkJAQAM8//QcHByMsLAwnTpxAUlISPv74Yzg6OiIwMBAAym1DH4qKdD/KQ0SkSxxBIqoCExMTrF+/HmFhYZg8eTKys7Ph4uKCLVu2wMnJCQCwadMmLF68GEFBQbCzs8P06dMRFBQktTFp0iQUFBRg7ty5yMvLg7e3N6Kjo6VLJw0bNiy3DV0zMZEhbFsCbqflvLReO2d7fNhD/TlIRESGggkSURU1aNAAS5YsKXO5m5sbYmJiylxuamqKadOmYdq0aZVuQx9up+Xg2p2sl9ZpYm+jo2iIiDSLl9iIiIiIVDBBIiIJ5xYRET3HS2xEJFFnbhHnFRFRTcAEiYiUlDe3iPOKiKgm4CU2IiIiIhVMkIiIiIhUMEEiIiIiUsEEiYiIiEgFEyQiIiIiFUyQiIiIiFQwQSIiIiJSwQSJiPSuXh3LCj3Fm0/8JiJt44MiiUjvbKzN1XqKNwA0caiDqR946SgyooopTvZNTGTl1lW3HukHEyQiMhjlPcWbyNCpm+wz0Td8TJCIiIg0jMm+8eMcJCIiIiIVTJCIiIiIVDBBIiIiIlLBBImIiIhIBRMkIiIiIhVMkIiIiIhUMEEiIqNSkadu84nbRFRZRvscpKKiIkRGRmL37t3Izs6Gl5cX5s+fj9dee02ncVTkqakAn5xKlWMo/d0Q8EF8NQP7POmb0SZIUVFR2LlzJ5YuXQoHBwcsX74co0ePxqFDh2BhYaGzOPgVCaQLhtLfDQkfxFe9sc+TvhnlJTaFQoHNmzcjNDQUnTp1grOzM1auXIm0tDTExsbqJabik/XLfspLoIhKY4j9nUib2OfJEBhlgpSUlIQnT57A19dXKrO1tYWLiwvi4uL0GBmR5rG/a59MJoO5ubm+w6D/ryb0ec6lM3xGeYktNTUVANCoUSOlcnt7e9y7d08fIRFpDft75VRkfqC1tTVcXNqgoOCZDiKj8tSEPs+5dIbPKBOk3NxcAChxHdrS0hJZWRWfk5Ceno7CwkL07NkTz549g7m5OWQyGWQyGbIe56OgsOzsffcvpji6xbzcegBwz1SGLoctIYThfhoQQqCwsBCmpqaQyYxvMnlqaipMTU31HYZGabq/A3/3+YCAAKVyTfd5detqo830X0xxeqc5nuQ+Q2E5n8DNTE1Qy0r906G2juHKHH/s8+V7sb8LIbR6ntd0n7cwN8HRzRWbc2VI/VPTdNnfjTJBsrKyAvD8OnXx7wCQn58Pa2vrCrdnaWkJhUIBExMTWFpaKi2ra2NZxlrK1K0HwKATD5lMBhMTo7zyCgAwMzOrdhM4Nd3fgb/7fGl9URt9Xp9t1rbW/KUzbR3DlTn+2OfL92J/l8lkOjnPa6NNdRlS/9Q0XfZ3o0yQiodd09PT0bRpU6k8PT0dzs7OFW4vPj5eY7ERaZqm+zvAPk+Gjed4MgRGOVTg7OwMGxsbnD17VirLzs7G5cuX0b59ez1GRqR57O9U07DPkyEwyhEkCwsLBAcHIywsDA0aNEDjxo2xfPlyODo6IjAwUN/hEWkU+zvVNOzzZAiMMkECgEmTJqGgoABz585FXl4evL29ER0dXe2uxRMB7O9U87DPk77JhCHfUkVERESkB0Y5B4mIiIhIm5ggEREREalggkRERESkggkSERERkQomSEREREQqmCARERERqWCCRERERKSCCRKAoqIiREREwM/PD+7u7hgxYgRSUlL0HZZWPXr0CPPmzcPbb7+Ndu3aYdCgQUrfV5SYmIjg4GB4eHigc+fOiI6O1mO0ZGzK61+qvv32Wzg5OZX40dRxeOfOnVLb3717d6n1MzMz8cknn8Db2xve3t749NNP8fTp0yrHcfbs2VLjcHJyQpcuXUpdR9v7pqaoief50kRFRWHIkCFKZeWd79XZd5pow+AIEmvWrBFvvPGGOHnypEhMTBQjRowQgYGBIj8/X9+hac3w4cNFnz59RFxcnLh27ZpYuHChcHNzE1evXhUPHz4UPj4+Ys6cOeLq1atiz549wtXVVezZs0ffYZOReFn/Ks3SpUtFcHCwSE9PV/opKCjQSDwnTpwQrq6uIi0tTan93NzcUusHBweLAQMGiIsXL4pffvlF+Pv7i+nTp1c5jvz8/BKv8aeffhIuLi5i165dpa6j7X1TU9TE87yqLVu2CCcnJxEcHCyVqXO+L2/faaINQ1TjE6T8/Hzh6ekptm/fLpVlZWUJNzc3cejQIT1Gpj3JyclCLpeLhIQEqayoqEgEBgaKVatWifXr1ws/Pz/x7NkzafmKFStE9+7d9REuGZny+ldphg8fLhYtWqS1mNatWyf69OmjVt3//e9/Qi6XKyVzp0+fFk5OTiI1NVWjcSkUCtGzZ08xefLkMutoe9/UBDXxPP+i1NRUMXLkSOHh4SHeeecdpQSpvPO9OvtOE20Yohp/iS0pKQlPnjyBr6+vVGZrawsXFxfExcXpMTLtqV+/PjZs2IC2bdtKZTKZDEIIZGVlIT4+Ht7e3jAz+/ur+nx9fXHjxg1kZGToI2QyIuX1r9L8+eefaNmypdZiqkj78fHxsLOzQ4sWLaSyDh06QCaTISEhQaNxbdu2Dffu3cOsWbPKrKPtfVMT1MTz/IsuXbqEunXr4sCBA3B3d1daVt75Xp19p4k2DFGNT5BSU1MBAI0aNVIqt7e3x7179/QRktbZ2tqiU6dOSl/6ePToUdy8eRNvvfUWUlNT4ejoqLSOvb09AODu3bs6jZWMT3n9S9XDhw/x4MEDxMXFoVevXnjrrbcwYcIE3LhxQ2MxXblyBRkZGRg8eDDefPNNDBo0CKdPny61blpaWonzgYWFBerVq6fRc0J+fj7Wr1+PoUOHSseXKl3sm5qgJp7nXxQQEIAVK1bg1VdfLbGsvPO9OvtOE20YohqfIOXm5gJAiW+ItrS0RH5+vj5C0rmEhATMnj0bXbp0QUBAAPLy8krdHwBqzD4hzVHtX6quXLkCADA1NcXnn3+OlStX4unTpxg8eDAePHhQ5e0rFAokJyfj8ePHmDx5MjZs2ABXV1eMHj0aZ86cKVE/Nze31G+M1/Q54bvvvkN+fn6JCbMv0va+qSl4ni9beed7dfadJtowRGblV6nerKysADw/iRb/Djz/T7W2ttZXWDpz/PhxTJ06Fe7u7ggPDwfwfJ8oFAqlesWduFatWjqPkYxXaf1Lla+vL86dO4e6detKZWvXroW/vz/27duHMWPGVCkGCwsLxMXFwczMTDpBt23bFteuXUN0dDTeeOMNpfql9X/g+TGgyf6/f/9+dOvWDfXr1y+zjrb3TU1R08/zL1Pe+V6dfaeJNgxRjR9BKh7yS09PVypPT08vMWRY3XzzzTcIDQ3F22+/jY0bN0od19HRsdT9AQAODg46j5OMU1n9qzQvJgDA85NqkyZNkJaWppFYatWqVeLTq1wuL7X90vq/QqHAo0ePNNb/Hz58iPPnz6NHjx7l1tX2vqkJavJ5vjzlne/V2XeaaMMQ1fgEydnZGTY2Njh79qxUlp2djcuXL6N9+/Z6jEy7tm/fjoULF+KDDz7AqlWrlN48vL29kZCQgMLCQqnszJkzaN68ORo2bKiPcMnIvKx/lVbXx8cHeXl5Utnjx4+RnJyskcnJSUlJ8PT0LPEcposXL5bavre3N1JTU5We0VJ8fmjXrl2V4wGA//3vf5DJZOjQocNL62l739QUNfU8r47yzvfq7DtNtGGQ9H0bnSEIDw8XHTp0EMePH5eez9CtWzeDfj5DVVy/fl20adNGTJgwocSzVbKzs8WDBw+Et7e3mDFjhvjrr7/E3r17haurq9i3b5++QycjUF7/KigoUHoG0d27d4W3t7cIDQ0VV65cEb///rsYNmyY6Nq1a5nPKaqIwsJCMWDAANGrVy8RFxcnrl69KpYsWSLatm0rkpKSSsRTVFQk3n//fREUFCQuXLggzpw5I/z9/cXMmTOrHEuxNWvWiG7dupUo1/W+qUlq2nm+LDNmzFC6zV+d8315+04TbRgiJkji+Unpiy++EL6+vsLDw0OMHj1a3Lp1S99hac26deuEXC4v9WfGjBlCCCEuXLgg3nvvPdG2bVvh7+8vvv76az1HTcaivP5169YtIZfLxd69e6V1Ll++LEaMGCG8vLxEu3btRGhoqLh7967GYsrIyBCzZs0SHTt2FK6urmLgwIEiLi5OCCFKjefBgwciNDRUeHh4CB8fHzF//nyRl5ensXjmz58v3nvvvRLl+tg3NUVNO8+XRTVBEqL88706+04TbRgamRBC6HsUi4iIiMiQ1Pg5SERERESqmCARERERqWCCRERERKSCCRIRERGRCiZIRERERCqYIBERERGpYIJEREREpIIJEhEREZEKJkhEREREKpggEREREalggkRERESkggkSERERkQomSEREREQqmCARERERqWCCRERERKSCCRIRERGRCiZIRERERCqYIBERERGpYIJEREREpIIJEhEREZEKJkhEREREKpggEREREalggkRERESkggkSERERkQomSEREREQqmCARERERqWCCRERERKSCCRIRERGRCiZIRERERCqYIBERERGpYIJEREREpIIJEhEREZEKJkhEREREKpggEREREalggkRERESkggkSERERkQomSEREREQqmCBVc0KIarktqv7Yn8hYse9qjj73JROkauTIkSPw9/eHq6sr5s2bh6tXr2LQoEEVbmfmzJkICAio0DqV3RYRoLm+q459+/bByckJt2/f1kr7VLPo87xb3a1btw7R0dF6276Z3rZMGrdgwQI0a9YMy5Ytg4ODAw4ePIjz58/rZNtHjx7V2bao+tFn3yWqCvZd7Vm1ahUmTpyot+0zQapGHj16hI4dO8LHx0ffoRBVCPsuGSv23eqLl9gMxKVLlzB06FB4eXnB09MTw4YNw4ULF6Tlx44dQ58+feDm5oa+ffvi/PnzcHFxwb59+3D27Fk4OTkBANauXQsnJyfMnDkTkZGRAAAnJyesWbOm0rEVFhZi27Zt6N27N9zc3NC5c2eEhYUhPz8fALBmzRqNbYuMj6H13d27d6Nfv37w8PCAm5sb/vWvf+HIkSMl6v3vf/9D37594erqit69e5eok5OTg6VLl6Jr165wdXVFr169sGfPHmn5p59+Cl9fXxQUFCitt3z5cnTo0AEKhQIAcOXKFYSEhKBdu3Zo164dJkyYgFu3blXoNZF2GFrfBYCYmBh07twZbm5uGDp0KC5fvqy0PC4uDiNHjoS3tzfatm2LgIAArFmzBkVFRVKdI0eOSHH7+vpi6tSpSE9PV2pn9+7d6NmzJ9q2bYvOnTtjzZo1Sn155syZGDlyJHbt2oWuXbvCzc0N77//Pm7cuIEff/wRvXv3hru7OwYMGIDExESltuPj4xEcHAx3d3d06NABM2bMwMOHD6Xl+/btg4uLCy5cuICBAwfC1dUVnTt3xsaNG6U6xfs2MjJS+l3nBOldTk6O8PX1FR999JH46aefxI8//ijee+894eXlJbKzs8Xx48eFXC4XU6ZMEf/3f/8n1q5dK3x8fISTk5PYu3evyMnJEefPnxdyuVzMnj1bnD9/Xty+fVvMnj1byOVycf78eXHv3j2145kxY4bw9/eX/p49e7ZwcXER4eHh4qeffhIbNmwQ7u7uYsSIEaKoqEjcu3ev0tsi42Zoffebb74Rzs7OIjIyUvz666/i2LFjon///sLFxUXcuXNHCCHE3r17hVwuF25ubmLdunXi//7v/8TkyZOFXC4Xp0+fFkIIkZubK3r16iV8fX3Ftm3bxKlTp8S8efOEXC4X69atE0IIERcXJ+RyuTh16pS0/aKiItG5c2fx6aefCiGEuH79uvD09BT9+/cX33//vThy5Ijo3bu36Nixo3jw4IGm/huoEgyt786YMUO0bt1adOzYUXz77bciNjZW/Otf/xJeXl4iIyNDCCFEYmKicHFxEVOmTBGnT58Wp06dEp988omQy+XiwIEDQggh4uPjRevWrcWaNWvEr7/+Kvbv3y86duwogoODpW2tX79eODk5iYULF4rTp0+LDRs2CFdXVzFr1iyleNq1ayd69eolYmNjxcGDB4WXl5fo2rWrCAwMFAcPHhSHDx8WHTt2FD169JDWO3funGjTpo0YOXKk+OGHH8S3334rOnfuLHr27Clyc3OFEM+PQScnJ9G5c2fx1VdfiV9++UVMmTJF6XhS3bf6wATJABR3hPj4eKksJSVFfP755+Lu3bsiKChI9OvXT2mdqKgoIZfLxd69e6UyuVwuIiIipL8jIiKEXC6vcDwvJkh//fWXkMvlIioqSqnO/v37hVwuFydPnqzStsi4GVrfXbp0qfjiiy+Uyi5evCjkcrk4ePCgEOLvBOnLL79Uqte3b18xcOBAIYQQ27ZtK/G6hHj+YcHV1VVkZmaKoqIiERAQIGbOnCktL06aitebMmWKeOONN0ROTo5UJzMzU3h5eYlly5ZV+PWR5hha350xY4aUWBVLT08Xbm5uYsWKFUIIIb799lsxatQoUVhYKNUpLCwUXl5eUlL+5ZdfCg8PD5GXlyfVOXnypFizZo0oKioS2dnZwt3dXcybN09p+7t27RJyuVxcuXJFKZ6rV69KdT799FMhl8vFL7/8IpVFR0cLuVwusrKyhBBCDBw4UPTq1UsUFBRIda5fvy5at24tvvnmGyHE38fgrl27pDr5+fnC1dVV/Pvf/5bKVPetrvESmwFo1aoVGjRogHHjxmH+/Pn44YcfYGdnh+nTp6NevXq4dOkSunTporROnz59dBLbuXPnAAC9e/dWKu/ZsydMTU1x9uxZncRBhsnQ+u7MmTMxbdo05OTk4I8//sDBgwexbds2AMCzZ8+U6v7zn/9U+rtr16747bff8OTJE5w7dw6NGzeGl5dXidjz8/Nx4cIFyGQy9OnTB7GxsdLltEOHDuHVV1+V1vv111/h4+MDKysrFBQUoKCgADY2Nmjfvj1++eUXbe0GUoOh9V0A+Mc//gEPDw/pbzs7O3h4eEh9pW/fvti4cSOePXuGv/76C8ePH8eaNWtQWFgo9W9vb2/k5eWhd+/eWLlyJRISEvDWW29h4sSJkMlkOH/+PHJzcxEQECD1yYKCAukOup9//lnaft26ddGiRQuleAAoxVivXj0AQHZ2NnJzc3HhwgV06tQJQgip7VdffRUtWrRQahsAPD09pd8tLCzQoEEDPH36tOo7UkM4SdsA1K5dG9u2bcO6detw5MgR7Ny5E9bW1ujTpw8mTJgAAGjQoIHSOg4ODjqJLSsrC8DfB0YxMzMz1K9fHzk5OTqJgwyTofXdmzdvYt68efj1119hZmaG119/XZq/IFSep6Lapxs2bAghBB4/foysrCy88sorJdovLsvOzgbw/A0rKioKp06dQufOnXHs2DEMHjxYqv/o0SMcOXKk1DlQqvuFdMvQ+i6AUvtcw4YNce/ePQBAXl4eFi5ciO+++w4FBQVo0qQJPD09YWZmJvVvT09PbNiwAV999RWio6Oxfv162NnZYfTo0Rg6dCgePXoEABgzZkypMbw4V8nGxqbUOtbW1qWWZ2dno6ioCBs3blSaT1TM0tJS6W8rKyulv01MTAzqGVJMkAzE66+/juXLl6OwsBC///47vvvuO+zYsQP29vYwMTHBgwcPlOoXd3Jtq1u3LgDg/v37aNKkiVT+7NkzZGZmon79+jqJgwyXofTdoqIijBkzBubm5ti1axdcXFxgZmaGq1ev4sCBAyXqZ2VlKZ2gHzx4AFNTU9StWxd169ZFSkpKiXXu378PAFK/f+211+Dh4YGjR4/C3NwcmZmZSqMMderUwZtvvonhw4eXaMvMjKdffTOUvlusOPF+0f3796VEbfHixfj++++xatUqvPnmm6hVqxYA4I033lBax8/PD35+fsjNzcWvv/6K//znP1iyZAk8PDxga2sLAAgLC0OzZs1KbK+0JE1dtWvXhkwmw7Bhw9CzZ88Sy8tKrAwVL7EZgGPHjsHX1xf379+HqakpPD098dlnn8HW1hYPHz6Ep6cnvv/+e6W7FH788cdy2zUxqfp/b4cOHQAABw8eVCo/fPgwCgsLpUsJmtgWGR9D6ruZmZm4ceMG3n33Xbi5uUkJyKlTpwBAKQYAOH36tPR7UVERjh07Bnd3d1hZWcHb2xt37txBQkKC0joHDhyAubk53NzcpLI+ffrg1KlTOHToEDw8PJTedDp06ICrV6+idevWcHV1haurK9q2bYuvvvoKsbGxFX6NpDmG1HeLpaSkKCXm9+7dw/nz56VHCCQkJMDHxwddu3aVkqOLFy/i4cOHUpyff/453n33XQghYG1tDX9/f8yYMUNqz93dHebm5khLS5P6pKurK8zNzbFixYoqPUDVxsYGLi4uuH79ulLbrVq1QmRkZIWnZOj7fYUfYQxAu3btUFRUhAkTJmDMmDGoXbs2jh49ipycHHTr1g09evTAsGHDMH78eAwaNAg3b97E6tWry223+JPCoUOH4O7ujldffbXCsbVs2RJBQUGIjIxEXl4efHx8kJiYiMjISPj4+MDPz09j2yLjY0h9t2HDhmjcuDG2bdsGR0dH2Nra4qeffsLWrVsBALm5uUr1V61ahcLCQjRq1Ag7duzAjRs3sGXLFgBAv379sH37dkycOBGTJk3Cq6++ih9++AF79+7FxIkTpfiA5/Pxli5disOHD2POnDlK2xg/fjzef/99hISEYNCgQbC0tERMTAyOHz+OiIiIcl8TaY8h9d1ilpaWGD9+PD7++GMUFhZi9erVqFevHoYOHQoAcHNzw9GjR7Fjxw60aNECSUlJWLduHWQymdS/33jjDWzZsgUzZ85Enz598OzZM2zatAn16tWDr68v6tWrh1GjRmH16tV4/PgxfHx8kJaWhtWrV0Mmk8HZ2bkSe/NvU6ZMwZgxY/DJJ5+gT58+KCwsxObNm3HhwgWMGzeuQm3Z2tri/PnziIuLQ/v27SGTyaoUW4XpbXo4Kblw4YIYMWKE6NChg3B1dRX9+vUT//3vf6Xlv/76q+jfv79o06aN6NGjh3THwcvupkhNTZXWmT9/vtqxqN7mX1BQIKKiokSXLl1EmzZthL+/v1ixYoXSXRKV3RYZP0Pqu4mJiSI4OFh4eHiIDh06iMGDB4tTp06Jd955R0yaNEkI8fcdNCdPnhQ9evQQbdq0EUFBQeLnn39WaisjI0PMnj1b+Pr6irZt24o+ffqI3bt3l7rd8ePHizZt2oiHDx+WWHbx4kUxcuRI4enpKTw8PMR7770njh8/rvZrIu0xpL47Y8YMMWDAAPHVV1+Jjh07Cjc3NxESEiJSUlKkOpmZmWLKlCmiQ4cOwsPDQ/Tq1Uts3bpVfPrpp6Jjx47SnWMHDx4UQUFBwsPDQ3h6eopRo0aJpKQkpe198803Uv9/8803xSeffCI9CqM4nhffB4Qo/Q694uPp1q1bUtkvv/wiBg8eLNzc3ISXl5f48MMPRVxc3EvXEUIIf39/MWPGDOnvzZs3i/bt2wt3d3el2HRFJoQBzYgitd2+fRtdunTB0qVL0a9fP32HQ6Q29l0yVuy7NQsvsdUQQggUFhaWW8/U1FT3w5hEL8G+S8aKfde4MUGqIb799lvMmjWr3Hr8ZESGhn2XjBX7rnHjJbYaIjMzU627E5o0acJb98mgsO+SsWLfNW5MkIiIiIhU8OE1RERERCqYIBERERGp4CRtAO3bt4dCoSjx3UxkfO7fvw8LCwvEx8frOxSDxj5ffbDPl4/9vfrQZX/nCBKA/Px8FBQUKJUJIZCfn29QX5ynK8b82gsKCpCfn6/vMAxefn4+nj17ZpT/xxVhzH1ZXezz5SvtHA/UjP5RnQgh8OzZM531d44gAbC3twcAnDhxQip7+vQpEhMT0bp1a+k7b2oKY37tXbp00XcIRsHe3h75+fk4dOiQ0f0fV4Qx92V1sc+Xr7RzPFAz+kd18vTpU3Tr1g2WlpY62V6FRpAePXqEefPm4e2330a7du0waNAgpWGuxMREBAcHw8PDA507d0Z0dLTS+kVFRYiIiICfnx/c3d0xYsSIEt+YrYk2iIiIiKqiQgnSlClTcOHCBYSHh2PPnj1o06YNRo4ciWvXriEzMxPDhw9Hs2bNsHfvXoSGhmL16tXYu3evtH5UVBR27tyJRYsWISYmBjKZDKNHj4ZCoQAAjbShSebm5ny6KRFRNcbzPJVF7UtsKSkp+Pnnn7Fjxw60a9cOADBnzhycOnUKhw4dgpWVFSwsLPDZZ5/BzMwMLVq0QEpKCjZu3Ij+/ftDoVBg8+bNmDZtGjp16gQAWLlyJfz8/BAbG4uePXti165dVW5DU2QyGVxc2sDMzLTcukVFAiYmPMCo5qhIn+fxQYaK53l6GbUTpPr162PDhg1o27atVCaTySCEQFZWFi5evAhvb2+Ymf3dpK+vL7788ktkZGTgzp07ePLkCXx9faXltra2cHFxQVxcHHr27In4+Pgqt6FJZmamCNuWgNtpOWXWaeJQB1M/8NLodokMnYmJrNxjA+DxQYaP53kqi9oJkq2trTRqU+zo0aO4efMm3nrrLaxcuRJyuVxpefHEuLt37yI1NRUA0KhRoxJ17t27BwBITU2tchuVJYTA06dPpb8VCgWsra1xOy0H1+5klbt+bm5utbkTIjc3V+lfYyKE4HC5jqh7bBAZOvZlKk2l72JLSEjA7Nmz0aVLFwQEBGDp0qWwsLBQqlM80zw/P196sy2tTlbW846Zl5dX5TYqS6FQIDExUfrb2toa9erVU3v9GzduGGVC8TLJycn6DqHCFAqFzu5wICKi6qtSCdLx48cxdepUuLu7Izw8HABgZWVVYqJ08bMKatWqBSsrKwDP38CKfy+uY21trbE2KsvCwgKtW7eW/q7opO/mzZtXqxGk5ORkNGvWrMr7VddUk2ciIqLKqHCC9M0332Dx4sUIDAxEWFiY9Ibk6OiI9PR0pbrFfzs4OEgP6UpPT0fTpk2V6jg7O2usjcqSyWRKz8Go6GUaY0sk1GFtbW10zwbh5TUiItKECt3mv337dixcuBAffPABVq1apfRp3dvbGwkJCSgsLJTKzpw5g+bNm6Nhw4ZwdnaGjY0Nzp49Ky3Pzs7G5cuX0b59e421QURERFRVaidIN27cwJIlSxAYGIiQkBBkZGTg/v37uH//PnJyctC/f388fvwYc+bMwdWrV7Fv3z5s3boVISEhAJ5f+ggODkZYWBhOnDiBpKQkfPzxx3B0dERgYCAAaKQNIiIioqpS+xLb999/j2fPniE2NhaxsbFKy4KCgrBs2TJs2rQJixcvRlBQEOzs7DB9+nQEBQVJ9SZNmoSCggLMnTsXeXl58Pb2RnR0tDQS1bBhwyq3QURERFRVaidIY8eOxdixY19ax83NDTExMWUuNzU1xbRp0zBt2jSttkFERERUFRWag0RERERUEzBBIiIiIlLBBImIiIhIBRMkIiIiIhVMkIiIiIhUMEEiIiIiUsEEiYiIShUVFYUhQ4YolSUmJiI4OBgeHh7o3LkzoqOjlZYXFRUhIiICfn5+cHd3x4gRI5CSkqLxNoi0jQkSEUmKiqrHFy5T1X311VeIiIhQKsvMzMTw4cPRrFkz7N27F6GhoVi9ejX27t0r1YmKisLOnTuxaNEixMTEQCaTYfTo0dIXgGuiDSJdqPCX1RJR9WViIkPYtgTcTssps047Z3t82MNFh1GRLqWlpWHOnDlISEhA8+bNlZbt2rULFhYW+Oyzz2BmZoYWLVogJSUFGzduRP/+/aFQKLB582ZMmzYNnTp1AgCsXLkSfn5+iI2NRc+ePTXSBpEucASJiJTcTsvBtTtZZf6kP3yq7xBJiy5duoS6deviwIEDcHd3V1oWHx8Pb29vmJn9/dna19cXN27cQEZGBpKSkvDkyRP4+vpKy21tbeHi4oK4uDiNtUGkCxxBIiIiSUBAAAICAkpdlpqaCrlcrlRmb28PALh79y5SU1MBAI0aNSpR5969exprozKEEHj6VDm5VygUsLa2VruN3NxcCMHL0PqSm5ur0+0xQSIiIrXk5eWV+GJwS0tLAEB+fr70BlZanaysLI21URkKhQKJiYlKZdbW1qhXr57abdy4cUPnb9KkP0yQiIhILVZWViUmSufn5wMAatWqBSsrKwDPk5Hi34vrFI/UaKKNyrCwsEDr1q2Vyio66bt58+YcQdIjjiARGZk7d+6Uekli0aJFGDBgABITE7F48WJcvHgR9erVw5AhQzBy5EipXlFRESIjI7F7925kZ2fDy8sL8+fPx2uvvSbVKa8NIl1wdHREenq6Ulnx3w4ODigoKJDKmjZtqlTH2dlZY21UhkwmQ61atUqUVURVEjQyPpykTVRFf/75JywtLXH69Gn89NNP0k/v3r11dls0kS54e3sjISEBhYWFUtmZM2fQvHlzNGzYEM7OzrCxscHZs2el5dnZ2bh8+TLat2+vsTaIdIEJElEVXblyBc2bN4e9vT3s7OykHysrK6Vbmlu0aIH+/ftj2LBh2LhxIwBItzSHhoaiU6dOcHZ2xsqVK5GWlobY2FgAKLcNIl3p378/Hj9+jDlz5uDq1avYt28ftm7dipCQEADPL2MFBwcjLCwMJ06cQFJSEj7++GM4OjoiMDBQY20Q6QITJKIq+vPPP9GyZctSl+nitmgiXWnYsCE2bdqEGzduICgoCJGRkZg+fTqCgoKkOpMmTcK7776LuXPnYtCgQTA1NUV0dLQ06VoTbRDpAucgEVXRlStXYGdnh8GDByM5ORmvvfYaxo8fDz8/P53cFt2wYUOtvC6iZcuWlShzc3NDTExMmeuYmppi2rRpmDZtWpl1NNEGkbYxQSKqAoVCgeTkZFhbW2P69OmoVasWDhw4gNGjR2PLli06uS26Kl68K0Qmk2ltEqq+nh9T/Pqq863ZQogKTzYmovIxQSKqAgsLC8TFxcHMzExKYtq2bYtr164hOjpaJ7dFV0VycrL0u7W1NVxctPMVIvp+fsyLr7O6USgUUsJMRJrDBImoikpLUuRyOX766Sed3BZdFc2aNZMSMW2OQujr+TG5ublITk5Wep3VDeflEGkHEySiKkhKSsKgQYOwceNGpVuQL168iJYtW6J169bYuXMnCgsLYWpqCkD5luY6depItzQXJ0jFtzQHBwcDeH5b9MvaqApra+sqj0Kpux190tXr1AdeXiPSDt7FRlQFcrkcrVq1woIFCxAfH49r165h6dKl+O233zB27Fid3BZNRESaxxEkoiowMTHB+vXrERYWhsmTJyM7OxsuLi7YsmULnJycAACbNm3C4sWLERQUBDs7u1JvaS4oKMDcuXORl5cHb2/vUm+LflkbRESkWUyQiKqoQYMGWLJkSZnLdXFbNBERaRYvsRERERGpYIJEREREpIIJEhFpTb06ligqUu/2fnXrERHpAucgEZHW2Fibw8REhrBtCbidllNmvSYOdTD1Ay8dRkZE9HJMkIhI626n5eDanSx9h0FEpDZeYiMiIiJSwQSJiIiISAUTJCIiIiIVTJCIiIiIVDBBIiIiIlLBBImIiIhIBRMkIiIiIhVMkIiIiF6iIk+EB/hU+OqCD4okIiJ6CXWfCA/wqfDVCRMkIiIiNfCJ8DULL7ERERERqWCCRERERKSCCRIRERGRCiZIRERERCqYIBGR3vE2aiIyNLyLjYj0jrdRE5GhYYJERAaDt1GTsSseDTUxkZVbV916pB9GmyAVFRUhMjISu3fvRnZ2Nry8vDB//ny89tpr+g6NSOPY36mmMdY+r+5oKEdCDZ/RzkGKiorCzp07sWjRIsTExEAmk2H06NFQKBT6Do1I49jfqaYx9j5fPBpa1k95l5JJ/4wyQVIoFNi8eTNCQ0PRqVMnODs7Y+XKlUhLS0NsbKy+wyPSKPZ3qmnY58kQGGWClJSUhCdPnsDX11cqs7W1hYuLC+Li4vQYGZHmsb9XnkzG+R3GiH2eDIFRJkipqakAgEaNGimV29vb4969e/oIiUhr2N+VVeSRABaWlrC1tWWiZGRqQp+vSD/mYy30wygnaefm5gIALCwslMotLS2RlVXxO2DS09NRWFiIgIAAqUwIARMTE2Q9zkdBYdmdM83cBF0OW5S5vDRCGHZnF0KgsLAQpqamRvfGkpqaClNTU32HoVGa7u/A8z5fUFCAnj17Kv0fy2Sycvv87l9McXSLebn1KlK3Im2m/2KK0zvN8ST3GQpf8sZhZmqCWlYVO8UZ+rFZGvb58pV2jgfUP89ro8+zH1ecEAIZGRkwM9NN6mKUCZKVlRWA59epi38HgPz8fFhbW1e4PUtLSygUihJvFABQ18ayitGWZOhJh0wmg4mJUQ4uwszMrMRJ1dhpur8Dz/t8Wf/P6vb5ihwb2miztrW52nXVZejHZmnY58tX2jkeqPh5Xht9nv1YfTKZDObm5jrr70aZIBUPu6anp6Np06ZSeXp6OpydnSvcXnx8vMZiI9I0Tfd3gH2eDBvP8WQIjHKYwNnZGTY2Njh79qxUlp2djcuXL6N9+/Z6jIxI89jfqaZhnydDYJQjSBYWFggODkZYWBgaNGiAxo0bY/ny5XB0dERgYKC+wyPSKPZ3qmnY58kQGGWCBACTJk1CQUEB5s6di7y8PHh7eyM6OrraXYsnAtjfqeZhnyd9k4nqOt2diIiIqJKMcg4SERERkTYxQSIiIiJSwQSJiIiISAUTJCIiIiIVTJCIiIiIVDBBIiIiIlLBBImIiIhIBRMkFUVFRYiIiICfnx/c3d0xYsQIpKSk6DssvYiKisKQIUP0HQZpmDH28Tt37sDJyanEz+7duwEAiYmJCA4OhoeHBzp37ozo6Gil9dV5zeW1QdWHMR4D1YnRHM+ClKxZs0a88cYb4uTJkyIxMVGMGDFCBAYGivz8fH2HplNbtmwRTk5OIjg4WN+hkIYZYx8/ceKEcHV1FWlpaSI9PV36yc3NFQ8fPhQ+Pj5izpw54urVq2LPnj3C1dVV7NmzR1q/vNesThtUfRjjMVCdGMvxzATpBfn5+cLT01Ns375dKsvKyhJubm7i0KFDeoxMd1JTU8XIkSOFh4eHeOedd5ggVTPG2sfXrVsn+vTpU+qy9evXCz8/P/Hs2TOpbMWKFaJ79+5CCPVec3ltUPVhrMdAdWIsxzMvsb0gKSkJT548ga+vr1Rma2sLFxcXxMXF6TEy3bl06RLq1q2LAwcOwN3dXd/hkIYZax//888/0bJly1KXxcfHw9vbG2Zmf3+1pK+vL27cuIGMjAy1XnN5bVD1YazHQHViLMczE6QXpKamAgAaNWqkVG5vb4979+7pIySdCwgIwIoVK/Dqq6/qOxTSAmPt41euXEFGRgYGDx6MN998E4MGDcLp06cBPH9Njo6OSvXt7e0BAHfv3lXrNZfXBlUfxnoMVCfGcjwzQXpBbm4uAJT4tmhLS0vk5+frIyQijTLGPq5QKJCcnIzHjx9j8uTJ2LBhA1xdXTF69GicOXMGeXl5pb4eAMjPz1frNZfXBlUfxngMVCfGdDyblV+l5rCysgLw/D+w+Hfg+Q61trbWV1hEGmOMfdzCwgJxcXEwMzOTTnpt27bFtWvXEB0dDSsrKygUCqV1ik+CtWrVUus1l9cGVR/GeAxUJ8Z0PHME6QXFQ3bp6elK5enp6SWG64iMkbH28Vq1apX4RCiXy5GWlgZHR8dSXw8AODg4qPWay2uDqg9jPQaqE2M5npkgvcDZ2Rk2NjY4e/asVJadnY3Lly+jffv2eoyMSDOMsY8nJSXB09MT8fHxSuUXL15Ey5Yt4e3tjYSEBBQWFkrLzpw5g+bNm6Nhw4Zqveby2qDqwxiPgerEqI7nCt3zVgOEh4eLDh06iOPHj0vPV+jWrVuNfD7GjBkzeJt/NWRsfbywsFAMGDBA9OrVS8TFxYmrV6+KJUuWiLZt24qkpCTx4MED4e3tLWbMmCH++usvsXfvXuHq6ir27dsntVHea1anDao+jO0YqE6M6XhmgqSioKBAfPHFF8LX11d4eHiI0aNHi1u3buk7LL1gglQ9GWMfz8jIELNmzRIdO3YUrq6uYuDAgSIuLk5afuHCBfHee++Jtm3bCn9/f/H1118rra/Oay6vDao+jPEYqE6M5XiWCSFEJUfKiIiIiKolzkEiIiIiUsEEiYiIiEgFEyQiIiIiFUyQiIiIiFQwQSIiIiJSwQSJiIiISAUTJNKrqKgoDBkypMLr7d+/Hz169ICrqyt69uyJo0ePaiE6IiKqqZggkd589dVXiIiIqPB63333HWbPno2BAwfi0KFD6NGjB6ZMmYLz589rIUoiIqqJzPQdANU8aWlpmDNnDhISEtC8efMKrSuEwOrVqzF06FAMHToUADBhwgT873//w7lz5+Dp6amNkImIqIbhCBLp3KVLl1C3bl0cOHAA7u7uJZb/+OOP6NevH9zc3BAYGIhVq1ZBoVAAAK5fv447d+6gd+/eSutER0cjJCREJ/ETEVH1xxEk0rmAgAAEBASUuuzUqVP46KOPMGvWLHTs2BE3b97EwoULcePGDaxevRrJyckAgKdPn2LkyJG4fPkymjRpgnHjxpXZJhERUUVxBIkMyvr16/Huu+9i0KBBaNq0Kd566y0sWLAAx44dw+3bt/H48WMAwIwZM9CrVy9s3rwZHTt2xPjx43HmzBk9R09ERNUFR5DIoFy+fBm///47vv32W6ms+PuUr127BnNzcwDAyJEjERQUBABo3bo1Ll++jC1btuCNN97QfdBERFTtMEEig1JUVIRRo0ZJyc+L7OzskJSUBACQy+VKy1q2bImTJ0/qIkQiIqoBeImNDEqrVq1w/fp1vPbaa9JPWloavvjiCzx58gQuLi6oXbs2Lly4oLTelStX0LRpUz1FTURE1Q1HkMigjB49GpMnT8aaNWvQq1cvpKamYu7cufjHP/4BOzs7AMCoUaOwdu1aODg4wM3NDYcPH8bPP/+Mr776Sr/BExFRtcEEiQzKO++8g5UrV+LLL7/El19+ibp168Lf3x/Tpk2T6owfPx7W1tZYuXIl0tLS0KJFC6xZswY+Pj56jJyIiKoTmSieAUtEREREADgHiYiIiKgEJkhEREREKpggEREREalggkRERESkggkSERERkQomSEREREQqmCARERERqWCCRERERKSCCRIRERGRCiZIRERERCqYIBERERGpYIJEREREpIIJEhEREZEKJkhEREREKpggEREREalggkRERESkggkSERERkQomSEREREQqmCARERERqWCCRBBC6DsEIqIag+dc48AEqZoJCAjAzJkz1a5/4sQJzJgxQ4sREVVNRfs0kSE5cuQI/P394erqinnz5uHq1asYNGhQhduZOXMmAgICpL8relwMGTIEQ4YMqfB2K2rixImlxrVjxw44OTmV+Jk3b57WY6osM30HQPr11Vdf6TsEIqJqa8GCBWjWrBmWLVsGBwcHHDx4EOfPn69yu5GRkbCxsVG7/vz586u8zZcpLCzEkiVLEBsbi6CgoBLLExMT0bJlSyxevFipvGHDhlqNqyqYIBEREWnJo0eP0LFjR/j4+Gi0XRcXlwrVb9mypUa3/6KkpCQsXLgQFy9ehJWVVZl13Nzc4OHhobU4NI2X2Kqx27dvY/r06XjrrbfQpk0bvPHGG5g+fToyMzMBPB9yPXfuHM6dOwcnJyecPXtWzxETvVxOTg6WLl2Krl27wtXVFb169cKePXuU6gQEBCAiIgKff/453nzzTbi5uWHkyJG4ceOGUr1vv/0WPXr0gKurK/r06YMzZ87AxcUF+/bt0+VLIgN26dIlDB06FF5eXvD09MSwYcNw4cIFafmxY8fQp08fuLm5oW/fvjh//rzUh86ePQsnJycAwNq1a+Hk5ISZM2ciMjISAODk5IQ1a9ZUOrYXL7F1794dEyZMKFFnwIABGDNmDICSl9icnJywbds2zJkzBx06dICnpycmTZqEBw8eKLURHR2NLl26wM3NDe+//z5++OGHEu8XM2bMQFFREWJiYkodESoqKsKVK1fg7Oxc6derD0yQqqnc3Fx8+OGHuHbtGubPn4/o6GgEBwfj0KFDCA8PB/B8yNXFxQUuLi6IiYlBmzZt9Bw1Udny8vIwePBgHDhwACNGjEBUVBS8vLwwZ84crF+/Xqnuf/7zH1y/fh1Lly7FokWLcPHiRaV5Efv378fMmTPRrl07REVFoXv37hg/fjwKCwt1/bLIQD1+/BijRo1C/fr1ERERgZUrVyI3NxcjR45ETk4OTpw4gY8++gitWrVCZGQkunXrhnHjxqGoqAgA0KZNG8TExAAA3n33XcTExCA0NBTvvvsuACAmJgYDBgzQSKz/+te/cOrUKTx+/Fgqu3nzJn7//Xf861//KnO9lStXoqioCOHh4Zg+fTpOnjyJJUuWSMsjIyMRFhaGf/7zn4iKioK7uzs+/vjjEu18/vnn2LFjR5kJ0I0bN5Cbm4sLFy6ge/fuaNOmDbp37479+/dX/kXrAC+xVVPJyclwdHTEsmXL0LRpUwCAr68v/vjjD5w7dw7A8yHX4mvYxjTsSTXTvn37cOXKFWzfvh1eXl4AAD8/PxQUFCAqKgrvv/8+6tWrBwCwtbVFVFQUTE1NATx/s1izZg0yMzNRv359rF69Gv7+/li0aJHUjrm5OVasWKGX10aG5+rVq3j48CGGDBki9bfXX38dO3fuxOPHj7F27Vq0bdtW6jNvv/02ZDIZVq1aBQCwsbGRzquOjo5KvwOaPef26dMHERERSvN/Dh48iNq1a6NLly5lrieXy7F06VLp799//x3Hjh0DADx9+hQbN27EBx98gKlTpwIA3nrrLeTm5kqJX7HyRoaSkpIAAHfv3sXMmTNhZmaG/fv3Y8aMGVAoFHjvvfcq/qJ1gCNI1VTr1q2xfft2NGnSBLdu3cLp06exefNmXL9+Hc+ePdN3eEQVdu7cOTRu3Fh6syrWp08f5OfnK136cHV1lZIj4O83pdzcXKSkpODu3bt45513lNrp2bOnFqMnY9OqVSs0aNAA48aNw/z58/HDDz/Azs4O06dPR7169XDp0qUSyUefPn30EmuTJk3g5eWFw4cPS2WHDx9G9+7dy5wTBJRM0hwdHZGbmwsA+O2335CXl1fiOOnVq1eF4/Px8cGGDRvw1Vdfwd/fH35+flixYgXefPNNREREGOxjD5ggVWNbtmzBm2++ia5du2LmzJn49ddfYW1tre+wiColKysLr7zySony4rLs7GypTLWfm5g8P9UVFRXh4cOHAErePWNnZ6fReMm41a5dG9u2bUOnTp1w5MgRjBs3Dm+88QbmzZsn9bUGDRoorePg4KCPUAEAffv2xZkzZ5CZmYnExERcu3btpZfXgNKPk+Jkpfg4UX2NpR2D5XnllVfQqVOnEslap06dcP/+/RLzngwFE6Rq6uDBg1i2bBlGjBiBM2fO4Oeff8aGDRvQrFkzfYdGVCl169Yt9UR6//59AED9+vXVaqd4NCkjI0OpXPVvotdffx3Lly/Hr7/+ip07d6Jv376IiYnB7t27YWJiUqI/Pnr0SD+BAnjnnXdgamqK2NhYHDp0CI0aNUKHDh0q3V7xcVKcKBVT/Vsd586dK3W+UX5+PkxNTVG3bt1KxahtTJCqqYSEBNSpUwdjxoyRPgE8efIECQkJ0iRC4O9P1kSGztvbG3fu3EFCQoJS+YEDB2Bubg43Nze12nF0dETTpk0RGxurVP79999rLFYyfseOHYOvry/u378PU1NTeHp64rPPPoOtrS0ePnwIT09PfP/990rn0x9//LHcdrV1zq1Tpw78/f1x4sQJHDt2DL17967StpydnVGnTh3897//VSqvzHFy5swZzJw5EykpKVJZUVERvv/+e7i7u8PCwqLScWoTJ2lXU25ubtixYweWLVsGf39/pKenIzo6Gg8ePFDK1m1tbXH+/HnpFmdDzeSJ+vXrh+3bt2PixImYNGkSXn31Vfzwww/Yu3cvJk6cCFtbW7XakclkmDRpEqZOnYr58+cjMDAQSUlJWLt2LQB+aKDn2rVrh6KiIkyYMAFjxoxB7dq1cfToUeTk5KBbt27o0aMHhg0bhvHjx2PQoEG4efMmVq9eXW67xf300KFDcHd3x6uvvqqxmPv27YsJEyagsLCwyvOhbGxsMGrUKERERMDa2hodOnTAuXPnsGPHDgAVO04GDRqEmJgYjB07FqGhobC2tsa2bdtw5coV/Oc//6lSnNrEM0E1FRQUhAkTJuDo0aMYPXo0IiIi0L59e/z73//Go0ePcPXqVQDABx98AHNzc4wePRqnTp3Sc9REZbO2tsbXX38tPedo3LhxSEhIwOLFixEaGlqhtnr37o1///vfOHPmDMaOHYvDhw9jzpw5AIBatWppI3wyMvb29ti0aRPq1KmDOXPmICQkBJcuXcKaNWvg6+uL9u3bSx86J0yYgJ07d6r1tU3dunWDq6srZs6ciejoaI3G7Ofnh7p168LFxQWtWrWqcnshISGYOHEi9u/fj5CQEMTHx0t3tFXkOLG3t8f27dvRqlUrLFq0CJMnT0ZeXh6++uortGvXrspxaotMGOr0cSIiLTl06BBcXFzw+uuvS2UnT55ESEgIvvvuO6N7oB0Zhtu3b6NLly5YunQp+vXrp+9wqqSgoACHDh2Cj48PGjVqJJVv27YNixYtwtmzZ9UetTVWvMRGRDXOgQMHsHLlSkyePBmNGjVCcnIyIiIi0KFDByZHpDNCCLUeTmpqagqZTKaDiP5mZmaGjRs3YuvWrRg3bhzq16+PpKQkrF69Gn379q32yRHAESQiqoEyMzOxYsUKnDp1Cg8fPsQrr7yC7t27Y9KkSahdu7a+wyMjVdERpH379mHWrFnl1tPXiNStW7cQHh6Os2fPIjs7G//4xz/Qp08fhISEwNzcXOfx6BoTJCIiIj3IzMzE7du3y63XpEkTtR9jQZrDBImIiIhIBe9iIyIiIlLBBImIiIhIBe9iA9C+fXsoFAp+F1M1cP/+fVhYWCA+Pl7foRg09vnqg32+fOzv1Ycu+ztHkPD8+2AKCgo02qYQAvn5+Qb7LcXFqlucBQUFyM/P11FUxqusPm8s/aGYMcWrrVjZ58unjXO8thhTny6my5h12d85goTnT/kEgBMnTmiszadPnyIxMRGtW7c26CfzVrc4u3TposOojFdZfd5Y+kMxY4pXW7Gyz5dPG+d4bTGmPl1MlzHrsr9zBImIiIhIBRMkIiIiIhVMkEhniorUuz6tbj3Sn4r8H/H/k2oanuuqB85BIp0xMZEhbFsCbqfllFmniUMdTP3AS4dRUWWo838J8P+Taiae66oHJkhUqqIiAROT8r8cUd16xW6n5eDanayqhEYGgv+XRGXj8WH8mCBRqfgJiIiIajImSFQmfgIiIqKaipO0iYiIiFQwQSIiIiJSwQSJiIiISAUTJCIiIiIVTJCIiIjKwYc61jy8i42IiKgc6j4ctZ2zPT7s4aKjqEibmCARERGpQZ1HnzSxt9FRNKRtvMRGREREpIIJEhEREZEKJkhEREREKpggEREREalggkSVVq+OJW99JaqB7ty5AycnpxI/u3fvBgAkJiYiODgYHh4e6Ny5M6Kjo5XWLyoqQkREBPz8/ODu7o4RI0YgJSVFqU55bRBpG+9io0qzsTbX2a2vMpkM1tbWkMlklW6DiDTjzz//hKWlJY4fP650TNapUweZmZkYPnw4unbtigULFuC3337DggULUK9ePfTv3x8AEBUVhZ07d2Lp0qVwcHDA8uXLMXr0aBw6dAgWFhZqtUGkbRpPkB49eoTw8HCcPHkSjx8/hpOTEz755BO0b98eADBr1izs27dPaR0HBwecOnUKwPNPFpGRkdi9ezeys7Ph5eWF+fPn47XXXpPqJyYmYvHixbh48SLq1auHIUOGYOTIkZp+KaQmTd76WjwqZWKinAhZW1vDxaVkglVaXSLSritXrqB58+awt7cvsWzr1q2wsLDAZ599BjMzM7Ro0QIpKSnYuHEj+vfvD4VCgc2bN2PatGno1KkTAGDlypXw8/NDbGwsevbsiV27dr20DSJd0HiCNGXKFGRkZCA8PBwNGjTA9u3bMXLkSOzbtw8tWrTAn3/+ibFjxyI4OFhax9TUVPqdnyxqtoqMSjVxqIOpH3jpKDIiKvbnn3+iZcuWpS6Lj4+Ht7c3zMz+fnvx9fXFl19+iYyMDNy5cwdPnjyBr6+vtNzW1hYuLi6Ii4tDz549y22jYcOG2ntxRP+fRhOklJQU/Pzzz9ixYwfatWsHAJgzZw5OnTqFQ4cOYeLEibh69SrGjx8POzu7EuvzkwUVU2dUioj048qVK7Czs8PgwYORnJyM1157DePHj4efnx9SU1Mhl8uV6hePNN29exepqakAgEaNGpWoc+/ePQAot43KJEhCCDx9+rTC6wF/X+LXhtzcXAghlP5+8V9joMuYhRA6m2qh0QSpfv362LBhA9q2bSuVyWQyCCGQlZWF5ORk5Ofno0WLFqWun5SUxE8WOsa5PURUEQqFAsnJybC2tsb06dNRq1YtHDhwAKNHj8aWLVuQl5cHCwsLpXUsLS0BAPn5+dKbaGl1srKefygqr43Kxp2YmFipdcu6xK8JN27cKDWxSE5O1sr2tEkXMSsUCqkvaJtGEyRbW1tp5KfY0aNHcfPmTbz11lu4cuUKZDIZtm7dilOnTsHExASdOnXC5MmTUadOHb19sgCq9umiNIb2KUAmk8HC0hKmJso3LmrzwNeVFz+B6fLTRbE7d+4gICCgRPmiRYswYMCAcufMVed5d2XNKSsN55MZBwsLC8TFxcHMzExKYtq2bYtr164hOjoaVlZWUCgUSusUJzW1atWClZUVgOdvdMW/F9cpHqUpr43Kxt26detKravNc0rz5s1LjCAlJyejWbNmWhu10jRdxqyaOGuTVu9iS0hIwOzZs9GlSxcEBAQgIiICJiYmaNy4MdavX4+UlBR8/vnnuHLlCrZu3aq3TxZA1T5dvIyhfAooToSq45ctvvgJTJefLorxjp6yqTunjPPJjEtpSYpcLsdPP/0ER0dHpKenKy0r/tvBwQEFBQVSWdOmTZXqODs7A0C5bVSGTCardHKlTWUlFNbW1gYZ78voImZdfgDWWoJ0/PhxTJ06Fe7u7ggPDwcAhIaGYtiwYbC1tQXw/ICys7PDwIED8ccff+jtkwVQtU8XpTG0TwHFnao6ftnii5/AdPnpohjv6Ckf55RVH0lJSRg0aBA2btwo3Z0MABcvXkTLli3RunVr7Ny5E4WFhdINOGfOnEHz5s3RsGFD1KlTBzY2Njh79qyUIGVnZ+Py5cvSzTve3t4vbYNIF7SSIH3zzTdYvHgxAgMDERYWJr1pyWQyKTkqVny5LDU1Vbq0putPFsWxaSPzNcZPAcbmxQRUH3OpeEcP1SRyuRytWrXCggULMH/+fNSvXx+7du3Cb7/9hj179uCVV17Bpk2bMGfOHIwaNQq///47tm7digULFgB4/iEmODgYYWFhaNCgARo3bozly5fD0dERgYGBAID+/fu/tA0iXdB4grR9+3YsXLgQQ4YMwezZs2HywpyXTz75BI8ePVJ6Iuoff/wBAGjZsiVeffVVfrIgo2OMd/QApc+7U2funC7v6FGn/ov/GjJtxarreXcmJiZYv349wsLCMHnyZGRnZ8PFxQVbtmyBk5MTAGDTpk1YvHgxgoKCYGdnh+nTpyMoKEhqY9KkSSgoKMDcuXORl5cHb29vREdHSx+mGzZsWG4bRNqm0QTpxo0bWLJkCQIDAxESEoKMjAxpmZWVFXr16oVx48Zh3bp16NmzJ27cuIF///vf6NWrl3RnGz9ZkDEx1jt6imMva97dy+bO6eOOnvIYylw/dWg6Vn3Mu2vQoAGWLFlS5nI3NzfExMSUudzU1BTTpk3DtGnTKt1GdcU7iw2HRhOk77//Hs+ePUNsbCxiY2OVlgUFBWHZsmVYvXo11q9fj/Xr16NOnTro3bs3Jk+eLNXjJwsyJsZ6R09x7Krz7tSZO6fLO3rKY2hz/V5GW7HqY94dVV1FvjWAd3jqh0YTpLFjx2Ls2LEvrdO9e3d07969zOX8ZEHGxhjv6AFePu9OX3PnKps4GNNcP03HypEG48Q7PA2fSflViKgsSUlJ8PT0RHx8vFJ58R093t7eSEhIQGFhobTsxTlzzs7O0ry7YsXz7orvECqvDSIyXsV3eJb1U95jWUh7mCARVcGLd/TEx8fj2rVrWLp0KX777TeMHTsW/fv3x+PHjzFnzhxcvXoV+/btw9atWxESEgJA+Y6eEydOICkpCR9//HGJeXcva4OIiDRPqw+KpMqryDVnXp/WH97RQ0RUPTFBMlD8RnvjwTt6iIiqHyZIBoxPHyYiItIPzkEiIr0rvuVZXRWpS0RUGRxBIiK9U/eWZ4CXlYlIN5ggEZHB4GVlIjIUvMRGREREpIIJEhEREZEKJkg6punJpRWd3EpERETl4xwkHVNnImo7Z3t82EO9b0tXd3JrRdokIiKq6Zgg6UF5E1Gb2NsYRJtEREQ1FS+xEREREalggkRERESkggkSERERkQomSERERAaKX8OjP5ykTURGSyaTwdraGjKZTN+hEGkFv4ZHf5ggEZFRKf5EbWLyPDlycSn78RXF9YiMHb+GR/eYIBGRUVH3EzU/TRNRVTBBIiKjxE/URKRNnKRNREREpIIJEhEREZEKJkhEREREKpggEREREalggkRERESkggkSERERkQqjTZCKiooQEREBPz8/uLu7Y8SIEUhJSdF3WBI+4Zc0ydD7O5Gmsc9XXEW+loRfSVI+o30OUlRUFHbu3ImlS5fCwcEBy5cvx+jRo3Ho0CFYWFjoNJbSntZb3hN+iSrCkPo7kS6wz1ccH6KqWUaZICkUCmzevBnTpk1Dp06dAAArV66En58fYmNj0bNnT53Go+735LRztseHPZg0UcXosr9Xp5HPF7+SRB38WhLDYWjneGPDh6hqhlEmSElJSXjy5Al8fX2lMltbW7i4uCAuLk5jB09FTpjqdMgm9jaaCItqGF31dwCwsLSsNiOf/JJP46XLPs/EmMpilAlSamoqAKBRo0ZK5fb29rh3757GtqPOyZWjQqRtuurvAGBqYlLt+rw6H14qMtrEN1Tt02Wfr4nneU2PrlankecXyYQQRjdT67vvvsP06dORmJgIE5O/55lPnz4d6enp+OqrryrUnqurKwoLC+Ho6KhULpPJkPU4HwWFZe8iS3NT2NQyL7deReqyTfXaNDOVoa6NJV7swqmpqTA1NcUff/zx0nWNiab7O8A+X1bdJ7nPUPiSyaumJjLUtjZHZU6bQggUFhbC1NRUo28k7PPlK6u/A4bf57W57fL6OwCYmZqglpX6YynaTil02d+NcgTJysoKwPPr1MW/A0B+fj6sra0r3J6lpSUUCkWpJ626NpZqtaFuPbap+TZf/H8zMzOrdhM4Nd3fAfb5stS2NlerXmUSHJlMpvRmryns8+V7WX8HjKN/amPb6vb3itD2KJIu+7tRJkjFw67p6elo2rSpVJ6eng5nZ+cKtxcfH6+x2Ig0TdP9HWCfJ8PGczwZAqN8DpKzszNsbGxw9uxZqSw7OxuXL19G+/bt9RgZkeaxv1NNwz5PhsAoR5AsLCwQHByMsLAwNGjQAI0bN8by5cvh6OiIwMBAfYdHpFHs71TTsM+TITDKBAkAJk2ahIKCAsydOxd5eXnw9vZGdHR0tbsWTwSwv1PNwz5P+maUd7ERERERaZNRzkEiIiIi0iYmSEREREQqmCARERERqWCCRERERKSCCRIRERGRCiZIRERERCqYIBERERGpYIJUjhs3bsDT0xP79u0DAAwZMgROTk6l/uzfv7/UNoqKirBp0yZ0794dHh4e6NmzJ3bv3q1U59tvvy21zZSUFJ3FCQABAQEl6k+dOlVanpmZiU8++QTe3t7w9vbGp59+iqdPn6oVo6biLKu+k5MT7t69C6Dq+7M6mjNnDmbOnFmifO/evejduzc8PDzQrVs3bNiwAYWFhdLye/fuYcqUKejYsSO8vb0xcuRI/PXXXy/dVmRkZKn7v6CgwOBivX37NkJCQtCuXTu8+eabWL58uVKb2oxXnTZUVXXfkm48evQI8+bNw9tvv4127dph0KBBSt8JN2vWrBL/h2+//ba0vKioCBEREfDz84O7uztGjBhR4vyVmJiI4OBgeHh4oHPnzoiOjq5SzHfu3Cm1bxW/X5W3PX3ErFWCyqRQKES/fv2EXC4Xe/fuFUIIkZmZKdLT05V+xowZI9555x2Rk5NTajtRUVHC29tbHDlyRKSkpIiYmBjRpk0bsW/fPqnO0qVLRXBwcIm2CwoKdBZnTk6OcHJyEj/++KPSetnZ2VKd4OBgMWDAAHHx4kXxyy+/CH9/fzF9+nSd7k/V+ikpKeLtt98Wn3zyiUb2Z3VTUFAgli1bJuRyuZgxY4bSsgMHDog2bdqIXbt2iZSUFHHkyBHRvn17sWbNGiGEEPn5+aJXr17iww8/FH/88Ye4cuWK+Oijj8Qbb7whMjIyytzmxIkTxbRp00rsf0OLVaFQiG7duomQkBDx559/itjYWNGhQwexevXqcmOtarzqtFGayu5b0q3hw4eLPn36iLi4OHHt2jWxcOFC4ebmJq5evSqEECIoKEiEh4cr/R++2E/XrFkj3njjDXHy5EmRmJgoRowYIQIDA0V+fr4QQoiHDx8KHx8fMWfOHHH16lWxZ88e4erqKvbs2VPpmE+cOCFcXV1FWlqaUly5ublqbU8fMWsTE6SXWLFihRgyZIjSG7qqgwcPChcXF5GUlFRmO2+//bZYt26dUtns2bPF4MGDpb+HDx8uFi1apNc4ExIShFwuF1lZWaUu/9///ifkcrl0gAshxOnTp4WTk5NITU3VWZyqPv30UxEQECCePn0qlVVlf1YnV69eFQMGDBC+vr6ic+fOJd6A33//fTF37lylsrVr14pOnToJIYT4+eefhVwuV/r/zc/PF+7u7mL37t1lbrdbt25iy5YtBh/rwYMHRdu2bZX6/M6dO0W7du2kk7q24lWnjdJUZt+SbiUnJwu5XC4SEhKksqKiIhEYGChWrVolCgoKhKurq4iNjS11/fz8fOHp6Sm2b98ulWVlZQk3Nzdx6NAhIYQQ69evF35+fuLZs2dSnRUrVoju3btXOu5169aJPn36lLqsvO3pK2Zt4iW2MsTFxSEmJgaff/55mXWePn2KL774AkOHDoWTk1OpdYqKirBs2TL07du3xLKsrCzp9z///BMtW7bUW5zFMdjZ2cHW1rbU5fHx8bCzs0OLFi2ksg4dOkAmkyEhIUFncb7o8uXL2L17N+bNmwdra2ul11KZ/VndnDt3Dq1bt8ahQ4fQpEmTEsunTp2KESNGlCgv7putWrXChg0b4ODgoLRcCKHUf1+Um5uLmzdvVnj/6yPW+Ph4tGnTRqnP+/r64vHjx0hKStJqvOq0oaqy+5Z0q379+tiwYQPatm0rlclkMqkvJicnIz8/X+lc+qKkpCQ8efIEvr6+UpmtrS1cXFwQFxcH4Hnf9fb2hpnZ31+p6uvrixs3biAjI6NScb/svFne9vQVszYZ7ZfValN2djamT5+OuXPnolGjRmXW27lzJ548eYJx48aVWcfExARvvPGGUtnt27dx+PBhvP/++wCAhw8f4sGDB4iLi8PXX3+NR48ewd3dHVOnTkXz5s11EicAXLlyBbVq1UJoaCjOnz+PBg0aoF+/fvjwww9hYmKCtLS0EtuxsLBAvXr1cO/ePZ3F+aKIiAh4eXmhU6dOUlll92d1NGjQoJcu9/LyUvo7OzsbO3bswFtvvQUAsLOzU9q3APCf//wH+fn56NixY6lt/vXXXygqKsKxY8fw73//GwqFAh06dMDUqVNhb29vULGmpqbC0dFRqaw4xrt378LNzU1r8arThqrK7lvSLVtb2xJ98ejRo7h58ybeeustXLlyBTKZDFu3bsWpU6dgYmKCTp06YfLkyahTpw5SU1MBoMT50t7eXjrXpqamQi6Xl1gOPO+7DRs2rHDcV65cgZ2dHQYPHozk5GS89tprGD9+PPz8/Mrdnr5i1iYmSKX47LPP4OHhgd69e5dZp7CwEF9//TUGDx6MOnXqqN32/fv3MWbMGDRs2FBKBK5cuQIAMDU1xeeff46nT58iKioKgwcPxsGDB/HKK6/oJM6//voLOTk56NGjByZOnIj4+HiEhYUhKysLH330EXJzc0v9Jm1LS0vk5+eX2a629uf169dx8uRJbNy4Uam8svvT2Ny+fRtdunQpc/lPP/0EOzs7tdt78uQJxo8fj/z8fEyfPr3UOv/973+xcuVKDBkyBM7OzqXWKZ4UXadOHURERODBgwdYtmwZ/Pz8DC7WvLy8EiOmlpaWAICPPvpIp/Gqo7R9Gx4ejg8//BDffvut0igqGY6EhATMnj0bXbp0QUBAACIiImBiYoLGjRtj/fr1SElJweeff44rV65g69atyM3NBYAS51tLS0tpBDIvL6/U5QBeej4ui0KhQHJyMqytrTF9+nTUqlULBw4cwOjRo7Fly5Zyt6ePmLWNCZKK/fv3Iz4+HgcPHnxpvXPnzuHu3bt477331G77+vXrGDNmDJ49e4avv/4adevWBfB8iPHcuXPS3wCwdu1a+Pv7Y9++fRgzZoxO4tyyZQvy8/NhY2MD4PndYk+ePMG6desQGhoKKysrKBSKEuvl5+ejVq1apbapzf154MAB/OMf/1D6RA5Ubn8aIwcHBxw5cqTM5Q0aNFC7rfv37yMkJAS3bt1CdHQ0Xn311RJ1duzYgYULF6JHjx6YNWtWmW31798fXbt2Vdr/X375JQICAjBz5kylO3X0HWtpfbr4RD137ly8+eabpa6n6XjVVdq+bdWqFTp16oQff/wRPXr0qHTbpB3Hjx/H1KlT4e7ujvDwcABAaGgohg0bJiXncrkcdnZ2GDhwIP744w9YWVkBeJ60FP8OPO+bxUnwy/puWefjl7GwsEBcXBzMzMykJKZt27a4du0aoqOjy92ePmLWNiZIKvbu3YuMjAx07txZqXz+/PmIjo7G4cOHATzv9G5ubmqf7BISEjBu3DjY2dnh66+/LjEM+eIJD3jeWZo0aYK0tDSdxWlubg5zc3OlMrlcjqdPnyIrKwuOjo44fvy40nKFQoFHjx6VmPehzTiLnThxAv/85z8hk8lKLKvo/jRG5ubmZc5hqIhr165h1KhRKCgowDfffFPq/K+wsDBs3LgRQ4YMwZw5c0rd5y9S3f+NGzdG/fr1IYSoUsyajtXR0VEacSyWnp4OAHB3d6/y/lUn3opS3bcODg6oV6+edImDDMc333yDxYsXIzAwEGFhYVLiIZPJSoxcFl96Sk1Nld4f0tPT0bRpU6lOenq6NBrq6Ogo9dUXlwMo83xcntKSFLlcjp9++qnc7RU/ZkLXMWsTJ2mrCAsLw5EjR7B//37pBwAmTZqEDRs2SPUSEhKUJqO9zO+//45Ro0ahVatW2L59e4nkaPv27fDx8UFeXp5U9vjxYyQnJ5c5YU7TcRYVFSEgIADr1q1TKv/jjz/wyiuvoH79+vD29kZqaqrScy3Onj0LAGjXrp1O4iyWk5ODv/76q9R1KrM/a6pbt25h6NChqFWrFnbt2lXqG/jy5cuxceNGaR5ZecnRihUr0KNHDwghpLLbt28jMzOzSvtfG7F6e3vj8uXLePz4sVR25swZ1K5du8zLcpqMt6K0tW9J87Zv346FCxfigw8+wKpVq5QuLX3yyScYOXKkUv0//vgDANCyZUs4OzvDxsZGOr8Cz+ewXb58Ge3btwfwvO8mJCQoPVfrzJkzaN68eaXm8iQlJcHT01PpWU0AcPHiRbRs2bLc7ekjZq3T5y10xkL1tvSCggLRpk0bceDAgVLrZ2dnS8+zePbsmQgMDBRdunQRN2/eLPWZF3fv3hXe3t4iNDRUXLlyRfz+++9i2LBhomvXriI3N1cncQohxLJly0S7du2k5zXt3LlTuLm5iZiYGCHE89tU33//fREUFCQuXLggzpw5I/z9/cXMmTPVjlETcQohxLlz50rc0l1MU/uzugkODi5xG3lwcLDw9vYWiYmJpT5X59dffxVyuVwsXLiwxPLHjx8LIZ7f3pueni7dFn/x4kXRtm1bsWDBAnH9+nVx7tw50bdvX/H++++LoqIig4o1Ly9PdO3aVYwcOVIkJiZKz0FSfVaRNuJVpw1t7FvSvuvXr4s2bdqICRMmlPi/z87OFj/88INwcnISUVFRIiUlRZw8eVIEBASIKVOmSG2Eh4eLDh06iOPHj0vPFOrWrZvUFx48eCC8vb3FjBkzxF9//SX27t0rXF1dlZ6vVxGFhYViwIABolevXiIuLk5cvXpVLFmyRLRt21YkJSWptT1dx6xtTJDUoPqG/uDBAyGXy8WpU6dKrT9jxgzh7+8vhPj72UKl/RTXEUKIy5cvixEjRggvLy/Rrl07ERoaKu7evauzOIV4nsxFRUWJLl26iDZt2oju3btLydGLbYaGhgoPDw/h4+Mj5s+fL/Ly8nQapxBCHD58WMjl8jKfVaOJ/VndqL4Bp6amltk35XK5EEKIuXPnlrk8IiJCCPF3YvLrr79Kbf/666/i/fffFx4eHqJDhw5i1qxZ4tGjRwYZa3Jyshg+fLhwdXUVb731lli1apUoLCzU+r4tr42y4q3qviXtW7duXZn/98X/x8eOHRN9+/YVbm5uomPHjmLZsmVK59KCggLxxRdfCF9fX+Hh4SFGjx4tbt26pbSdCxcuiPfee0+0bdtW+Pv7i6+//rpKcWdkZIhZs2aJjh07CldXVzFw4EARFxen9vb0EbM2yYR4YayWiIiIiDgHiYiIiEgVEyQiIiIiFUyQiIiIiFQwQSIiIiJSwQSJiIiISAUTJCIiIiIVTJCIiIiIVDBBIiIiIlLBBImIiIhIBRMkIiIiIhVMkIiIiIhUMEEiIiIiUsEEiYiIiEgFEyQiIiIiFUyQiIiIiFQwQSIiIiJSwQSJiIiISAUTJCIiIiIVTJCIiIiIVDBBIiIiIlLBBImIiIhIBRMkIiIiIhVMkIiIiIhUMEEiIiIiUsEEiYiIiEgFEyQiIiIiFUyQiIiIiFQwQSIiIiJSwQSJiIiISAUTJCIiIiIVTJCIiIiIVDBBIiIiIlLBBImIiIhIBRMkIiIiIhVMkIiIiIhUMEEiIiIiUsEEiYiIiEgFEyQjJoSoltsiIiLSNyZIRuLIkSPw9/eHq6sr5s2bh6tXr2LQoEEVbmfmzJkICAio0DrlbevixYto06YNbt++XWJZx44d4eTkVOLn/v37FY6diIhIV8z0HQCpZ8GCBWjWrBmWLVsGBwcHHDx4EOfPn9fJto8ePVrmtpKSkhASEoKCgoISyx48eIAHDx5g1qxZ8PDwUFpWr149LURKRESkGUyQjMSjR4/QsWNH+Pj46DsUAIBCocA333yD1atXw8rKqtQ6ly9fBgAEBgaicePGugyPiIioSniJTQcuXbqEoUOHwsvLC56enhg2bBguXLggLT927Bj69OkDNzc39O3bF+fPn4eLiwv27duHs2fPwsnJCQCwdu1aODk5YebMmYiMjAQAODk5Yc2aNZWOrbCwENu2bUPv3r3h5uaGzp07IywsDPn5+QCANWvWlLqtU6dOITIyEmPHjsXUqVNLbTspKQm2trZMjoiIyOhwBEnLHj9+jFGjRsHHxwcRERF49uwZ1q1bh5EjR+LHH3/EuXPn8NFHH6FXr16YOnUqLl68iHHjxqGoqAgA0KZNG8TExGDgwIF49913MWDAANjZ2cHU1BR79uxBTEwMHB0dKx3fvHnzsH//fowaNQodOnTA5cuXsXbtWiQmJmLTpk0YMGAAUlNTS2zL1dUVP/zwA+rVq4d9+/aV2nZiYiJsbW0xceJEnDlzBkVFRejcuTNmzZoFe3v7SsdMRESkbUyQtOzq1at4+PAhhgwZAi8vLwDA66+/jp07d+Lx48dYu3Yt2rZtixUrVgAA3n77bchkMqxatQoAYGNjI83fcXR0VPodQIm5PRWNbc+ePZg8eTLGjRsH4Pmkant7e0yfPh2nTp1Cp06dSt2Wg4NDue0nJiYiLS0N7733HoYNG4Zr164hIiICQ4YMwbfffotatWpVOnYiIiJt4iU2LWvVqhUaNGiAcePGYf78+fjhhx9gZ2eH6dOno169erh06RK6dOmitE6fPn10Etu5c+cAAL1791Yq79mzJ0xNTXH27Nkqtb906VLs2rULISEhaN++PQYOHIiIiAgkJydj//79VWqbiIhImziCpGW1a9fGtm3bsG7dOhw5cgQ7d+6EtbU1+vTpgwkTJgAAGjRooLSOOqMzmpCVlQUAsLOzUyo3MzND/fr1kZOTU6X2PT09S5R5eXmhTp06SEpKqlLbRERE2sQESQdef/11LF++HIWFhfj999/x3XffYceOHbC3t4eJiQkePHigVP/Ro0c6iatu3boAgPv376NJkyZS+bNnz5CZmYn69etXuu3s7Gz897//hYeHB1q2bCmVCyHw7NmzKrVNRESkbbzEpmXHjh2Dr68v7t+/D1NTU3h6euKzzz6Dra0tHj58CE9PT3z//ffSpGwA+PHHH8tt18Sk6v91HTp0AAAcPHhQqfzw4cMoLCyU5kxVZlvm5uZYsGABNmzYoFR+4sQJ5OXlGczjCoiIiErDESQta9euHYqKijBhwgSMGTMGtWvXxtGjR5GTk4Nu3bqhR48eGDZsGMaPH49Bgwbh5s2bWL16dbnt2traAgAOHToEd3d3vPrqqxWOrWXLlggKCkJkZKSUtCQmJiIyMhI+Pj7w8/Or9Lasra0xatQoREVFoWHDhnj77bfx559/Ys2aNejcuTPefPPNCsdLRESkKxxB0jJ7e3ts2rQJderUwZw5cxASEoJLly5hzZo18PX1Rfv27REdHY0HDx5gwoQJ2LlzJ2bMmFFuu926dYOrqytmzpyJ6OjoSse3ePFiTJw4EYcPH8aYMWOwbds2DBkyBBs3bpRGjiq7rdDQUMybNw+nT59GSEgINm/ejIEDB6qVABIREemTTPBbSA3O7du30aVLFyxduhT9+vXTdzhEREQ1Di+xVQNCCBQWFpZbz9TUFDKZTAcRERERGTcmSNXAt99+i1mzZpVbjyNSRERE6uEltmogMzMTt2/fLrdekyZNeHs9ERGRGpggEREREangXWxEREREKpggEREREangJG0A7du3h0KhKPGdZGR87t+/DwsLC8THx+s7FCIiMmIcQQKQn5+PgoICpTIhBPLz81FTpmhVl9dbUFCA/Px8fYdBRERGjiNIeP60a+D594QVe/r0KRITE9G6dWvUqlVLX6HpTHV5vV26dNF3CEREVA1UaATp0aNHmDdvHt5++220a9cOgwYNUrqUkZiYiODgYHh4eKBz584lvpaiqKgIERER8PPzg7u7O0aMGIGUlBSlOppog4iIiKgqKpQgTZkyBRcuXEB4eDj27NmDNm3aYOTIkbh27RoyMzMxfPhwNGvWDHv37kVoaChWr16NvXv3SutHRUVh586dWLRoEWJiYiCTyTB69GgoFAoA0EgbmmRubs4nTxMREdVAal9iS0lJwc8//4wdO3agXbt2AIA5c+bg1KlTOHToEKysrGBhYYHPPvsMZmZmaNGiBVJSUrBx40b0798fCoUCmzdvxrRp09CpUycAwMqVK+Hn54fY2Fj07NkTu3btqnIbmiKTyeDi0gZmZqbl1i0qEjAxYSJFRERUXaidINWvXx8bNmxA27ZtpTKZTAYhBLKysnDx4kV4e3vDzOzvJn19ffHll18iIyMDd+7cwZMnT+Dr6ystt7W1hYuLC+Li4tCzZ0/Ex8dXuQ1NMjMzRdi2BNxOyymzThOHOpj6gZdGt0tERET6pXaCZGtrK43aFDt69Chu3ryJt956CytXroRcLldaXjz5+e7du0hNTQUANGrUqESde/fuAQBSU1Or3EZlCSHw9OlT6W+FQgFra2vcTsvBtTtZ5a6fm5tr1HeA5ebmKv1rrIQQvCxKRERVVum72BISEjB79mx06dIFAQEBWLp0KSwsLJTqWFpaAnh+G33xG29pdbKynicgeXl5VW6jshQKBRITE6W/ra2tUa9ePbXXv3HjhtEnFwCQnJys7xCqRKFQSH2GiIiosiqVIB0/fhxTp06Fu7s7wsPDAQBWVlYlJkoXP4+mVq1asLKyAvD8Daz49+I61tbWGmujsiwsLNC6dWvp74pO+m7evLnRjyAlJyejWbNmVd6X+qSaPBMREVVGhROkb775BosXL0ZgYCDCwsKkNyRHR0ekp6cr1S3+28HBQXoQY3p6Opo2bapUx9nZWWNtVJZMJlN6/k9FL9MYc1LxImtra6N+DhIvrxERkSZU6Db/7du3Y+HChfjggw+watUqpU/r3t7eSEhIQGFhoVR25swZNG/eHA0bNoSzszNsbGxw9uxZaXl2djYuX76M9u3ba6wNIiIioqpSO0G6ceMGlixZgsDAQISEhCAjIwP379/H/fv3kZOTg/79++Px48eYM2cOrl69in379mHr1q0ICQkB8PzSR3BwMMLCwnDixAkkJSXh448/hqOjIwIDAwFAI20QERERVZXal9i+//57PHv2DLGxsYiNjVVaFhQUhGXLlmHTpk1YvHgxgoKCYGdnh+nTpyMoKEiqN2nSJBQUFGDu3LnIy8uDt7c3oqOjpZGohg0bVrkNIiIioqqSCWOeWawhxd/f9eJ3seXm5sLa2hqTw0++9Db/Fo3rYtWUztoOUeuq23exvfh/SUREVFEVmoNEREREVBMwQSIiIiJSwQSJiIiISAUTJCIiIiIVTJCIiIiIVDBBIiIiIlLBBImIiIhIBRMkIiIiIhVMkIiIiIhUMEEiIiIiUsEEiYiIiEgFEyQiIiIiFUyQiIiIiFQwQSIiIiJSwQSJiIiISAUTJCIiIiIVTJCIiIiIVDBBIiIiIlLBBImIiIhIBRMkIiIiIhVMkIiIiIhUMEEiIiIiUsEEiYiIiEgFEyQiIiIiFUyQiIiIiFQwQSIiIiJSwQSJiIiISAUTJCIiIiIVTJCIiIiIVDBBIiIiIlLBBImIiIhIBRMkIiIiIhVMkIiIiIhUMEEiIiIiUsEEiYiIiEgFEyQiIiIiFUyQiIiIiFQwQSIiIiJSwQSJiIiISAUTJCIiIiIVTJCIiIiIVDBBIiIiIlLBBImIiIhIBRMkIiIiIhVMkIiIiIhUMEEiIiIiUsEEiYiIiEiF0SZIRUVFiIiIgJ+fH9zd3TFixAikpKToOywiIiKqBow2QYqKisLOnTuxaNEixMTEQCaTYfTo0VAoFPoOjYiIiIycUSZICoUCmzdvRmhoKDp16gRnZ2esXLkSaWlpiI2N1Xd4REREZOSMMkFKSkrCkydP4OvrK5XZ2trCxcUFcXFxeoyMiIiIqgOjTJBSU1MBAI0aNVIqt7e3x7179/QREhEREVUjZvoOoDJyc3MBABYWFkrllpaWyMrKqnB76enpKCwsREBAgFQmhICJiQmyHuejoFCUuW6auQm6HLYoc3lVCFH2drWxrcLCQpiamkImk+lsu5qWmpoKU1NTfYdBRERGzigTJCsrKwDP5yIV/w4A+fn5sLa2rnB7lpaWUCgUSolB8e91bSyrGG3l6TJRkclkMDExygFFJWZmZiUSZyIioooyygSp+NJaeno6mjZtKpWnp6fD2dm5wu3Fx8drLDYiIiIyfkY5ZODs7AwbGxucPXtWKsvOzsbly5fRvn17PUZGRERE1YFRjiBZWFggODgYYWFhaNCgARo3bozly5fD0dERgYGB+g6PiIiIjJxRJkgAMGnSJBQUFGDu3LnIy8uDt7c3oqOjOf+EiIiIqkwmdHmrFBEREZERMMo5SERERETaxASJiIiISAUTJCIiIiIVTJCIiIiIVDBBIiIiIlLBBImIiIhIBRMkIiIiIhVMkFQUFRUhIiICfn5+cHd3x4gRI5CSkqLvsAAAd+7cgZOTU4mf3bt3AwASExMRHBwMDw8PdO7cGdHR0Urrq/PadNEGERGRoWOCpCIqKgo7d+7EokWLEBMTA5lMhtGjR0OhUOg7NPz555+wtLTE6dOn8dNPP0k/vXv3RmZmJoYPH45mzZph7969CA0NxerVq7F3715p/fJem67aICIiMniCJPn5+cLT01Ns375dKsvKyhJubm7i0KFDeozsuXXr1ok+ffqUumz9+vXCz89PPHv2TCpbsWKF6N69uxBCvdemizaIiIiMAUeQXpCUlIQnT57A19dXKrO1tYWLiwvi4uL0GNlzf/75J1q2bFnqsvj4eHh7e8PM7O+v1/P19cWNGzeQkZGh1mvTRRtERETGgAnSC1JTUwEAjRo1Uiq3t7fHvXv39BGSkitXriAjIwODBw/Gm2++iUGDBuH06dMAnsfu6OioVN/e3h4AcPfuXbVemy7aICIiMgZMkF6Qm5sLALCwsFAqt7S0RH5+vj5CkigUCiQnJ+Px48eYPHkyNmzYAFdXV4wePRpnzpxBXl5eqXEDQH5+vlqvTRdtEBERGQOz8qvUHFZWVgCeJyPFvwPP39itra31FRaA50lJXFwczMzMpASkbdu2uHbtGqKjo2FlZVViInlxQlKrVi21Xpsu2iAiIjIGHEF6QfGlo/T0dKXy9PT0EpeN9KFWrVolRmfkcjnS0tLg6OhYatwA4ODgoNZr00UbRERExoAJ0gucnZ1hY2ODs2fPSmXZ2dm4fPky2rdvr8fInk8g9/T0RHx8vFL5xYsX0bJlS3h7eyMhIQGFhYXSsjNnzqB58+Zo2LChWq9NF20QEREZAyZIL7CwsEBwcDDCwsJw4sQJJCUl4eOPP4ajoyMCAwP1GptcLkerVq2wYMECxMfH49q1a1i6dCl+++03jB07Fv3798fjx48xZ84cXL16Ffv27cPWrVsREhKi9mvTRRtERETGQCaEEPoOwpAUFhYiPDwc+/btQ15eHry9vTFv3jw0adJE36Hh4cOHCAsLw6lTp5CdnQ0XFxdMnTpVGr35/fffsXjxYly+fBl2dnYYMWIEgoODpfXVeW26aIOIiMjQMUEiIiIiUsFLbEREREQqmCARERERqWCCRERERKSCCRIRERGRCiZIRERERCqYIBERERGpYIJEREREpIIJEhEREZEKJkhEREREKpggEREREalggkRERESkggkSERERkYr/B8TWrr5lJU1aAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Plotting the numeric features to see distribution and see if they need to be log-transformed\n",
+ "df[numeric].hist(figsize=[6,6]);\n",
+ "plt.tight_layout()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As shown above, some numeric features exhibited skewness or non-normal distributions. Thus, we apply log transformations to these numeric features selectively."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Log transform all numeric feature except:\n",
+ "# sqft basement - has values of 0\n",
+ "# long - has negative values\n",
+ "to_ln = ['bedrooms',\n",
+ " 'bathrooms',\n",
+ " 'sqft_living',\n",
+ " 'sqft_lot', \n",
+ " 'sqft_above',\n",
+ " 'lat',\n",
+ " 'sqft_living15', \n",
+ " 'sqft_lot15']\n",
+ "\n",
+ "for column in to_ln:\n",
+ " df[column] = np.log(df[column])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Resulting dataframes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#create two dataframes, one without log_price, and without price\n",
+ "output = df.drop(['log_price'], axis=1) \n",
+ "output_log = df.drop(['price'], axis=1) "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "price float64\n",
+ "bedrooms float64\n",
+ "bathrooms float64\n",
+ "sqft_living float64\n",
+ "sqft_lot float64\n",
+ "floors float64\n",
+ "waterfront int64\n",
+ "view int64\n",
+ "condition int64\n",
+ "grade int32\n",
+ "sqft_above float64\n",
+ "sqft_basement float64\n",
+ "yr_built int64\n",
+ "yr_renovated float64\n",
+ "zipcode int64\n",
+ "lat float64\n",
+ "long float64\n",
+ "sqft_living15 float64\n",
+ "sqft_lot15 float64\n",
+ "month_of_date int32\n",
+ "year_of_date int32\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 50,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "output.dtypes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "***2. Multiple Linear Regression Analysis***\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Multiple linear regression was employed to understand how features collectively influence the target variable ( housing prices). We partitioned the dataset into training and testing sets to train the regression model on one subset and assess its performance."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.preprocessing import OneHotEncoder, StandardScaler\n",
+ "import pandas as pd\n",
+ "\n",
+ "def train_test(df, target, test_size=0.20, random_state=42):\n",
+ " '''\n",
+ " This function takes in a dataframe df and target column and returns the train and test split\n",
+ " Default test size is 20, default random state is 42\n",
+ " '''\n",
+ " \n",
+ " # Drop rows with missing values\n",
+ " df = df.dropna()\n",
+ " \n",
+ " # Separating predictors (X) and target (y)\n",
+ " X = df.drop(target, axis=1)\n",
+ " y = df[target]\n",
+ " \n",
+ " # Creating train-test split\n",
+ " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state)\n",
+ " \n",
+ " # Resetting indices to ensure alignment\n",
+ " X_train.reset_index(drop=True, inplace=True)\n",
+ " X_test.reset_index(drop=True, inplace=True)\n",
+ " y_train.reset_index(drop=True, inplace=True)\n",
+ " y_test.reset_index(drop=True, inplace=True)\n",
+ " \n",
+ " # Selecting categorical columns\n",
+ " categorical = X.select_dtypes(include=['object']).columns.tolist()\n",
+ " # Instantiating OneHotEncoder object\n",
+ " ohe = OneHotEncoder(sparse_output=False, handle_unknown='error', drop='first')\n",
+ " \n",
+ " # Fitting and transforming categorical features on train and test sets\n",
+ " X_train_ohe = ohe.fit_transform(X_train[categorical])\n",
+ " X_test_ohe = ohe.transform(X_test[categorical])\n",
+ "\n",
+ " # Placing column names onto new categorical columns and formatting as DataFrame\n",
+ "# X_train_ohe_df = pd.DataFrame(X_train_ohe, columns=ohe.get_feature_names(categorical))\n",
+ "# X_test_ohe_df = pd.DataFrame(X_test_ohe, columns=ohe.get_feature_names(categorical))\n",
+ "\n",
+ " # Get feature names for one-hot encoded columns\n",
+ " feature_names = []\n",
+ " for cat, categories in zip(categorical, ohe.categories_):\n",
+ " feature_names.extend([f\"{cat}_{val}\" for val in categories[1:]]) # Skip the first category\n",
+ " \n",
+ " # Placing column names onto new categorical columns and formatting as DataFrame\n",
+ " X_train_ohe_df = pd.DataFrame(X_train_ohe, columns=feature_names)\n",
+ " X_test_ohe_df = pd.DataFrame(X_test_ohe, columns=feature_names)\n",
+ " \n",
+ " # Combining categoricals with rest of data\n",
+ " X_train = pd.concat([X_train.select_dtypes(include=['number']), X_train_ohe_df], axis=1)\n",
+ " X_test = pd.concat([X_test.select_dtypes(include=['number']), X_test_ohe_df], axis=1)\n",
+ "\n",
+ " # List to hold X_train and X_test\n",
+ " X_list = [X_train, X_test]\n",
+ " \n",
+ " # Scaling X values into z-scores\n",
+ " ss = StandardScaler()\n",
+ " for i in range(len(X_list)):\n",
+ " X_list[i] = pd.DataFrame(ss.fit_transform(X_list[i]), columns=X_list[i].columns)\n",
+ " \n",
+ " # Unpacking the list\n",
+ " X_train, X_test = X_list\n",
+ " \n",
+ " return X_train, X_test, y_train, y_test"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: scikit-learn in c:\\users\\hp\\anaconda3\\lib\\site-packages (1.4.2)\n",
+ "Requirement already satisfied: numpy>=1.19.5 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from scikit-learn) (1.24.3)\n",
+ "Requirement already satisfied: scipy>=1.6.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from scikit-learn) (1.11.1)\n",
+ "Requirement already satisfied: joblib>=1.2.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from scikit-learn) (1.2.0)\n",
+ "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from scikit-learn) (2.2.0)\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip3 install -U scikit-learn\n",
+ "# Use a multiple linear regression model of the data using all features\n",
+ "# Split data into train and test\n",
+ "X_train, X_test, y_train, y_test = train_test(output, 'price')\n",
+ "\n",
+ "#create linear regression model for price. \n",
+ "model1 = LinearRegression()\n",
+ "model1.fit(X_train, y_train);"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Plot actual vs predicted values\n",
+ "def actual_vs_predicted(model,X_test,y_test):\n",
+ " \"\"\"\n",
+ " Plots the actual y vs the predicted y\n",
+ " \"\"\"\n",
+ " y_predicted = model.predict(X_test)\n",
+ " fig, ax = plt.subplots(figsize=(10,10))\n",
+ " ax.scatter(x=y_test, y=y_predicted)\n",
+ " ax.set_xlabel(\"Actual Price Values\")\n",
+ " ax.set_ylabel(\"Predicted Price Values\")\n",
+ " ax.set_title(\"Actual vs Predicted\")\n",
+ " \n",
+ " p1 = max(max(y_test), max(y_predicted))\n",
+ " p2 = min(min(y_test), min(y_predicted))\n",
+ " plt.plot([p1, p2], [p1, p2], 'b-')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAANaCAYAAABGB+f7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACow0lEQVR4nOzdeVjU5frH8c+AIAgCCu5b7vu+oGBptme2WNapTlm5JGbl8ZzfMbfM3Npss9Q0zZZju6ktZoupBe67mRpqbrgBsig7M78/RkiUZQZm+A4z79d1eV06zHy5AZXvh/t57sdksVgsAgAAAAAP5WV0AQAAAABgJEIRAAAAAI9GKAIAAADg0QhFAAAAADwaoQgAAACARyMUAQAAAPBohCIAAAAAHo1QBAAAAMCjEYoAAAVwprdr4esBAM5HKAIAN/Lf//5XLVu21Pz58+1+7alTp/T444/rxIkTDq9r48aNatmypTZu3Ojwaxdn9uzZatmyZYFfbdq0UXh4uJ544gn9+eefTnvfx48fV8uWLbV06VJJ9n8OsrKyNHPmTH399dcOqadfv3565plnHHItAHA3hCIAcBPnz5/XDz/8oBYtWuizzz6zu8MQExOjNWvWOKc4g3366af5vz788ENNnDhRf/zxhx588EGdPXu2XGpo27atPv30U7Vt29am5585c0aLFy9WTk6OkysDABCKAMBNfPvtt8rNzdXEiRN17Ngx/fbbb0aX5DI6deqU/6tr164aMGCAXnrpJSUnJ+urr74qlxoCAwPVqVMnBQYGlsv7AwDYjlAEAG7iyy+/VHh4uMLDw9W4cWN98sknVzzn22+/1cCBA9WxY0f17dtXL7/8srKysrR06VKNGzdOknTdddflL7MqbMnV0qVL1bJlSx0/fjz/sZ9++kkPPPCAOnfurHbt2unmm2/WRx99ZHPtkyZNUs+ePa/oirz88svq0aOHsrKylJmZqSlTpuiaa67Jfx+LFi2y+X1crl27dpKUv1xw9uzZuuGGG/TWW28pPDxc119/vc6dOydJ+vzzz9W/f3+1a9dOffv21ezZs6+o9YcfftDtt9+uDh066K677tK+ffsKvL2w5XN79uzR0KFD1bVrV/Xs2VP/+te/dPLkSR0/flzXXXedJGncuHHq169f/mu2bNmif/7zn+rYsaN69OihsWPHKjExscD72rdvnx599FF17txZ1157rVasWFHqzxMAeAJCEQC4gYMHD2rnzp266667JEkDBw7UL7/8otOnT+c/55NPPtGYMWPUunVrvfXWW3r88ce1ZMkSPffcc+rbt6+ioqIkSW+99ZZGjhxp8/tes2aNnnjiCbVt21Zz5szR7NmzVa9ePU2dOlXbtm2z6Rp33HGHzp07p/Xr1+c/ZrFY9N133+nmm2+Wr6+vpk+frrVr12rs2LFauHChrrvuOr344ov5e3bsdfjwYUlSw4YN8x+Li4vTjz/+qFdffVWjR49WtWrV9M4772jSpEnq1auX5s2bpwcffFALFizQs88+m/+61atX66mnnlLz5s311ltv6ZZbbtH//d//Ffv+9+3bp/vvv1/p6el64YUX9Pzzz2vv3r167LHHVLNmTb311luSpKioqPzfb968WY888oj8/Pz0+uuva/z48dq0aZMefvhhZWRkSJJOnz6tf/7zn0pOTtbLL7+sp59+Wq+88kqBvwsAgIIqGV1AeZgzZ47Wr1+vDz/80K7XLVu2TPPnz9exY8fUsGFDjRo1SrfccouTqgSA0vviiy8UFBSk66+/XpJ055136vXXX9fnn3+uUaNGyWw253dCpk+fnv+6zMxMffXVVwoMDMwPB61bt1b9+vVtft+xsbG68847NWHChPzHOnfurPDwcG3evFldunQp8Rpdu3ZV/fr19d133+nqq6+WJG3dulVxcXG64447JEmbNm1SRESE+vfvL0kKDw9XlSpVVK1atRKvf2lXJyMjQ/v27dOMGTNUtWpV3X777QWeN3bsWEVEREiSUlNTNXfuXN13332aOHGiJKl3794KCQnRxIkT9eijj6p58+Z6++231bZtW82aNUuSdM0110hS/p8LM2fOHAUHB2vRokWqXLmyJKl27doaPXq0Dhw4oNatW0uyhrY2bdrkX69x48Z655135O3tLUnq2LGj+vfvry+//FIPPvhg/j6kBQsWKDQ0VJLUuHFj3XvvvSV+ngDAU7l9p2jx4sV688037X7d8uXLNX78eN1333365ptvdOutt2rMmDHavn27E6oEgNLLycnRihUrdP311yszM1MpKSny8/NTeHi4Pv/8c+Xm5urw4cOKj4/PD015HnnkES1fvly+vr6lfv9Dhw7Viy++qLS0NO3bt08rV67Mn36XnZ1t0zVMJpNuv/12/fjjj8rKypIkffPNN2rQoIG6du0qSfkfz7Bhw7RkyRKdOHFCTzzxhK699toSr9+2bdv8X127dtWDDz6ozMxMzZ49WzVq1Cjw3BYtWuT/fvv27UpPT1e/fv2Uk5OT/ytvOVt0dLQyMjL0+++/5y93y1PSD9G2bt2qa665Jj8QSVKHDh20evXq/KV9l0pPT9fOnTvVp08fWSyW/FoaNGigpk2bKjo6Ov+6nTp1yg9EkjU41a1bt8TPEwB4KrftFJ0+fVoTJkzQ1q1b1bhxY7tea7FY9MYbb2jw4MEaPHiwJOmJJ57Qtm3btGnTJnXu3NkZJQNAqaxZs0bx8fFaunRpoUvJfvnll/xuyqU3yo6SmJioyZMn66effpLJZFKjRo3yg4w9E/DuvPNOzZkzR+vWrVPfvn31/fff64EHHsh/+4QJE1S7dm2tWLFCU6ZMkWTtSD377LP5nZSifPHFF/m/9/HxUY0aNYr8XISFheX/PikpSZI0fPjwQp975swZJScny2KxqHr16gXeVrNmzWJrSkpKsuvrkZKSIrPZrAULFmjBggVXvD0vXCUnJxfa6bs8/AEA/ua2oej3339XcHCwVqxYobfffvuKczd++eUXzZ49W7GxsapVq5b69++vkSNHytfXV4cOHdKJEyc0YMCAAq9ZuHBheX4IAGCTL774QvXq1dPMmTOveNtTTz2lTz75RGPHjpWkKzbkJyUl6ffff1enTp2KvH5ubm6BP6elpRX483/+8x8dPHhQ7733nrp06SJfX1+lp6fr888/t+vjaNSokTp16qSVK1fKx8dH586dK7C0zdfXV1FRUYqKilJcXJx++eUXzZkzR//+97+1cuXKYq/dvn17u2rJExQUJEl65ZVXdNVVV13x9rCwMIWEhMjLy0vx8fEF3pYXqIpStWrVK74ekrR27Vq1atXqiscDAgJkMpn0yCOP5C8hvJS/v78kqVq1alfUYks9AODJ3Hb5XL9+/TRr1iw1aNDgiretW7dOTz/9tAYNGqRvvvlGkydP1sqVK/M3xf7111+SrN/4hwwZol69emnQoEFavXp1eX4IAFCi+Ph4/frrr+rfv3/+5LlLf916662Kjo5W5cqVVa1aNf38888FXv/1119r2LBhyszMlJfXld8SAgMDderUqQKPXT48YevWrbrpppvUs2fP/GV469atkySZzWa7Pp7bb79d69at0zfffKNOnTrlB5GMjAzddNNN+dPm6tatqwcffFD9+/e/oj5H6tixo3x8fHT69Gm1b98+/5ePj49mzZql48ePq3LlyurcubN++OGHAp2xkr5ndOvWTb/++mv+ckFJ2r9/v4YPH67du3fn7xnKExgYqDZt2ujQoUMFaskb7pA31a5nz57avn17gcEKsbGxOnbsmCM+JQDgltw2FBVn3rx5uueee3T//ferYcOG6t27t6ZMmaLvv/9ex48f1/nz5yVJY8eO1W233aZFixYpMjJSI0eOLDAZCQCM9tVXXyknJ6fQzoEk3XXXXTKbzfr888/15JNPatWqVXruuecUHR2t//3vf3r99dd1//33q3r16vldkR9//FEHDx6UJF177bXavHmz5s2bpw0bNuiFF1644v/BDh066Ouvv9by5cu1ceNGzZs3T88884xMJpPS09Pt+nj69++v9PR0ffvttwW6RH5+fmrbtq3eeustffjhh9q0aZM+/fRTffXVV7rpppvseh/2qFatmoYOHao33nhDr7/+utavX69ly5YpKipKR48eze/ojBkzRgcPHtSoUaO0bt06ffDBByXuZx05cqTOnTunYcOGafXq1fr+++81evRotW3bVtdcc42qVq0qSVq/fr127tyZ/35+++03/fvf/9batWu1evVqDR06VDExMfmHwg4ePFjBwcEaMmSIVq1ape+++04jR46Uj4+P0z5PAFDRue3yueLs3btXu3btKnBgX95P9w4ePJj/jWPIkCH5421bt26tvXv36r333lOvXr3Kv2gAKMRXX32l5s2bF7rcSrIGliZNmujLL7/UmjVrVKVKFS1cuFBffPGFatWqpcceeyx/v0x4eLgiIiI0a9YsrV+/XvPnz9fjjz+uxMRELVq0SNnZ2erbt6+mT5+eP75bkl544QVNnTpVU6dOlSRdddVVmjJlilasWKEtW7bY9fGEhISoT58+Wrt2rW699dYCb3v++ef1+uuva9GiRTp79qxCQ0N1zz336Omnn7brfdhr9OjRqlGjhpYsWaJ3331XwcHB6tWrl8aMGZMfXLp166YFCxbo1Vdf1ahRo1S/fn3NmDFDI0aMKPK6bdq00YcffqhZs2bpX//6lwICAtSnTx/95z//ka+vr3x9ffXoo4/q008/1Zo1axQdHa3evXtr4cKFeuutt/TUU0/Jx8dHbdu21XvvvZe/BLJatWr6+OOPNX36dD3zzDMKCAjQ0KFD9d133zn18wQAFZnJYs8u2ArqmWee0YkTJ/JHcnfo0EGPPfZYfuC5VI0aNfLPjvjf//6nbt265b/tpZde0po1a/jGAgAAALgRj1w+17x5cx06dEiNGjXK/3X69Gm99NJLunDhgtq0aaOAgID85Qp5Dhw4UOCQPwAAAAAVn0cunxs2bJhGjx6t2bNn67bbbtOpU6c0ceJE1a1bN39k6dChQ/X222+rVq1a6tChg7799ltFR0dr8eLFxhYPAAAAwKE8MhTdfPPNeu211/TOO+/onXfeUXBwsK699tr86XOSdQOsv7+/XnvtNZ0+fVpNmzbV7NmzFR4ebmDlAAAAABzNI/YUAQAAAEBRPHJPEQAAAADkIRQBAAAA8GhutaeoW7duysrKyh+WAAAAAMAznT17Vr6+vjadmedWoSgzM1O5ublGlwEAAADAYDk5ObJ1fIJbhaKaNWtKkn7++WeDKwEAAABgpOuuu87m57KnCAAAAIBHIxQBAAAA8GiEIgAAAAAejVAEAAAAwKMRigAAAAB4NEIRAAAAAI9GKAIAAADg0QhFAAAAADwaoQgAAACARyMUAQAAAPBohCIAAAAAHo1QBAAAAMCjEYoAAAAAeDRCEQAAAACPRigCAAAA4NEIRQAAAAA8GqEIAAAAgEerZOQ737hxox5++OFC31a/fn39/PPP5VwRAAAAAE9jaCjq3LmzfvvttwKPHThwQMOHD9eIESMMqgoAAACAJzE0FPn6+qpGjRr5f87OztbMmTN14403atCgQQZWBgAAAMBTGBqKLve///1PJ0+e1KJFi4wuBQAAAICHcJlBC5mZmZo3b54GDx6smjVrGl0OAAAAAA/hMqFo+fLlyszM1EMPPWR0KQAAAAA8iMuEomXLlunGG29UtWrVjC4FAAAAgAdxiVCUmJio7du369ZbbzW6FAAAAAAexiVC0bZt22QymdSjRw+jSwEAAADgYVwiFO3bt08NGjSQv7+/0aUAAAAA8DAuEYri4+MVEhJidBkAAAAAPJBLnFP03HPPGV0CAAAAAA/lEp0iAAAAADAKoQgAAACARyMUAQAAAPBoLrGnCAAAAEDFlp1j1vvf7pW3l0mPDmhrdDl2oVMEAAAAoEyyc8x68YPNWr7uoH7cdES5ZovRJdmFThEAAACAUsvOydUL72/Rpr2n5FPJS/95sJu8vUxGl2UXQhEAAACAUsnOydXM9zdr897T8q3kpQmPhatLy5pGl2U3QhEAAAAAu2Xn5GrG4s3a8oc1EE0aEq5OLSpeIJIIRQAAAADslJVt7RBt+eO0fH289exj4erYoobRZZUaoQgAAACAzbKyczV98SZt23fGGoiGhKtj84obiCRCEQAAAAAbZWXnavp7m7RtvzUQTR4arg7NKnYgkghFAAAAAGyQmZ2r6Ys2avuBs6rs663JQ3qqfbMwo8tyCEIRAAAAgGJlZudq2qKN2nHgrPx8vTV5aE+1a+oegUgiFAEAAAAoRkZWjqYv2qQdf1oD0XPDeqltk1Cjy3IoQhEAAACAQmVk5Wjqwo3aFRsv/8remjzU/QKRRCgCAAAAUIiMzBxNXfR3IHpuWC+1aex+gUgiFAEAAAC4TEZmjp5fuFG7D8bLv3IlTRnWS60bVze6LKchFAEAAADIl56ZoynvbtDvhxLkX7mSnh/eS62uct9AJBGKAAAAAFx0aSCq4ldJU4b3UqtG7h2IJEIRAAAAAElpGdma8u4G7T2cqCp+1g5RSw8IRBKhCAAAAPB4aRnZem7BBv3xV6IC/Crp+ccj1KJhNaPLKjeEIgAAAMCDFQhE/j6a+ngvNW/gOYFIIhQBAAAAHistI1uT56/XviPnFODvo2mPR6hZgxCjyyp3hCIAAADAA11Iz9bkBeu1/8g5Bfr7aOqICDWrH2J0WYYgFAEAAAAe5kK6tUO0/+g5Va3io6mPR6iphwYiiVAEAAAAeJTz6dmaPD9GB44mqWoVH00bEakm9YKNLstQhCIAAADAQ5xPy9Kk+esVeyxJVav4anpUhBrX9exAJBGKAAAAAI9wPi1Lk96JUezxZAUF+GraCAJRHkIRAAAA4OZSLwaigxcD0fSoSF1VJ8joslwGoQgAAABwY6lpWZo4L0aHTiQrONBX00dEqhGBqABCEQAAAOCmUi5kadK8GB2KS1ZIYGVNi4pQo9oEossRigAAAAA3lHw+U5PeidHhuBSFBFbW9KgINSQQFYpQBAAAALiZ5POZmjgvRn+dTFFI1cqaPoJAVBxCEQAAAOBGLg1E1apW1vSoSDWoVdXoslwaoQgAAABwE0mpmZo4L1pHTqUSiOxAKAIAAADcQFJqpibMi9bRU6mqHmQNRPVrEohsQSgCAAAAKrhzqRmaMDdGx06nqnqQn2aMjFS9GoFGl1VhEIoAAACACuxcSoYmzIvWsdPnFRrspxlRkapLILILoQgAAACooBJTMjRhbrSOnzmvsGA/TR8ZqbphBCJ7EYoAAACACigxJUPj50TrxNnzCgvx14yoSNUJCzC6rAqJUAQAAABUMAnJ6ZowN1onzl5QWIi/Zo6MVO1QAlFpEYoAAACACiQhOV3j50QrLv6CalSzdogIRGXjZXQBAAAAAGxzaSCqSSByGDpFAAAAQAUQn5Su8XOjdTL+gmpWr6IZUZGqVb2K0WW5BUIRAAAA4OLOnrPuITqZYA1EM6MiVZNA5DCEIgAAAMCFnTmXpglzo3UqIU21qlfRjJGRqlmNQORIhCIAAADARZ1JTNP4udE6nZim2qFVNCOqt2pU8ze6LLdDKAIAAABc0JnENI2bG60ziWmqExqg6VGRBCInIRQBAAAALub0xQ7RmcQ01QkL0IyoSIWFEIichVAEAAAAuJBTCRc0YW60zpxLV92wAM0YGanQYAKRMxGKAAAAABdxKuGCxs+N1tlz6apXw7pkjkDkfIQiAAAAwAWcSrigcXOiFZ+Urno1AjU9KoJAVE4IRQAAAIDBTsZf0Pg5vyk+OUP1awZqelSkqgf5GV2WxyAUAQAAAAaKiz+v8XOilXAxEM2IilQ1AlG5IhQBAAAABok7e17j51oDUYNaVTU9KkLVqhKIyhuhCAAAADDAibPWDlFiCoHIaIQiAAAAoJwdP5OqCXOjlZiSqYa1q2r6iEiFVK1sdFkei1AEAAAAlKNjp1M1cZ41EF1VJ0jTRkQoOJBAZCRCEQAAAFBOjp22dojOpRKIXAmhCAAAACgHR0+laMK8GCURiFwOoQgAAABwsqOnUjRhboySzmeqSd1gTR0RoaAAX6PLwkWEIgAAAMCJjpxM0YR50Uo+n6Um9YI19XECkashFAEAAABOcnkgmjYiQlWrEIhcjZfRBQAAAADu6K+TKRo/1xqImtUnELkyOkUAAACAgx2OS9aEuTFKTctSswYhmjq8lwIJRC6LUAQAAAA40KWBqHmDED3/eIQC/X2MLgvFIBQBAAAADnLoRLImzotWalq2WjQM0ZThBKKKgFAEAAAAOEDs8SRNmhej8+nZatmwmqYM76UAAlGFQCgCAAAAyqhAIGpUTVOGEYgqEkIRAAAAUAaxx5I08Z0YXUjPVqtG1g5RFT8CUUVCKAIAAABK6cDRc3p2/npdSM9W66uq67lhPQlEFRChCAAAACiFA0fP6dl3YnQhI4dAVMERigAAAAA77T+SqGfnr1daRo7aNgnVs0PCCUQVGKEIAAAAsMO+I4mafEkgmjy0p/wrc1tdkfHVAwAAAGy07y9rhyg9M0ftmobq2SEEInfAVxAAAACwwR+HEzV5gTUQtW8apmeHhMuPQOQW+CoCAAAAJdh7OEHPLViv9MxcdWgWpklDwuXny620u+ArCQAAABTj90PWQJSRRSByV3w1AQAAgCJcGog6Na+hCY/1IBC5Ib6iAAAAQCF2H4zX8+9usAaiFjU08bFwVfbxNrosOAGhCAAAALjM7th4TVm4QZlZuercooYmEIjcGqEIAAAAuMSu2LN6fuFGZWblqkurmprwSA/5EojcGqEIAAAAuGjnn9ZAlJWdq66tamo8gcgjEIoAAAAASTsPnNXzCzcoK8esbq1radzg7gQiD0EoAgAAgMfbceCMpi7cmB+Ixj/SXT6VCESeglAEAAAAj7Zt/xlNX2QNRD3a1NYzg7sRiDyMl9EFSNKyZct06623qn379urfv79WrlxpdEkAAADwANv2ndG0i4EovC2ByFMZHoqWL1+u8ePH67777tM333yjW2+9VWPGjNH27duNLg0AAABubOu+05r23kZlXwxEYx9myZynMjQUWSwWvfHGGxo8eLAGDx6sRo0a6YknnlBERIQ2bdpkZGkAAABwY1v+OK1pizYpO8esXu3rXAxEhvcLYBBD9xQdOnRIJ06c0IABAwo8vnDhQoMqAgAAgLvbvPeUZizerJxcayD670PdVMmbQOTJDP3q//XXX5KktLQ0DRkyRL169dKgQYO0evVqI8sCAACAm9p0SSCK6EAggpWhfwPOnz8vSRo7dqxuu+02LVq0SJGRkRo5cqTWr19vZGkAAABwM5t+P6WZizcpJ9esyI519X//JBDBytDlcz4+PpKkIUOG6K677pIktW7dWnv37tV7772nXr16GVkeAAAA3MSGPSf14geblZNrUe+OdfXvB7sSiJDP0L8JtWvXliS1aNGiwOPNmjXT8ePHjSgJAAAAbmb97r8D0TWd6uk/BCJcxtC/DW3atFFAQIB27txZ4PEDBw6oYcOGBlUFAAAAd7F+d9zfgahzPY15oIu8CUS4jKHL5/z8/DR06FC9/fbbqlWrljp06KBvv/1W0dHRWrx4sZGlAQAAoIKL3hWnlz/colyzRX0619e/7u9MIEKhDA1FkjRy5Ej5+/vrtdde0+nTp9W0aVPNnj1b4eHhRpcGAACACip6Z5xe+miLzGaL+natr9H/6CJvL5PRZcFFGR6KJOnRRx/Vo48+anQZAAAAcAO/7Tyhlz/aKrPZomu71tfTBCKUwCVCEQAAAOAIv24/oVeWWANRv24N9NR9nQlEKBGhCAAAAG5h3fbjmrVkm8xmi67r3kBP3ksggm0IRQAAAKjw1mw7rteWbJXZIl3fvaFG3duJQASbEYoAAABQoa3ZekyvfbxNZot0Q4+GGjWok7wIRLADoQgAAAAV1i9bj+n1i4HoxvBGeuKejgQi2I1QBAAAgApp9Zajev2T7bJYpJt6NtLIuwlEKB1CEQAAACqcnzcf1RufWgPRzb2uUtTADgQilBqhCAAAABXKT5uO6s3PrIHoloirNOIuAhHKhlAEAACACuPHjUc0+/MdslikWyOu0oiBHWQyEYhQNoQiAAAAVAg/bDyi2Z/tkCTdFtlYw+9qTyCCQxCKAAAA4PJWbfhLb32+U5J0W+/GGn4ngQiOQygCAACAS/t+/V96+wtrILr96iYaekc7AhEcilAEAAAAl7Uy5rDmfLlLknT7NU009HYCERyPUAQAAACX9F3MYc29GIju7NNUjw1oSyCCUxCKAAAA4HK+/e2Q5n21WxKBCM5HKAIAAIBL+ea3Q3rnYiAa2LeZHrmtDYEITkUoAgAAgMtY8etBLVi2R5J097XNNLg/gQjORygCAACAS1i+7qDeXW4NRPf0a66Hb21NIEK5IBQBAADAcMvWHtTCFdZANOi65nroFgIRyg+hCAAAAIZatjZWC1f8Lkm67/oWevDmVgQilCtCEQAAAAyz9JdYvffNxUB0Qws9eBOBCOWPUAQAAABDfLn6Ty3+dq8k6f4bW+qBm1oZXBE8FaEIAAAA5e6L1X/q/YuB6IEbW+p+AhEMRCgCAABAufr85wP64Ls/JEkP3NRK99/Y0uCK4OkIRQAAACg3n/60Xx+t3CdJ+ufNrXTfDQQiGI9QBAAAgHLx6Y/79dH31kD00C2tde/1LQyuCLAiFAEAAMDpPv5hv5assgaih29trUHXEYjgOghFAAAAcKolq/bp4x/2S5IG92+je/o1N7gioCBCEQAAAJzCYrFoyar9+uRHayB69LY2GngtgQiuh1AEAAAAh7NYLPrfqn369McDkqRHb2urgdc2M7gqoHCEIgAAADiUxWLRR9/v02c/WQPRkNvb6s4+BCK4LkIRAAAAHMZisejDlX/o85//lCQNub2d7uzT1OCqgOIRigAAAOAQFotFH3z3h75YbQ1Ew+5op9uvIRDB9RGKAAAAUGYWi0Xvf7tXX/4SK0kafmd7Dbi6icFVAbYhFAEAAKBMLBaLFn+zV0vXWAPR43e11229CUSoOAhFAAAAKDWLxaJFX/+uZWsPSpJG3NVe/QlEqGAIRQAAACiVywNR1N0ddGtEY4OrAuxHKAIAAIDdLBaL3l2xRyvWHZIkjbyno27pdZWxRQGlRCgCAACAXSwWi95dvkcrfrUGoifu6aibCUSowAhFAAAAsJnFYtH8Zbv1zW+HJUmjBnXSTT0bGVwVUDaEIgAAANjEYrHona9269vowzKZrIHoxnACESo+QhEAAABKZLFYNG/pLn0X85dMJunJQZ10A4EIboJQBAAAgGKZzRbN+2qXVl4MRE/d21nX92hodFmAwxCKAAAAUCSz2aK5S3fp+/XWQPT0fZ11XXcCEdwLoQgAAACFMpstmvPlTq3acEQmkzT6H13Ur1sDo8sCHI5QBAAAgCuYzRa9/cVO/bDxiLxM0uj7u+jargQiuCdCEQAAAAowmy166/Md+nHTUXmZpH890FV9u9Q3uizAaQhFAAAAyGc2WzT7sx36abM1EI15oKv6EIjg5ghFAAAAkCTlmi2a/dl2/bz5mLy8TPrPA111ded6RpcFOB2hCAAAAMo1W/Tmp9u1esvFQPRgV13diUAEz0AoAgAA8HC5Zove+GSbftl6XF5eJv3fP7uqd0cCETwHoQgAAMCD5Zotev3jbVqz7bi8vUz6v4e6KbJDXaPLAsoVoQgAAMBD5eaa9drH27V2uzUQ/fehboogEMEDEYoAAAA8UG6uWa8u2aZ1O07I28uksQ93U6/2BCJ4JkIRAACAh8nNNWvWkm36dccJVfI2aezD3dWzXR2jywIMQygCAADwIDm5Zr3yv62K3hmnSt4mPfNwd4UTiODhCEUAAAAeIifXrFc+2qroXdZANG5wD/VoW9vosgDDEYoAAAA8QE6uWS9/tEUxu06qkreXxj3SXT3aEIgAiVAEAADg9rJzrIFo/W5rIJrwaA91a13L6LIAl0EoAgAAcGPZOWa99OFmbdhzSj6VvDT+EQIRcDlCEQAAgJvKzjHrxQ82a+Pv1kA04dEe6tqKQARcjlAEAADghrJzcvXC+1u0aa81EE18NFxdWtU0uizAJRGKAAAA3Ex2Tq5mvr9Zm/eelm8lL014LFxdWhKIgKIQigAAANxIdk6uZizerC1/WAPRpCHh6tSCQAQUh1AEAADgJrKyrR2iLX+clq+Pt559LFwdW9QwuizA5RGKAAAA3EBWdq6mL96kbfvOWAPRkHB1bE4gAmxBKAIAAKjgsrJzNf29Tdq2/4wq+3pr8pCeat8szOiygAqDUAQAAFCBZWbnavqijdp+4Kw1EA3tqfZNCUSAPQhFAAAAFVRmdq6mLdqoHQfOyu9iIGpHIALsRigCAACogDKycjR90Sbt+NMaiJ4b1kttm4QaXRZQIRGKAAAAKpiMrBxNXbhRu2Lj5V/ZW5OHEoiAsiAUAQAAVCAZmTmauujvQPTcsF5q05hABJQFoQgAAKCCyMjM0fMLN2r3wXj5V66kKcN6qXXj6kaXBVR4hCIAAIAKID0zR1Pe3aDfDyXIv3IlPT+8l1pdRSACHIFQBAAA4OIuDURV/CppyvBeatWIQAQ4CqEIAADAhaVlZGvKuxu093CiAvwq6fnHI9SiYTWjywLcCqEIAADARaVlZOu5BRv0x18EIsCZCEUAAAAuqEAg8vfR1Md7qXkDAhHgDIQiAAAAF5OWka3J89dr35FzCvT30dTHI9SsQYjRZQFui1AEAADgQi6kZ2vygvXanxeIRkSoWf0Qo8sC3BqhCAAAwEVcSLd2iPYfPaeqVawdoqYEIsDpCEUAAAAu4Hx6tibPj9GBo0mqWsVH00ZEqkm9YKPLAjwCoQgAAMBg59OyNGn+esUeS1LVKr6aHhWhxnUJREB5IRQBAAAY6Hxalia9E6PY48kKCvDVtBEEIqC8EYoAAAAMknoxEB28GIimR0XqqjpBRpcFeBxCEQAAgAFS07I0cV6MDp1IVnCgr6aPiFQjAhFgCMND0YkTJ9SvX78rHp82bZoGDRpkQEUAAADOlXIhS5PmxehQXLJCAitrWlSEGtUmEAFGMTwU7d+/X5UrV9ZPP/0kk8mU/3jVqlUNrAoAAMA5ks9natI7MTocl6KQwMqaHhWhhgQiwFCGh6IDBw6ocePGqlmzptGlAAAAOFXy+UxNnBejv06mKKRqZU0fQSACXIHhoWj//v1q1qyZ0WUAAAA41aWBqFrVypoeFakGtVgZA7gCL6MLOHDggBISEvTAAw8oIiJC999/v3799VejywIAAHCYpNRMTZgbTSACXJShoSgrK0t//fWXzp8/r9GjR2v+/Plq3769hg0bpvXr1xtZGgAAgEMkpWZqwrxoHTmVqupBlTVjJIEIcDWGLp/z9fXV5s2bValSJfn6+kqS2rVrp4MHD2rhwoXq1auXkeUBAACUybnUDE2YG6Njp1NVPchPM0ZGql6NQKPLAnAZw5fPValSJT8Q5WnRooVOnz5tUEUAAABldy4lQxPmRuvY6VSFBvtpJoEIcFmGhqJ9+/apc+fO2rJlS4HH9+zZw/AFAABQYSWmZGj83GgdO31eYcHWDlFdAhHgsgwNRS1atFDz5s01ZcoUbdmyRQcPHtTMmTO1Y8cOjRgxwsjSAAAASiUxJUPj50Tr+JnzCgvx14yRvVU3jEAEuDJD9xR5eXlp3rx5euWVVzR69GilpKSoTZs2eu+999SyZUsjSwMAALBbQnK6JsyN1omzFxQW4q+ZIyNVOzTA6LIAlMDwc4qqV6+uGTNmGF0GAABAmSQkp2v8nGjFxV9QjWr+mhFFIAIqCsMHLQAAAFR0lwaimgQioMIxvFMEAABQkcUnpWv83GidjL+gmtWraEZUpGpVr2J0WQDsQCgCAAAopbPnrHuITiZYA9HMqEjVJBABFQ6hCAAAoBTOnEvThLnROpWQplrVq2jGyEjVrEYgAioiQhEAAICdziSmafzcaJ1OTFPt0CqaEdVbNar5G10WgFJi0AIAAIAdTiemadzFQFQnNIBABLgBOkUAAAA2Op2YpvFzftOZc+mqExagGVGRCgshEAEVHaEIAADABqcSLmjC3GidOZeuumEBmjEyUqHBBCLAHRCKAAAASnAq4YLGz43W2XPpqlcjQNOjCESAOyEUAQAAFONkvDUQxSelq16NQE2PiiAQAW6GUAQAAFCEk/EXNH7Ob4pPzlD9moGaHhWp6kF+RpcFwMEIRQAAAIWIiz+v8XOilXAxEM2IilQ1AhHglghFAAAAl4k7e17j5kQrMSVDDWpV1fSoCFWrSiAC3BXnFAEAAFziBIEI8Dh0igAAAC46fiZVE+ZGKzElUw1rV9X0EZEKqVrZ6LIAOBmhCAAAQNKx09ZAdC41U1fVCdK0EREKDiQQAZ6A5XMAAMDjEYgAz0anCAAAeLSjp1I0YV6MkghEgMciFAEAAI915FSKJs6NUdL5TDWpG6ypIyIUFOBrdFkAyhmhCAAAeKQjJ1M0YV60ks9nqUm9YE19nEAEeCpCEQAA8Dh/nUzRxEsC0bQREapahUAEeCpCEQAA8CiH45I1cV6MUi5kqVn9YD3/OIEI8HSEIgAA4DEOxyVrwtwYpaZlqVmDEE0d3kuBBCLA4xGKAACAR7g0EDVvEKLnH49QoL+P0WUBcAGEIgAA4PYOnUjWxHnRSk3LVouGIZoynEAE4G+EIgAA4NZijydp0rwYnU/PVsuG1TRleC8FEIgAXIJQBAAA3FaBQNSomqYMIxABuBKhCAAAuKXYY0ma+E6MLqRnq1Uja4eoih+BCMCVCEUAAMDtHDh6Ts/OX68L6dlqfVV1PTesJ4EIQJEIRQAAwK0cOHpOz74TowsZOQQiADYhFAEAALex/0iinp2/XmkZOWrbJFTPDgknEAEoEaEIAAC4hX1HEjX5kkA0eWhP+VfmVgdAyfifAgAAVHj7/rJ2iNIzc9SuaaieHUIgAmA7/rcAAAAV2h+HEzV5gTUQtW8apmeHhMuPQATADvyPAQAAKqy9hxP03IL1Ss/MVYdmYZo0JFx+vtzeALAP/2sAAIAK6fdD1kCUkUUgAlA2/M8BAAAqnEsDUafmNTThsR4EIgClxv8eAACgQtl9MF7Pv7vBGoha1NDEx8JV2cfb6LIAVGCEIgAAUGHsjo3XlIUblJmVq84tamgCgQiAAxCKAABAhbAr9qyeX7hRmVm56tKqpiY80kO+BCIADkAoAgAALm/nn9ZAlJWdq66tamo8gQiAAxGKAACAS9t54KyeX7hBWTlmdWtdS+MGdycQAXAoQhEAAHBZOw6c0dSFG/MD0fhHusunEoEIgGMRigAAgEvatv+Mpi+yBqIebWrrmcHdCEQAnIJQBAAAXM62fWc07b2Nys4xK7xtbY19mEAEwHkIRQAAwKVs3Xda09/bdEkg6i6fSl5GlwXAjRGKAACAy9jyhzUQ5eSa1at9Hf3fP7sRiAA4HaEIAAC4hM17T2nG4s35gei/D3VTJW8CEQDnIxQBAADDbdp7SjMvBqKIDtYOEYEIQHkhFAEAAENt+v2UZr6/STm5FkV2rKv/PNiVQASgXBGKAACAYTbsOakXP9isnFyLenesq38TiAAYgFAEAAAMsX73Sb30oTUQXdOpnsY80EXeBCIABiAUAQCAcrd+d5xe/GCLcs0WXdO5nsbcTyACYBxCEQAAKFfRu+L08ofWQNSnc3396/7OBCIAhiIUAQCAchO9M04vfbRFZrNFfbvW1+h/dJG3l8nosgB4OEIRAAAoF7/tPKGXP9oqs9mia7vW19MEIgAuglAEAACc7tftJ/TKEmsg6tetgZ66rzOBCIDLIBQBAACnWrf9uGYt2Saz2aLrujfQk/cSiAC4FkIRAABwmjXbjuu1JVtltkjXd2+oJ+/tJC8CEQAXQygCAABOsWbrMb328TaZLdINPRpq1CACEQDXRCgCAAAO98vWY3r9YiC6MbyRnrinI4EIgMsiFAEAAIdaveWoXv9kuywW6aaejTTybgIRANdGKAIAAA7z8+ajeuNTayC6uddVihrYgUAEwOURigAAgEP8tOmo3vzMGohuibhKI+4iEAGoGAhFAACgzH7ceESzP98hi0W6NeIqjRjYQSYTgQhAxUAoAgAAZfLDxiOa/dkOSdJtkY01/K72BCIAFQqhCAAAlNqqDX/prc93SpIGXN1Ew+5oRyACUOEQigAAQKl8v/4vvf2FNRDdfnUTDSUQAaigCEUAAMBuK2MOa86XuyRJt1/TRENvJxABqLgIRQAAwC7fxRzW3IuB6M4+TfXYgLYEIgAVGqEIAADY7NvfDmneV7slSXf1baZHb2tDIAJQ4RGKAACATb757ZDeuRiIBvZtpkcIRADcBKEIAACUaMWvB7Vg2R5J0t3XNtPg/gQiAO6DUAQAAIq1fN1BvbvcGogGXddcD93SmkAEwK0QigAAQJGWrT2ohSsIRADcG6EIAAAUatnaWC1c8bsk6b7rW+jBm1sRiAC4Ja/SvGjZsmVau3atJOmPP/5Q//791aVLF40fP15ZWVkOLRAAAJS/pb/8HYj+cUNLAhEAt2Z3KHrvvfc0btw47d27V5I0ZcoUJScna9CgQfrpp5/05ptvOrxIAABQfr5c/afe+8YaiO6/kUAEwP3ZHYo+++wzDR06VFFRUYqLi9OOHTs0cuRIjRs3Tv/+97/17bffOqNOAABQDr5Y/acWf2v9wecDN7bUAze1MrgiAHA+u/cUHT9+XNdcc40kae3atTKZTOrXr58kqUmTJkpISHBshQAAoFx8/vMBffDdH5KkB25qpftvbGlwRQBQPuwORdWrV1d8fLwk6ZdfflGTJk1Uu3ZtSdL+/fsVFhbm2AoBAIDTffrTfn20cp8k6Z83t9J9NxCIAHgOu0NRv379NGvWLK1fv17r1q3Tv/71L0nWvUZvv/22Bg4c6PAiAQCA83z643599L01ED10S2vde30LgysCgPJldygaN26ccnNztXnzZv3jH//QY489Jkn65JNP1KdPH40ePdrRNQIAACf5+If9WrLKGogevrW1Bl1HIALgeewORb6+vnr++eeveHzFihWqXLmyQ4oCAADOt2TVPn38w35J0uD+bXRPv+YGVwQAxij14a1r165VTEyMzpw5ozFjxuiPP/5Q27ZtVa9ePUfWBwAAHMxisWjJqv365EdrIHr0tjYaeC2BCIDnsjsUpaen64knnlBMTIwCAwN14cIFDR06VB9//LH27t2rjz76SM2b8x8rAACuyGKx6H+r9unTHw9Ikh69ra0GXtvM4KoAwFh2n1P06quv6vfff9fixYu1YcMGWSwWSdJLL72kWrVq6Y033ih1MYcPH1bnzp21dOnSUl8DAAAUzmKx6KPv/w5EQ24nEAGAVIpQtHLlSo0ZM0Y9e/YscLp1jRo1FBUVpa1bt5aqkOzsbP3nP/9RWlpaqV4PAACKZrFY9OHKP/TZT3mBqJ3u7EMgAgCpFMvnUlJSitw3FBwcXOpQM3v2bAUEBJTqtQAAoGgWi0UffPeHvlj9pyRp2B3tdPs1TQ2uCgBch92doubNm+vrr78u9G2rV68u1X6izZs369NPP9WLL75o92sBAEDRLBaL3v92b34gGn5newIRAFzG7k5RVFSURo0apaSkJF177bUymUzavHmzli5dqk8++USzZs2y63opKSn673//q4kTJ6pOnTr2lgMAAIpgsVi0+Ju9WromVpL0+F3tdVvvJgZXBQCux+5QdP311+vll1/WrFmztHbtWknSCy+8oNDQUD333HO6+eab7brec889p06dOmnAgAH2lgIAAIpgsVi06OvftWztQUnSiLvaqz+BCAAKVapzigYMGKABAwbo0KFDSkpKUlBQkJo0aSIvL/tW4y1btkxbtmwpcjkeAACwn8Vi0cIVv2v5Omsgirq7g26NaGxwVQDgukp9eKskNWlStp84ffnll0pISFDfvn0LPD558mQtXLhQ3377bZmuDwCAp7FYLHp3xR6tWHdIkjTyno66pddVxhYFAC7O7lDUr1+/AqO4C/Pzzz/bdK1XXnlFGRkZBR678cYb9dRTT+nWW2+1tzQAADyaxWLRguV79PWv1kD0xD0ddTOBCABKZHco6tGjxxWh6MKFC9q9e7cyMzM1ePBgm69Vq1atQh8PDQ0tcuw3AAC4ksVi0fxlu/XNb4clSaMGddJNPRsZXBUAVAx2h6IXXnih0Mezs7M1atQopaenl7koAABgO4vFone+2q1vow/LZLIGohvDCUQAYCu7zykqio+Pjx566CF98cUXZbrO/v37NXDgQAdVBQCAezObLZq7dFd+IHqSQAQAdivToIXLnTt3ThcuXHDkJQEAQBHMZovmLd2llev/kskkPXVvZ13fo6HRZQFAhWN3KFq2bNkVj+Xm5urkyZP66KOP1K1bN0fUBQAAipHXIfr+YiB6+r7Ouq47gQgASsPuUPTMM88U+bbOnTtr0qRJZSoIAAAUz2y2aM6XO7VqwxGZTNLof3RRv24NjC4LACosu0NRYeO2TSaTAgMDFRQU5JCiAABA4cxmi97+Yqd+2HhEXiZp9P1ddG1XAhEAlIXdoYhR2QAAGMNstuitz3fox01H5WWS/vVAV/XtUt/osgCgwrMpFI0bN87mC5pMJs2YMaPUBQEAgCvlmi2a/dl2/bz5mLxM0pgHuqoPgQgAHMKmULRx40abL3j5wa4AAKBscs0Wvfnpdq3eckxeXib954GuurozKzcAwFFsCkWrV692dh0AAKAQVwSiB7vq6k4EIgBwJIcd3prn4MGDjr4kAAAeKdds0eufbMsPRP/3TwIRADiD3YMWkpKS9Oqrr2rz5s3Kzs6WxWKRJFksFqWlpSk5OVl//PGHwwsFAMCT5Jotev3jbVqz7bi8vUz6v4e6KbJDXaPLAgC3ZHenaObMmfryyy911VVXydvbW1WrVlX79u2VnZ2tlJQUPf/8886oEwAAj5Gba9ZrS/4ORP8lEAGAU9kdin799VeNGjVKc+fO1T/+8Q/Vrl1br7/+ur7//nu1bNlSsbGxzqgTAACPkJtr1qtLtmntdmsgGvtwN0UQiADAqewORSkpKerataskqXnz5tqzZ48kKSAgQI899pjWrFnj0AIBAPAUublmzVqyTet2nFAlb5OeGdxdvdoTiADA2ewORdWqVVNqaqokqVGjRkpISNC5c+ckSbVq1dLp06cdWyEAAB4gJ9esl/+3Vb/mBaKHu6tnuzpGlwUAHsHuUNSrVy/NmzdPx48fV/369RUSEqKlS5dKkn755RdVq1bN4UUCAODOcnLNeuWjrYreGadK3iaNG9xD4QQiACg3doeip59+WgkJCXrmmWdkMpk0fPhwvfzyy+rRo4cWL16su+++2xl1AgDglnJyzXr5oy2K3hWnSt5eGvdID/VoW9vosgDAo9g0knvMmDEaNGiQevXqpXr16um7777TX3/9JUl69NFHFRYWpm3btqlDhw666667nFkvAABuIzvHGojW7z6pSt5emvBoD3VrXcvosgDA49gUitavX6+VK1eqbt26uueeezRw4EC1atUq/+0DBgzQgAEDnFYkAADuJjvHrJc+3KwNe07Jp5KXxj9CIAIAo9i0fO63337TW2+9pTZt2mjOnDnq16+fhg8frp9++km5ubnOrhEAALeSnWPWix/8HYjoEAGAsWzqFHl7e+u6667Tddddp+TkZH3zzTdavny5Ro0apdDQUN155526++671aRJE2fXCwBAhZadk6sX3t+iTXutgWjio+Hq0qqm0WUBgEeze9BCcHCwHnzwQX322Wf67rvvdPfdd+u7775T//799cADD2jZsmVOKBMAgIovOydXM9/frE17T8m3kpcmPkYgAgBXYHcoulSTJk00ZswY/fLLL3r33XeVmJiocePGOao2AADcRnZOrmYs3qzNe0/Lt5KXJg0JV5eWBCIAcAU2LZ8rSlZWln755Rd9/fXX+u233+Tl5aWBAwc6qjYAANxCVra1Q7Tlj9Py9fHWs4+Fq2OLGkaXBQC4qFShaMOGDfr666/1ww8/KDU1VZ06ddLEiRN16623qkqVKo6uEQCACisrO1fTF2/Stn1nrIFoSLg6NicQAYArsTkU7du3TytWrNC3336rM2fOKDQ0VIMGDdI999zDgAUAAAqRlZ2r6e9t0rb9Z1TZ11uTh/RU+2ZhRpcFALiMTaFowIABio2NlZeXl66++mpNmjRJ1157rby9vZ1dHwAAFVJmdq6mL9qo7QfOWgPR0J5q35RABACuyKZQlJWVpX/961+66667VKMGLX8AAIqTmZ2raYs2aseBs/K7GIjaEYgAwGXZFIpWrVrl7DoAAHALGVk5mr5ok3b8aQ1Ezw3rpbZNQo0uCwBQjDJNnwMAAH/LyMrR1IUbtSs2Xv6VvTV5KIEIACoCQhEAAA6QkZmjqYv+DkTPDeulNo0JRABQERCKAAAoo4zMHD2/cKN2H4yXf+VKmjKsl1o3rm50WQAAGxGKAAAog/TMHE15d4N+P5Qg/8qV9PzwXmp1FYEIACqSUoeigwcPKjo6WmfOnNFDDz2kY8eOqVWrVgoMDHRkfQAAuKxLA1EVv0qaMryXWjUiEAFARWN3KMrNzdXkyZP15ZdfymKxyGQy6ZZbbtHbb7+tY8eO6aOPPlLt2rWdUSsAAC4jLSNbU97doL2HExXgV0nPPx6hFg2rGV0WAKAUvOx9wdy5c/X1119r2rRpio6OlsVikSSNHTtWZrNZr732msOLBADAlaRlZOu5BQQiAHAXdoeiL7/8Uk899ZTuvvtuhYSE5D/eqlUrPfXUU4qOjnZkfQAAuJS8QPTHX4kK8PfR1BEEIgCo6OxePhcfH6/WrVsX+rZatWopJSWlzEUBAOCK0jKyNXn+eu07ck6B/j6a+niEmjUIMbosAEAZ2d0patSokdauXVvo2zZt2qRGjRqVuSgAAFzNhfRsPXtpIBpBIAIAd2F3p2jw4MF69tlnlZ2drWuvvVYmk0lHjhzRxo0btWjRIj3zzDPOqBMAAMNcSLd2iPYfPaeqVawdoqb1Q4wuCwDgIHaHokGDBikxMVHz5s3Txx9/LIvFojFjxsjHx0dDhw7V/fff74w6AQAwxPn0bE2eH6MDR5NUtYqPpo2IVJN6wUaXBQBwoFKdU/T444/rwQcf1Pbt25WUlKSgoCB17NixwOAFAAAquvNpWZo0f71ijyWpahVfTY+KUOO6BCIAcDd27ymSpM2bN+u9997T1VdfrQEDBig0NFQTJ07Url27HF0fAACGOJ+WpUnvxCj2WJKCAghEAODO7A5Fv/zyix555BFt2LAh/7FKlSopLi5ODz74oDZv3uzQAgEAKG+paVma+E6MYo8nXwxEkQQiAHBjdoeit956S7fffrv+97//5T/WqlUrLV26VLfddpteffVVhxYIAEB5Sk3L0sR5MTp4PFnBgb6aERWpq+oEGV0WAMCJ7A5Fhw4d0h133FHo226//Xbt27evzEUBAGCElAtZmjg3RodOJCsksLKmR0WqEYEIANye3aEoKChIhw4dKvRtR44cUUBAQJmLAgCgvCWfz9TEedE6FJeskKqVNT0qQo1qE4gAwBPYHYpuvvlmvfHGG1qzZk2Bx9euXas333xTN954o6NqAwCgXFgDUYwOx6UopGplzYiKVEMCEQB4DLtHcj/99NPatWuXRowYIR8fH4WEhCgpKUk5OTnq2LGjxowZ44w6AQBwirxA9NfJFFWral0y16BWVaPLAgCUI7tDUZUqVbRkyRKtXbtWW7ZsUXJysqpWrapu3bqpb9++8vIq1ZRvAADKXVKqdcnckVOpqh5kDUT1axKIAMDTlOrwVpPJpL59+6pv374OLgcAgPKRlJqpCfOidZRABAAez6ZQNG7cOI0cOVINGjTQuHHjin2uyWTSjBkzHFIcAADOcC41QxPmxujY6VRVD/LTjJGRqlcj0OiyAAAGsSkUbdy4UYMHD87/fXFMJlPZqwIAwEnOpWRowrxoHTt9XqHBfpoRFam6BCIA8Gg2haLVq1fn/37p0qUKCQlxVj0AADhNYkqGJsyN1vEz5xUW7KfpIyNVN4xABACezu6pCPfee6++++47Z9QCAIDTJKZkaPyci4EoxF8zRvYmEAEAJJVi0EJycrKqVavmjFoAAHCKhOR0TZgbrRNnL6hGNX/NiIpU7VAOGwcAWNndKXr44Yf10ksvacOGDUpMTHRGTQAAOExCcrrGzyEQAQCKZnenaPny5YqLi9Ojjz5a6NtNJpP27t1b5sIAACirvEAUF39BNav5azqBCABQCLtD0e233+6MOgAAcKj4pHSNnxutk/EXVLN6Fc2IilSt6lWMLgsA4ILsDkWjRo1yRh0AADjM2XPWPUQnEy6o1sVAVJNABAAogs2hKCEhQUuXLlVcXJwaNWqkAQMGKDQ01Jm1AQBgtzPn0jRhbrROJaRZA9HISNWsRiACABTNplAUGxurBx98UMnJyfmPzZkzR2+99ZZ69OjhtOIAALDHmcQ0jZ8brdOJaaodWkUzonqrRjV/o8sCALg4m6bPvf766woMDNRHH32knTt36quvvlL9+vU1depUZ9cHAIBNTiemadzFQFQnNEAzRxKIAAC2sSkUbdmyRWPGjFG3bt1UuXJltW7dWuPHj1dsbCxjuQEAhjudmKbxc37TmcQ01QkL0IyRkQoLIRABAGxjUyhKTU1V3bp1CzzWqlUrWSwWxcfHO6UwAABscSrhgjUQnUtX3bAAzSQQAQDsZNOeotzcXHl7exd4zN/f+g0nOzvb8VUBAGCDUwkXNH5utM6eS1e9GgGaHhWp0GACEQDAPnaP5AYAwBWcjLcGovikdNWrEajpUREEIgBAqZQ5FJlMJkfUAQCAzU7GW5fMxSdnqH7NQE2PilT1ID+jywIAVFA2h6L77ruv0MfvvvvuAn82mUzau3dv2aoCAKAIcfHnNX5OtBIuBqIZUZGqRiACAJSBTaFo1KhRzq4DAIASxZ09r3FzopWYkqEGtapqelSEqlUlEAEAyoZQBACoEE6ctXaICEQAAEdj0AIAwOUdP5OqCXOjlZiSqYa1q2r6iEiFVK1sdFkAADdBKAIAuLRjp62B6Fxqpq6qE6RpIyIUHEggAgA4jk2HtwIAYAQCEQCgPNApAgC4pKOnUjRhXoySCEQAACcjFAEAXM6RUymaODdGSecz1aRusKaOiFBQgK/RZQEA3JRNoWjZsmV2XfTOO+8sRSkAAEhHTqZowrxoJZ/PUpN6wZr6OIEIAOBcNoWiZ555psCfTSaTJMlisVzxmEQoAgCUzl8nUzTxkkA0bUSEqlYhEAEAnMumUPTzzz/n//6PP/7Qf//7X0VFRemWW25RzZo1de7cOa1evVqzZ8/WzJkznVYsAMB9HY5L1sR5MUq5kKVm9YP1/OMEIgBA+bApFNWrVy//908++aSioqI0bNiw/Mdq1aql+++/X9nZ2Xr55ZfVp08fx1cKAHBbh+OSNWFujFLTstSsQYimDu+lQAIRAKCc2D1o4eDBg2rdunWhb2vcuLGOHz9e5qIAAJ7j0Alrhyg1LUvNG4To+ccjFOjvY3RZAAAPYvc5RVdddZWWL19e6Ns+/fRTtWjRosxFAQA8w8HjSZo4L1qpaVlq0ZBABAAwht2doieeeEJPP/20/vrrL1133XWqXr264uPj9cMPPyg2NlYLFixwRp0AADcTezxJk+bF6Hx6tlo2rKYpw3spgEAEADCA3aHoxhtv1Ntvv623335bb7zxhiwWi7y8vNS5c2ctXrxY3bp1c0adAAA3EnssSZPeuRiIGlXTlGEEIgCAcUp1eGu/fv3Ur18/ZWZmKjk5WSEhIfL1ZUMsAKBkfx47p0nvrNeF9Gy1amTtEFXxIxABAIxTqlAkWQcuREdH6+zZs/rnP/+pY8eOqVWrVgoMDHRkfQAAN3Lg6Dk9O98aiFpfVV3PDetJIAIAGM7uUJSbm6vJkyfryy+/lMVikclk0s0336y3335bx44d00cffaTatWs7o1YAQAV24Og5PftOjC5k5BCIAAAuxe7pc3PnztXXX3+tadOmKTo6WhaLRZI0duxYmc1mvfbaa3ZdLyEhQf/3f/+nnj17qnPnzho+fLhiY2PtLQsA4ML2H0nUpIuBqG2TUAIRAMCl2B2KvvzySz311FO6++67FRISkv94q1at9NRTTyk6Otqu60VFRenYsWNasGCBvvjiC/n5+emRRx5Renq6vaUBAFzQviOJenb+eqVdDESThxKIAACuxe5QFB8fX+ThrbVq1VJKSorN1zp37pzq16+vqVOnqn379mratKlGjhyps2fP6s8//7S3NACAi9n3V6KefccaiNo1tQYi/8ql3s4KAIBT2B2KGjVqpLVr1xb6tk2bNqlRo0Y2X6tatWp69dVX1bx5c0nWwLVw4ULVrl1bzZo1s7c0AIAL+eNwop6dH6P0zBy1bxqmyUMIRAAA12T3d6fBgwfr2WefVXZ2tq699lqZTCYdOXJEGzdu1KJFi/TMM8+UqpBJkybps88+k6+vr+bOnasqVaqU6joAAOPtPZyg5xasV3pmrjo0C9OkIeHy8yUQAQBck8mSNynBDu+8847mzZunjIyM/EELPj4+Gjp0qJ5++ulSFRIbG6uMjAx9/PHH+uabb7RkyRK1bdvWrmtcd911kqSff/65VDUAAMru90PWQJSRRSACABjHnmxQqlAkSefPn9f27duVlJSkoKAgdezYscDghdIym80aMGCAOnTooJkzZ9r1WkIRABhrz8F4TXl3gzKyctWpeQ1NeKwHgQgAYAh7soHde4rGjRunY8eOKTAwUFdffbUGDBigPn36KCQkRIcOHdKIESNsvlZCQoK++eYb5ebm/l2Ql5eaNm2qM2fO2FsaAMBAuy8NRC1qaCIdIgBABWHTd6u4uLj83y9btkzXX3+9vL29r3jeunXrFBMTY/M7P3PmjP79738rNDRUvXr1kiRlZ2dr79696tevn83XAQAYa3dsvKYs3KDMrFx1blFDEx4LV2WfK79PAADgimwKRc8//3yBiXOjRo0q9HkWi0WRkZE2v/NWrVqpd+/emjJliqZNm6agoCDNmzdPKSkpeuSRR2y+DgDAOLtiz2rKuxuVlZ2rLq1qasIjPeRLIAIAVCA2haIpU6YoJiZGFotF48ePV1RUlBo2bFjgOV5eXgoKClJ4eLjN79xkMun111/XrFmzNHr0aKWmpqpbt2763//+p7p169r3kQAAyt3OP8/q+YXWQNS1VU2NJxABACoguwctfPXVV+rbt68CAwPl42M9kTw9PV2ZmZkOGbRQFgxaAIDys+PAGU1duFFZOWZ1a11L4wZ3JxABAFyGUwct9O/fX7NmzdK9996b/9j27dvVu3dvTZ8+vcDQBACAe9q+v2AgGv8IgQgAUHHZHYrefPNNfffdd7rzzjvzH2vbtq3Gjh2rr776SgsWLHBkfQAAF7Nt/xlNW2QNRD3a1Nb4R7rLpxKBCABQcdk9K/Xbb7/V2LFjdd999+U/FhwcrIceekheXl5avHixXWO5AQAVx7Z9ZzTtvY3KzjErvG1tjX24G4EIAFDh2R2Kzp07p/r16xf6tsaNG+v06dNlLgoA4Hq27jut6e9tuiQQdZdPJbsXHAAA4HLs/m7WtGlTrVq1qtC3/fjjj2rUqFGZiwIAuJYtf5zWtEXWQNSrfR0CEQDArdjdKXrsscf073//W0lJSbr++usVGhqqxMRE/fTTT/rhhx80c+ZMZ9QJADDI5r2nNGPxZuXkWgPRfx/qpkreBCIAgPuwOxT1799fqampeuutt/TDDz/kP16tWjVNmjSpwAAGAEDFtmnvKc28GIgiOtTR//2TQAQAcD92hyJJ+sc//qH77rtPhw8fVlJSkoKCgtSkSRN5efGNEgDcxabfT2nm+5uUk2tRZMe6+s+DXQlEAAC3VKpQJEkmk0lNmjRxZC0AABexYc9JvfjBZuXkWtS7Y139m0AEAHBjNoWi1q1b69NPP1WHDh3UqlUrmUymIp9rMpm0d+9ehxUIAChf63ef1EsfWgPRNZ3qacwDXeRNIAIAuDGbQtETTzyhWrVq5f++uFAEAKi41u+O04sfbFGu2aJrOtfTmPsJRAAA92dTKBo1alT+75988kmnFQMAME70rji9/KE1EPXpXF//ur8zgQgA4BFsCkVxcXF2XbRu3bqlKgYAYIzonXF66aMtMpst6tu1vkb/o4u8vVgVAADwDDaFon79+tm1ZO6PP/4odUEAgPL1284TevmjrTKbLbq2a309TSACAHgYm0LRjBkz8kNRcnKyXnnlFfXq1Uu33HKLatSooaSkJK1evVpr1qzRM88849SCAQCO8+v2E3pliTUQ9evWQE/d15lABADwODaFooEDB+b//oknntBdd92lqVOnFnjOgAEDNH36dK1cuVL33XefY6sEADjcuu3HNWvJNpnNFl3XvYGevJdABADwTHbvoI2OjtbNN99c6Nv69u2r7du3l7koAIBzrdl2XLP+Z+0QXd+9oZ4iEAEAPJjdoahatWrasWNHoW/bsGFD/uhuAIBrWrP1mF5bslVmi3RDj4Z68t5O8iIQAQA8mE3L5y41aNAgzZkzR+np6erXr5+qV6+u+Ph4ff/99/r44481fvx4Z9QJAHCAX7Ye0+sfb5PZIt0Y3khP3NORQAQA8Hh2h6KoqCilpqZq8eLFWrhwoSTJYrHIz89PTz/9tB588EGHFwkAKLvVW47q9U+2y2KRburZSCPvJhABACCVIhSZTCaNHTtWI0eO1I4dO5ScnKxq1aqpc+fOqlKlijNqBACU0c+bj+qNT62B6OZeVylqYAcCEQAAF9kdivIEBASoRo0aslgs6tixo7KysghFAOCCftp0VG9+Zg1Et0RcpRF3EYgAALhUqULR8uXLNWvWLJ09e1Ymk0mff/65Zs+eLR8fH82aNUu+vr6OrhMAUAo/bjyi2Z/vkMUi3RpxlUYM7GDXYdwAAHgCu6fPfffddxo7dqx69uypV199VWazWZJ04403at26dZozZ47DiwQA2O+HjUf05mfWQHRbZGMCEQAARbC7UzRv3jz94x//0HPPPafc3Nz8xwcOHKiEhAR99tlnGj16tCNrBADYadWGv/TW5zslSQOubqJhd7QjEAEAUAS7O0WHDx/WDTfcUOjbOnbsqNOnT5e5KABA6X2//u9AdDuBCACAEtkdikJDQ3Xw4MFC33bw4EGFhoaWuSgAQOmsjDmst7+4GIiuaaKhBCIAAEpkdyi69dZb9eabb+r7779XVlaWJOuY7j179mjOnDm6+eabHV4kAKBk38Uc1pwvd0mS7uzTVENvJxABAGALu/cUjR49WgcOHNDo0aPl5WXNVA899JDS0tLUrVs3Pf300w4vEgBQvG9/O6R5X+2WJN3Vt5keva0NgQgAABvZHYp8fX317rvvKjo6Whs2bFBSUpKqVq2qHj16qE+fPnwTBoBy9s1vh/TOxUA0sG8zPUIgAgDALnaHohEjRujhhx9WZGSkIiMjnVETAMBGK349qAXL9kiS7r62mQb3JxABAGAvu/cUbd68Wd7e3s6oBQBgh+Xr/g5Eg65rTiACAKCU7A5FkZGR+vzzz5WZmemMegAANli29qDeXf53IHroltYEIgAASsnu5XOVK1fWypUr9eOPP6p+/fpXjOA2mUx6//33HVYgAKCgZWtjtXDF75Kk+65voQdvbkUgAgCgDOwORadOnVLnzp3z/2yxWAq8/fI/AwAcZ+kvsXrvG2sg+scNLfXATS0JRAAAlJHdoejDDz90Rh0AgBJ8ufpPLf52ryTp/htb6oGbWhlcEQAA7sGuULRr1y6dOHFCjRo1Ups2bZxVEwDgMl+s/lPvXwxED9zYUvcTiAAAcBibQlFKSooef/xx7dixQxaLRSaTSZ06ddKrr76qOnXqOLtGAPBon/98QB9894ck6cGbW+kfN7Q0uCIAANyLTdPnXn/9de3du1dPPvmk5s+fr7Fjx+rw4cOaNGmSs+sDAI/26U/78wPRPwlEAAA4hU2dol9++UVjxozR4MGDJUnXXHONatWqpf/85z9KS0tTlSpVnFokAHiiT3/cr4++3ydJeuiW1rr3+hYGVwQAgHuyqVN09uxZtW3btsBj4eHhys3N1cmTJ51SGAB4so9/+DsQPXwrgQgAAGeyqVOUk5MjX1/fAo8FBwdLEoe4AoCDLVm1Tx//sF+SNLh/G93Tr7nBFVUMuWaL9h5KUGJKhqoH+alNk1B5ezGuHABQMrtHcl+Oc4kAwDEsFouWrNqvT360BqJHb2ujgdcSiGwRsytO85ftVkJyRv5jocF+Gn5ne0V0qGtgZfYh2AGAMcocijg0EADKzmKx6H+r9unTHw9Ikh4b0FZ39W1mcFUVQ8yuOM18f/MVjyckZ2jm+5s1bnD3ChGM3CXYAUBFZHMoeu655xQYGJj/57wO0aRJkxQQEJD/uMlk0vvvv+/AEgHAvVksFn30/T599pM1EA25va3u7EMgskWu2aL5y3YX+5wFy/covF0dl+64uEuwA4CKyqZBC927d1dAQIAsFkv+r7zHq1SpUuBxs9ns1IIBwJ1YLBZ9uPKP/EA09I52BCI77D2UUKCzUpj4pHTtPZRQThXZz9Zgl2tmuToAOItNnaIPP/zQ2XUAgMexWCz64Ls/9MXqPyVJw+5op9uvaWpwVRVLYkrxgcje5xnBnmDXvllYOVUFAJ6lzHuKAAD2s1gsev/bvfryl1hJ0vA722vA1U0MrqriqR7k59DnGcEdgh0AVHSEIgAOxfSsklksFi3+Zq+WrrEGohF3tVf/3gSi0mjTJFShwX7FdlrCQvzVpkloOVZlH3cIdgBQ0RGKADgM07NKZrFYtOjr37Vs7UFJ0oiBHdQ/srHBVVVc3l4mDb+zfaFDCvIMu6OdSwdzdwh2AFDR2TRoAQBKkjc96/Ibu7zpWTG74gyqzHVYLBYtXPF3IIq6m0DkCBEd6mrc4O4KDS7YSQkL8a8QU9vygl1xXD3YAUBFR6cIQJm5y1hkZ7JYLHp3xR6tWHdIkjTyno66pddVxhblRiI61FV4uzoVdulmXrC7vNMaFuKvYXe0c/lgBwAVHaEIQJkxPat4FotFC5bv0de/WgPRE/d01M0EIofz9jJV6L9fFT3YAUBFRigCUGZMzyqaxWLton3z22FJ0qhBnXRTz0YGVwVXVdGDHQBUVIQiAGXG9KzCWSwWvfPVbn0bfVgmk/TkoE66IZxABACAq2HQAoAyy5ueVRxPm55lNls0d+mu/ED01L0EIgAAXBWhCECZMT2rILPZonlLd2llzF8XA1FnXd+DQAQAgKsiFAFwiIo+FtlR8jpEK9dbA9HT93XW9T0aGl0WAAAoBnuKADiMp0/PMpstmvPlTq3acEQmkzT6H13Ur1sDo8sCAAAlIBQBcChPnZ5lNlv09hc79cPGI/IySaPv76JruxKIAACoCAhFAFBGZrNFb32+Qz9uOiovk/SvB7qqb5f6RpcFAABsRCgCgDLINVs0+7Pt+nnzMXmZpDEPdFUfAhEAABUKoQgASinXbNGbn27X6i3H5OVl0n8e6KqrO9czuizAreSaLR67TxFA+SEUAUApXBGIHuyqqzsRiJyBm2LPFbMrTvOX7VZCckb+Y6HBfhp+Z3uPmWgJoHwQigDATrlmi17/ZJvWbD0uLy+T/u+fXdW7I4HIGbgp9lwxu+I08/3NVzyekJyhme9v9qhR/wCcj3OKAMAOuWaLXv/YGoi8vUz670PdCEROkndTfGkgkv6+KY7ZFWdQZXC2XLNF85ftLvY5C5bvUa7ZUk4VAXB3hCIAsFFurlmvLdmmNdv+DkSR/KRauWaLdsfGa+2249odG++QG1Vuij3b3kMJV4Thy8UnpWvvoYRyqgiAu2P5HADYIDfXrFeXbNO6HSfk7WXS2Ie7qVd7ApGzlrfZc1PsiediubvElOK/9vY+DwBKQqcIAEqQm2vWrIuBqJK3Sc8M7k4gknOXt3FT7NmqB/k59HkAUBJCEQAUIyfXrJf/t1W/5gWih7urZ7s6RpdlOGcvb+Om2LO1aRKq0ODiv7ZhIf5q0yS0nCoC4O4IRQBQhJxcs175aKuid8apkrdJ4wb3UDiBSFLZ9nzYsgeJm2LP5u1l0vA72xf7nGF3tGM0OwCHYU8RABQiJ9eslz/aophdJ1XJ20vjHumuHm1qG12Wyyjt8jZb9yDl3RQXNpI5DzfF7i2iQ12NG9z9ir8vYSH+GnZHO8ZxA3AoQhEAXCY7xxqI1u+2BqIJj/ZQt9a1jC7LpZRmeZu9585wU4yIDnUV3q4Oh/cCcDpCEQBcIjvHrJc+3KwNe07Jp5KXxj9CICpM3vK24pbQXbq8zdY9SOHt6hS44eWmGN5eJiYMAnA69hQBwEXZOWa9+MHfgYgOUdHs3fNRlj1IeTfFfbrUV/tmYQQiAIDDEYoAQFJ2Tq5eeH+zNv5uDUQTHw1X11YEouLkLW+7fCBCWIj/FUvhGLENAHBlLJ8D4PGyc3I18/3N2rz3tHwreWnCY+Hq0rKm0WVVCLYub2PENgDAlRGKAHi07JxczVi8WVv+sAaiSUPC1akFgcgetuz5sHcPEgAA5YnlcwBcni3n2pRGVvYlgcjHW88O6UkgchLOnQEAuDI6RQBcmq3n2tgrKztX0xdv0rZ9Zy4GonB1bF7DESWjCIzYBgC4KkIRAJdl77k2tsrKztX09zZp2/4zquzrrclDejLyt5wwYhsA4IoIRQBcUmnPtSlJZnaupi/aqO0HzloD0dCeat+UQFSeOHcGAOBq2FMEwCWV5VybomRk5WjaQmsg8vP11nMEIgAAIDpFAFyUo8+1ycjK0bRFG7Xzz3hrIBrWS22ZdAYAAEQoAuCiHHmuTUZWjqYu3KhdsfHyr+ytyUMJRAAA4G8snwPgkvLOtSmOLefaZGQWDER0iAAAwOUMD0VJSUl69tlndc0116hLly66//77tWXLFqPLAmAwR5xrk5GZo+fzA1ElTRkWoTaNCUQAAKAgw0PRmDFjtHPnTr366qv64osv1LZtWw0ZMkQHDx40ujQABss71+byjlFYiH+J47jTM3P03LsbtPugNRA9P7yXWjeu7uySAQBABWTonqIjR44oOjpaH3/8sbp06SJJmjBhgtatW6dvvvlGTz/9tJHlAXABpTnXJj0zR1Pe3aDfDyWoil8lTRneS60aEYgAAEDhDA1F1apV0/z589WuXbv8x0wmkywWi5KTkw2sDIArsedcm7SMbE15d4P2Hk5UgF8lPf94hFo0rObkCgEAQEVmaCgKCgpSnz59Cjy2cuVKHT16VL179zaoKgAVVVpGtp5bsEF//EUgAgCgvOWaLXat7HAlLjWSe+vWrRo/fryuu+469evXz+hyAFQgBQKRv4+mPt5LzRsQiFxRRf6mCQAoXMyuOM1ftrvAweuhwX4afmf7YvcAuwqXCUU//fST/vOf/6hjx4569dVXjS4HQAWSlpGtyfPXa9+Rcwr099HUxyPUrEGI0WWhEBX9myYA4Eoxu+I08/3NVzyekJyhme9vLnE4kiswfPqcJH300Ud68skndc0112jBggXy87Pt0EYAuJCerWcvDUQjCESuKu+b5qWBSPr7m2bMrjiDKgMAlFau2aL5y3YX+5wFy/co12wpp4pKx/BQtGTJEk2dOlUPPvigXn/9dfn6+hpdEgAD5Zot2h0br7Xbjmt3bHyx/4leSLd2iPYfOaeqVXw0bUSEmtUPKb9iPZA9X5/LX+cO3zQBAAXtPZRwxQ+7LheflK69hxLKqaLSMXT53OHDhzVjxgzdcMMNevzxx5WQ8Pcny8/PT1WrVjWwOgDlzZ6lVefTszV5fowOHE26GIgi1aRecHmX7BLKa49OWZa+2fNN09ZJgwAA4yWmFP9/u73PM4qhoWjVqlXKzs7Wjz/+qB9//LHA2+666y698MILBlUGoLzZsx75fFqWJs1fr9hjSapaxVfToyLUuK5nBqLy2qNT1vXi7vJNEwBQUPUg27a92Po8oxgaikaMGKERI0YYWQIABylLt8LWpVXh7eooPSNbk96JUezxZAUF+GraCM8OROWxsdWer09RX3N3+aYJACioTZNQhQb7FbsaICzEX22ahJZjVfZzmelzACqusnYrbF1atWXvKX38434dvBiIpkdF6qo6QWWuvyJyRFCxlSOWvrnLN00AQEHeXiYNv7N9oT+kyzPsjnYuf/SC4YMWAFRsjpgoZuuSqfnLduvg8WQFB/pqhgcHIql8N7Y6Yulb3jfN4lSEb5oAgCtFdKircYO7KzS4YLc/LMS/QozjlugUASgDR3UrbF0ydeZcukICK2taVIQa1fbcQCSVLqiUdomjo5a+5X3TvLyrWLWKjwZc3UTh7erY9H4AAK4nokNdhberU2EP5yYUASg1R00Us2VplSSFBFbW9KgINfTwQCTZH1TKssTRkUvf8r5pfvbTAa349aDOp2UrNS1bS1bt16oNRzjEFQAqMG8vU4WdIMryOQCl5qiJYrYsrQrwq6QZIyMJRBflBZXi5AWVsi5xdPTSt417TmrJqn06n5ZdqnoAAHA0QhGAUnPkRLGi1iNLUoC/j15+6ho1qMXZZXlsDSqSHHJoqqPWi3OIKwDAFbF8Diij8jo40xU5eqJY3tKqTXtOav6y3YpPzlC1oMqaERWp+jUJRJcrao9OWIi/ht3RThEd6mp3bLzDDk11xHpxDnEFALgiQhFQBuV1cKarcsYYztQLWfpo1T7FJ2eoelBlTScQFaukoOLoQ1PLul6cQ1wBAK6I5XNAKTliFLU7cOQYznOpGRo/N1pHT6WqepCfZozsTSCyQV5Q6dOlvto3CysQQl3t0FRXqwcAAIlOEVAq5XlwZkXgiGVV51IyNGFetI6dPq/QYD/NiIpU3RqBTqzaM7jaoamuVg8AABKdIqBUyvPgzIqiuG5FSRJTrB2iY6fPKyzYTzNGEogcxdUOTXW1egAAkAhFQKmwL8JxElMyNH5OtI6fOa+wEH/NGNlbdcMIRI7kiCWOuWaLdsfGa+2249odG1+m6XDucPI5AMC9sHwOKAX2RThGQnK6JsyN1omzF1Sjmr9mREWqdmiA0WW5pbIscXTGQJGKfvI5AMC9EIqAUnDVfRGOHA/u7FHjCcnpGj8nWnHxBKLyUprJcXkDRS6XN1CkLJ2dinzyOQDAvRCKgFJwxijqsnLkT/OdPWr80kBUs5q/phOIXBIDRQAAnoI9RUApudK+CEeOB3f2qPH4pHSNywtE1atoxsjeTg1EjtwL42kYKAIA8BR0ioAycIV9EY78ab6zOwNnz1n3EJ1MuKBa1atoRlSkalavYvd1bOXph+uWFQNFAACegk4RUEZlGUXtCI78ab4zOwNnzqVp/Nzf/g5EI50fiDhct2wYKAIA8BSEIsAF2bPky5E/zXdWZ+BMYprGz4nWqYQ01Q6topkje6tmNecFIls7XiylK17eQJHiFDVQhGWLAICKhOVzgIspacnX5VPhQgIr23RdW36a74zOwOnENI2fG60ziWmqExqgGSMjFRbiL8l5E+4++2m/zR0vpp8VrbQDRVi2CACoaAhFgAspafzxwL5NtXb7iStuNgOr+Oh8WnaR17V1PLijR42fTkzT+Dm/6cy5dNUJC9CMqL8DkbNunGN2xWnJqv02PZe9MCXLGyhy+dcqLMRfw+5od8XXypkjvAEAcBZCEeAibFnytXTNwSseK6kjItk+HtyRo8ZPJVzQhLnROnMuXXXDrB2i0OC/A5Ezbpxt+Rxeir0wtrF1oAgjvAEAFRV7igAXYcuQg+JUreKr6kEFl9KVZjy4I0aNn0q4YF0ydy5d9WoUDETO3O9jz+fQiMN1KzJbBoowwhsAUFHRKQJcRFmXcqWmZWnqiAh5m0xl3qNTllHjJ+OtgSg+KV3VgyrroVtaK6Tq3wHLnhtne/f72PM5LO/DdT0BI7wBABUVoQhwEY5YypWcmqk+Xeo7oJq/OwP2OBl/Qf9+Y61SL+5vSkzJ1AsfbCmwV8iZN862fg4fuKmVYftanDVcwhUwwhsAUFERigCD5d0kxyelKyjAVykXskp9LSNvNuPiz+s/b6zLD0SXytsrNPahbkpKzbTpeqX5WGwZFBEa7Kd7r29h97Udwd2nsjl6UAcAAOWFUASUg6K6A4XdJJeWkTebcWfPa9yc6EID0aVe/miLbNkqVNqPxZZBEcPvbG9IZ8YTprI5clAHAADliVAE2Ki0y56K6g706Vyv0GlyhQkL8dc1neoW+3yjbjZPnD2v8XOibVruZuvshLJ8LPaOkC4PnjSVzRU//wAAlIRQBNiguGVPxQ0kKK47UFIgCgrw1dA72iks2D//mi0bVXepm83jZ1I1YW60ElMyFRbsp/gydrwc9bGUZVCEMzhzuIQrcrXPPwAAJSEUASUoadlT1So+BZaNXRqW7Dkz53IpF7IUFuxf4CbZlW42j522BqJzqZm6qk6QHriplWYs3lTq6w29vZ1uu7qJwz6W0gyKcBZPnMrmSp9/AABKQigCimHLsqfL99HkhaUHbmpV5r1C8Unp2h0bf0UAMvpm8/JANG1EhAKr+Ja4yb44IVUru1Un4dLlls4cLgEAAMqOUAQUoywHqn79q237hYrz7oo9BabRucKksqOnUjRhXoySUjPVuG6Qpj4eoeBA66GxJW2yL447BYLCllt6mYrfU8VUNgAAjONldAGAKyvLcqaSJrHZ4vLx3HldqJhdcWW+dmkcOZWiCXOtgahJ3WBNGxGZH4ikvzfZhwYXDDglNYDcKRDkLbe8PEyXNGSCqWwAABiHThFQjLJ2LwL9fXQ+vezh6HJGTCo7cjJFE+ZFK/l8lprUC9bUxyMUFOB7xfMiOtRVtza1tTL6sE4mXFCd0ABVC6qslz/aWuS13SUQ2LLc8vKOEVPZAAAwHqEIKIYth1EW5/ZrmmjJqv1Fvn1g36Zau/1EgevbcoBreU8q++tkiiZeDERN61sDUdUqVwYiqehJfYV9rO4WCGxZbmm2WIdKhFStzFQ2AABcBKEIKIYth1EWJSzEX/de31KNagcVO0b74f5tC0yTi09O16tLtpV4/fKaVHY4LlkT58Uo5UKWmtUP1vMlBKLiRpCPfbibggMqGz45ryyKO6/K1q9JSNXK6tOlvjPLBAAAdiAUASUo6jDKqlV8lZpWdEcnb0lYSWO0L58mtzs23qa6ymMwweG4ZE2YG6PUtCw1axCiqcN7KbCIQGTL0rGFK37XuxNuqHBBKE9x51VFdKhr89fEnYZKAADgDghFgA2KCjYb95y06TBVe8Zo27Jkr7DBBMV1MErj0Alrhyg1LUvNG4To+ccjFOjvU+Tz3f2A0pLOqxo3uLvC29Up8WsXHOibP2q9InbKAABwR4QiwEaFBRtnHKZqy5K9ywcTlNTBsNfB40ma9E6MUtOy1aJhiKYMLz4QSe59QKktXbC84Rclfe2Sz2fp1Y+tyyNdYcQ6AABgJDdQZnlhqU+X+mrfLMwhP/kvarR1WIi/xg3uXuAmuqgR0KUd3x17POlihyhbLRtW0/MXA1Gu2aLdsfFau+24dsfGK/eyGdOOXjpW0vsrT/Z0wYr62hXG6BHrAADAik4R4KJs6ULZ08G4/HWFXTf2mLVDdD49Wy0bVdPzw3upip+PTZ2o0i77K4yjO19lZW8X7NKvXXxyut5dvlspF4oezW7EiHUAAPA3QhHgIooKKsXtvynNPp6iAseA3k30+eo/dSE9W60aVdOUSwJRSXtpIjrULdWyv8LY+v7KU2m6YHlfu92x8cUGIqli77UCAMAdEIoAF1Dazoi9HYziAsfib/dKkhrVrqrJQ62ByN5OVESHuhrYt6mWrT1Y4IBSL5N0Z5+mV3wslwfBlldVL1Xny9nK0gVz571WAAC4C0IRYLCydEbs6WDYEnAk6cipVI16ZbWG39leVav42tSJ2hMbr44taihmV5yWrjl4xXPMFmnpmoNq2ah6/sdSWBB0xYNrpdINv8jDmG4AAFwfgxYAA9naiSlqyEBeB6M4eR0MW5ba5ckLZOt32zYAYOYHm/TbzhM2fyxFDYcoKRDlSUzJsHkQg9EDG+z5GgEAAGPQKQIMVNazfezpYJRmedbqLcdset6F9By9+MGWEp+X11WypWNVnLj4Cxoy7YcSlxuWdlmiI5f1OWqvFQAAcB5CEWAgR+w3yRsBXdIhsqVZnnUhI8fu15Rk18F4mztWhalaxVdLVu274vHLlxuWdlmiM5b12fo1AgAAxiAUAQZy1H4TW8Z32zIsoDyUvR9S/PK3Bcv3qFub2qXq7BQVpOxZ1leU8HZ1FODno10H42WS1K5ZmNo3dcy5VgAAoGwIRUApFDU+216OPNunpPHd3l4m3RpxlT5ceWWXpbyEBvupXbMwffrTgRKfGxTgU2CUdViIv24Mb6glq/YX+7r4pHStjD5s97JEWwdRFKeo8FpY9+mnzUcNO3cJAAAURCgCLrI16DjiYNFL39dNPRsVe6Nflv0ml76f5POZ+vznPyVJlby9lJNrLvH1Vav4yGKx6Hy6Y5bRtWxYTSaLSgyCXibp8bs6qFpVvwJfj992nLDp/ZxMuGDT8y7t7NgziKIwRYVXVzx3CQAAFEQoAmR70HHEDe5vO05o7tKdBbogVSpXkpeXCoSPvP0m4e3qaHdsvN1dqcI+Jkm6qk6QXhzVWwePJ2vDnpNa8euhIq+RmpatgX2bFjpmuzRidp9UzO6TCqziU+zzzBbp5Y+2atzg7urTpX7+47YuN6wTGmDT8y69XlnPCSosvNp7zhMAADAGoQgez9ag44gb3Pe+3lNowEjLtIahqzvVU3jb2vnhZ+OekzZNWbP1Y5Kkv06maMeBs4roUFdtmoRq9dZjOp+WXehzJWndjjjd2aeplq89WMJuHtvlvT+TSbIUc9HLP5/JFzLlZZKKm6odFuKvWyIb66u1sXYtS7Q1cBW2rK+oYQllnS4IAADKB6EIHs2eoFPWG9zfdp4osePy644TimhfR+2bhZUY1h64qaXuvb7lFQEsK8est7/YYfPHVFwgyvuYlq11TKfocsUForz3nff5jNkVZ9PY72F3tJNvJS+7x2Dbur/rnXHXa/9fiTZ17hwxXRDwZI7avwkAJSEUwSPlfaPd8edZm4LOklX7bJ6aVtgNbq7Zorlf7rLp9XOX7lKPdnVKDGtLVu3Xqg1HCnSNYnbF6e0vCi7NK0xe2KgIN+N5B7WW9PnwMkn/989u+Z8Le8dg23qekG8lL5u7OrZ2n46dTtXu2Hin3PBxU4mKyhH7NwHAVoQieJyi9toU5zMbpqXlKexGeO+hBJvHOqdcyLJpeppUcImfpGJv6C+Xd5Ps6qoH+dnUpTNbpODAygUes2VU+eXPd+R5QraOQf/0pwP69KcDDr/h46YSFRUDSgCUN0IRyp2RP7kubq+NI+TtU7n8Y4xPTrfrOnsOxdv1/AXLd8tc3EabQhw7nargqpVVPaiyElMy7Xptecn7fNo6da6wzldJo8ovZ2+QKo4t3adLFXXDV5p/M9xUoqJiQAkAIxCKUK6M/Mm1I86hKcmwO9pp456TV3yMQQHFT1u73IY9p+x6fnyS/cvg8roTVUuYBFcWVav4KLWEPUvFydv346hDbm1lb5AqTlHdp+JcesNXmn8z3FSiImNACQAjeBldADxH3k+uL/9ml/eT65hdcU59/2U9h6Y4YSH+BZawXf5+StrjY6SiQktYiL/GPtRNocH2B42gAF+NG9xdI+/pWOJzq1bxveJ95H0+827685ahFcfWQ24dLdds0e7YeK3ddly7Y+OVW0jHLqJDXS2ceKNmREXq3utblHjNvBu+0v6bseemEnA1DCgBYAQ6RSgXrvCTa0d/A733+hZqWKtq/nImSRoy7QeHvg8jDbm9rXp3rCcvL5NdSw6DA321aNJN8q3kpd2xJS8DTE3L0rTHI+TlZSpyeZitQxDKu+thTxcnr/tk69/D+OR0vf/t3mKfU9S/GW4qUZGVd2cYACQ6RSgnrvCTa1u/gV57yWGhxenUvIb6dKmv9s3C5O1lsrkTFRTga9P1jbZwxe/KNVvyl3/Z2jEaeXdH+Vay/tdi60130vlMtW8WVuDzebmi6ri8q1ReStvFsfXvYcr5rFL/m+GmEhWZK3eGAbgvOkUoF67wk2tbz6EZdV9n7ToYb/PBn3mb4KNtXP439PZ2CgvxV3xyulLOZykowFfHz563a8JdeYhPStee2Hh5eZmUnWPWv/7RRRaTlJyaqbj48/p+/V8FBjQUNqHN0TfnjhyCUBZl6Xza+vfQ1vBc2L8ZW98HN5VwRa7aGQbg3ghFKBeu8JNrW77RRrSvo/1/JWro7e304odFHxSa9w25NOO9w0L8C2wOzjVb9M2vh2x+fXl64cPNBQ53zVsadv+NrXTv9S1LDCe23JwHBfgqPjnd5nN6HDkEobTKshHc1hu+qlVsC0V5/2Yun1Bn699hwBU5ejw+AJSEUIRy4So/uS7qG62XyXrOzYpfD2nFr4cUGuyngX2bau32E0V+Qy7NeO/QYL8CH2NpQlV5On/ZEIZLxzmHt6tT4uttCQApF7L06pJtkqwBKeruDurdsZ7NNRox4r2snU9bbvhyzRab/80UtbeppL/DgCtzlc4wAM9gslgs9h1u4sKuu+46SdLPP/9scCUoTEkhojz3heTdSG/Yc1IriunSjH24m4IDKl/xDTnXbNGQaT/YHWau695AnVvUVPUgPyVfyNSLHxT9k3xXVtnHSwH+PgWWzxU3Jtre8Dewb1M9OqBdic8zasT77th4jZ8bXeLzZkRFFtvVKinQ2fJvRir+0N6i/g4DAODu7MkGhCKUq8JuYm35ybUzugG2BJuwEH+9O+GGK96XrTfFxTGZJPf51/e3osJt3tcwPild767Yo5QLWcVeZ+xD3dS7U9EdIyNDdln+7tiruH8z4e3qlFsdAABUNPZkA5bPoVyVZjmEs7oBZdkX4oiBEGUJRPVrBur4mfNlrqFft/raceBsgY5PWS1YvlsBfj5KOp9Z4Oubtxdod2x8iYFIkuYu3aVeHeoW+nfD6BHv5bkRvLh/M7tjix8IInHIJQAAtiAUodzZs1G+qG7ApXtbShuMyrIvxMhRxu2bhem5oT215Y/TZdqPVMWvkp66r4tyzRY9+vz3DjtgNj4pQxPficn/c1CAr/p2qa+e7eqoTZNQmz/vKRey8m/mL+8U5loshoeB8twIXtS/GVeY6ggAgDsgFMFlObobcPmN9QkbOy2FBaDk847rrNhrd2y8hs/8ScPvbK+FE2+0Lkm7ZLz3ibPn9akN4707Na+h33acUFJqpsMCUWFSLmQVGGBxU89GNr82MSVDMbvi9M5Xuwp0swL8bfuvy9lhwOiN4K4w1REAAHdAKILLKsvytsuVZcrb+t3W84cuHbIw58uddl/HkYrrlO2OjbcpFMXsPqmY3SedVWKhEpIztGTVflWpXElpmTklPj8u/oKWrNp3xeMX0kt+rVQ+YcDIEeH2THU0YkofAAAVBaEILstRS4NKMzr7Ul//dlhf/3Y4fx9TFX8fpaaV3FlpVLuqjpxKLfX7tUVhnbI2TUJVtYptNRrFy7vkm/HQYD+t+PVgqd+Hqx1O6oxQYuvepo17ThoypQ8AgIqCUASXk3fzePS0bYGiuG6ALUvwbJXXnWnRMMSm5zs7EEl/d8raNAnNv+GOiz/v0oFIsp5/dHWnevp1x4kin3NDeEN98kPJHa+iuNLhpM4cHV7S3iap8JHdjtiXBwCAuyAUwaXYu8ytqG5AXrDa+edZhx+MeuBokkOvV1Yb9pzUrCVbXfYA2KKEt62tiPZ1NHfpzgJ7mvJu5g+eSLbpOv6VKyn9kqV4rnY4qTOHheQpam+TJA2Z9kOxr3XmlD4AACoKQhFcRmmWuRXWDSjL/qGKqLjDZ8sqNNhPfTrX09I1pV/GVpTqQX5q3yxMvTrULXRZ2SEbQ9FtvRurc4uaNi1LK+99NeU5OrywvU2M7AYAwDaEIrgEe5e5hYX4adgdVy49+m3nCb34wRZHl+fRWjaqrrEPV9NLH2yRo86avbTDV9SggnbNwmwaGNGheQ2bbuiduYStKI4cFlIajOwGAMA2XkYXAEi23Txeymy+8vb8tx0n9PKHBCJHylvidfRkqsMCkWTbfp/2TcNUtYpPsc+pWsVX7ZvaFohmvr/5ir9jeR9fzK64kosuBaNDCSO7AQCwDaEILiE+Od2u5yemZBa4mY3ZFacXP9yiQrISHODz1aUfeHCpKn6VbN5D4+1l0qhBnYp9zqhBHUsMV7YuYct1wl8eo0NJ3sju4rjalD4AAIxAKIJLSDmfVarXzflyp9Kzch02YQ6Fy8l1TGDwr+yt8HZ1bH5+3mS1y2/sw0L8bA5X9ixhczSjQ0neyO7iuNKUPgAAjMKeIriEoADfUr0u+XyWHpmyUmkZuQ6uCM6QkJxp9/6Zoiar2Xojb+QSNlvPEXJmKClpZLerTOkDAMBIhCI4nS0Tv8JC/Et9fQJRxWJv+CjrxDijl7C5Qigpa7AEAMDdEYrgVLZO/MpbZuQpY7TLwx3XNNFvO+OuuBG/oXsDffyjY/YIlYY94cMRE+Ns+bvl7H01rhBKipryBwAACEVwopIOrRz7cDf17lhPkm3LjGCfX7YeU9TAjgoOrJx/I558IVMLDNx/ZU/4cNShp66whC2vDkIJAACuiUELcApbJn69/OEW/bbjRP6f85YZBZYwhhm2SbmQrRc/3KLUtCz16VJfqWlZevGDLUpMyTSsJlvDh6MnxhU9sMHf5nAFAADcF50iOIUtE7/MFunFD7fIy8uUf1Ma3q6O5i/brfPKLo8yPcLsz3bIr3Ilzf58R6le7+dbSRlZOWWqwd4lb8449NQVlrABAADXRCiCU9izmX7B8j0Kb1dH3l4muw9xRcnOp2dr8vz1pX79rRGNtHzdQeWaS1/D6Pu7qFPzGpIKDk4IrlpZJouUdD6zQEhx1sQ4lrABAIDCEIrgFPZspr/0J/7OGIuM0vEyWYc1LF1zsMzXOnfx61rY4IRL5XWUjJ4YBwAAPAt7iuAUthxaeam8MMRNruv49z+7ad2OOIdc693lu/Xe13s08/3NxXYC84YoJJ/PtOnvT/IF4/ZHAQAA9+FSoWjOnDl66KGHjC4DDpA38ctWeWHI3jAFx6taxUfjBndXtcDKDlvKmHIh266O08Kvf9djA9qW/LwVv9s8bAEAAKAoLhOKFi9erDfffNPoMuBAER3qauzD3VTSPvZLxzTbG6bgeIOua6GIDnUNXcoYn5SuczZMyctbelnecs0W7Y6N19ptx7U7Np5gBgBABWf4nqLTp09rwoQJ2rp1qxo3bmx0OXCw3h3rSRenzBXl8jHNER3qamDfpg7ZywL7hQRWlmT8UsaTCRdsel55hzdHHCgLAABci+Gdot9//13BwcFasWKFOnbsaHQ5cAIvO0ce55otWrv9RMlPhFOkXMhSrtli+FLGOqEBNj2vPMNb3oGyly8rzNsLFbPLMXuwAABA+TI8FPXr10+zZs1SgwYNjC4FTlCaQzgZy22sd1fs0ZBpP2jjnpMlLmWs6qSDdsNC/HVLZOMSQ9mlSy+dzdEHygIAANdheCiCe7PnEM48G/acdHZZKEFe50OSxg3ufkU4CQvx17jB3TVqUCenvP9hd7STbyWvEkPZ5Usvnak0f5cBAEDFYPieIrg3W/d77PzzbP5P/NdsO+bMkmCHBcv36N0JNyi8XZ38A1cvPWRVsoam4s4eutTAvk21dvuJIp8bFuKvYXe0y9+bE9GhbqHXv/x55cEZB8peepDt5Z9XAABQfghFcJjCbvBs3e/x6U8H9NPmo7qp51VKuZDt5EohSdd1a6CftxQfQC89WLd9s7BCnxPRoW6B0BQXf17fr/9LiZdMj7s0xDzcv23+c4OrVpbJIiWdzywyFFx+faPCg6MPlGVgAwAAroNQBIco7AavelBl3dizkQKr+Oh8WslBJyE5Q0tW7XNmmR4nsmNd7fsr8bIui5+G3dFe2TnmEkORZFvnw9vLVCA03Xt9yyJDzOXPvVTeqOvLX1fca8pL3uCJ4jpitu5xyhvYcLm8ZYvjBncnGAEAUI4IRSizom7wElMy9ckPBwyoCHmid8bJz7fg1kHzxUEAju58lJWrd07yztAq7O96Hlv2ONk6sCG8XR2W0gEAUE4IRSgTW27wYD8vk+SoIWYZWeYCf05MydTM9zdr7MPdSux8SNK3MYftWrZWmnBTUTonjtjjZM/ABqO7YwAAeAqXCkUvvPCC0SXATozPdo7ymOo854tdGn5nO81asq3Y50XvjFP0Tuv5O0EBPurbpYF6tqtTaEAqTbipaJ2Tsu5xcsbABgAAUDYuFYpQ8XDjVnGlpmXpFxv2FF0q5UK2Vvx6SCt+PXRF96e04aYidk7KssfJ1ZYtAgAAzilCGXHjVrHtPhhf6tfmdX9idlm7SKU9x8fTOid5AxuKU56H0gIAAEIRysiWGzy4ruzcsq/TW7B8j3LNllKHG0/rnOQNbChOeR5KCwAACEUoI28vk9o05ifaniyv+1PacOOJnZO8gQ2Xf9xhIf4uM1QCAABPwp4ilEmu2aLtB84YXQYMlpiSod6d6pXqHB9HjbquaFzlUFoAAECnCGW091CCTQezwr1VD/Ir07IwT+2c5A1s6NOlvto3CyMQAQBgEDpFKBN32fwOKz8fL7VpGqZqgZX1s42T6S7t/pTlHB86JwAAwCiEIpSJu2x+d2d39mmqnzYftamjl5Ft1rZ9ZzRucHf1aFv7inBTmMu7P2UJN2UZdQ0AAFBahCKUSd4meQ5wdU0D+zbVowPaqVurWpr4TozNr1uwfI/enXBDfrjZsOek1mw7rpQLWfnPKa77Q7gBAAAVCaEIZWLLJnkYwyTpwVvaSJLaNQuzK7xeelhq3q/Hbm/H0jYAAOCWGLSAMitqkzyMZZG0MvqwJGt47dO5nl2vv3y/GEMBAACAu6JTBIfI20fy2U/7tWTVfqPLwUUnEy5IkmJ2xWnpmoN2vdbT9ovlmi10wgAA8FCEIhTLnhtFby+T7r+xlRrVDtJrH29TRlZuOVfr3h65rY2a1g9RcmqmVm8+qm0Hzpb4mjqhAco1WzR/2W673pe7HZZakphdcVcMlQgN9tPwO9u77ThwAADwN0IRilTaG8WIDnX1V1yKPv6RjpEj1apeRZ2a15Ak9epQV/eM/VqWYp7vZZJuiWysvYcS7B6E4Y6HpRYlZldcoXviEpIzNPP9zW59ThIAALBiTxEKlXejePnNdN6N4sc/7Nfabce1OzZeuWbLFa8lEDnewhW/53+ufSt56a6+TYt9/p19msq3kpddZ0m5+2Gpl7Oli7Zg+Z4r/o4DAAD3QqcIV7DlRnHJqn35v7+0e5Rrtmj25zucXKFnik9K1ze/HlJI1cqqHuSnh/u3lSQtW3tQl96ze5msgejRAe0k2b43aOjt7XTb1U08pkMkyaYu2qWT+AAAgHsiFOEK9i63unSZ0ZFTqTYdEorSeXfFnvzfhwb76aaeV+mp+zrrwNFzkkWqWyNQt0Q2lm+lv5vAtpwlFRbi73GBSLpywl5ZnwcAAComQhGuUNobwPnLdiszm+EK5SUhOaPQjt2lgUiy7SwpT9pDdClbu2ieNokPAABPw54iXKG0N4AJyRl0iQyU17GL2RV3xduKOkvK0/YQXS6vi1YcT5vEBwCAJ6JThCvYstwKjhUW4q9rOtW1+yyhwixYvkfh7epc0fnJO0uKs3j+RhcNAABIhCIUwpYbRTiGf+VKmvBID7VrFiZvL5NaNqqutz7fodQydNyKGwzg7WViYMBl8rpol4+fDwvx17A72nlsFw0AAE9CKEKhirpRhGOlZ+bIy8tUoBNRlkCUh8EA9qGLBgCAZyMUoUiX3iju+POsPvvpgNEluaUNe06qfbMwm0ah24rBAPajiwYAgOdi0AKKlXej2LBWVaNLcVtrth1Xrtli9yj0ojAYAAAAwD6EIpQo12xRQlK60WW4rZQLWfnLthyBwQAAAAD2YfkcihWzK459ReUgbx+LLe67voW8vU36fv1fSkzJzH+cwQAAAAClQyhCkWJ2xTGBrpzkbewvaRR6WIi/7r+plby9TLr3+pYMBgAAAHAAls+hUI7c9I/i5e0ByhuFXpxLl8bl7ffq06W+2l8c6Q0AAAD7EYpQKEdt+kfJLg06eaPQQ4MLLqULC/HXuMHdWRoHAADgBCyfQ6E456ZoJkkWB1wnNNhPw+9sf0XQ4cwcAACA8kUoQqE456Zo/324m4IDKisxJUPRO09o/Z5TpbrO6Pu7qFPzGoW+jTNzAAAAyg/L51CovE3/+Fugv4/GDe6u3h3rqX2zMPlU8tLvhxNLfb3k1MySnwQAAACnIxShUN5eJl3dsY7RZbiU/pGN85e65U3mS7mQVerr0Y0DAABwDSyfwxVyzRbtPhivr387bHQpLuW7mENq1yxM55Iz9O6KPWW6Vt7EOQAAABiPUIQCYnbF6Z2vdhU4FBRWqWk5mjQvxiHXunTi3OVyzRaGLAAAAJQjQhHycVirYw24urFidp0sMNo8LMRfw+5oV+Ro7ZhdcZq/bHeB1xQ1pQ4AAACOQSiCJGt3YvbnO4wuw630aldXQ25vb3PXp6hQmpCcoZnvb+acIgAAACchFHm4vKVa2w6c0fm0bKPLcRtBAb75AciW0dq5ZovmL9td7HMWLN+j8HZ1WEoHAADgYIQiD1bYUi04Rt8u9YsNL5fvGzKbLSV+HeKT0rX3UALnFwEAADgYochDsX/Iubq3rV3k2woLo4FVfGy6bmIKARYAAMDROKfIA9myVAtl89qSrYrZFXfF43lh9PKukK1LFznbCAAAwPEIRR5o76EElsw5WWJKpma+v7lAMCprGOVsIwAAAOcgFHkglmCVnwXL9yjXbJFU9jBa3NlGAAAAKD1CkQdiCVb5yRuOINkeRgP9C+4vCgvxZxw3AACAEzFowQO1aRKq6kGVlZiSaXQpHiEvDNkaRscO7i5vk8mms40AAABQdoQiD+TtZVLbJqH6dceVgwDgeHlhqE2TUIUG+xW7hC4sxF/tm4YRggAAAMoRy+c8UK7Zou0Hzhpdhke4dDiCt5dJw+9sX+zz2TcEAABQ/ghFHmjvoQSbR0CjbC4POREd6mrc4O4KDS64lI59QwAAAMZh+ZwHYvpc6flX9lZ6Zm7+n8NC/HVNp7pau/1EgWVxYSH+GnZHu0JDTkSHugpvV0d7DyWwbwgAAMAFEIo8ENPnSqdqFV8tnnyT9v+VeEWYebh/W7tCjreXSe2bhZVj9QAAACgKocgD2bLhH1caNaijfCt5FRpmCDkAAAAVF3uKPJC3l0mPDWhrdBkuJyzEX2Mf6sZ+HwAAAA9Dp8gDvff1Hi1be9DoMlzOkAFt1btTPfXqUJf9PgAAAB6EUORh3vt6j5auIRAV5t0Ve+TlZVJEh7oshQMAAPAgLJ/zIFk5ZjpExUhIztDM9zcrZheH2gIAAHgSQpEHWRl9WGaL0VW4vgXL9yiXTxQAAIDHIBR5kJMJF4wuoUKIT0rX3kMJRpcBAACAckIo8iB1QgOMLqHC4IBbAAAAz0Eo8iC3RDaWyY2HqPXuWOeKcdqlxQG3AAAAnoNQ5EF8K3npjmuaGl2G0/y286T6dK5X5uuEhfirTZNQB1QEAACAioBQ5GEeua2tKnm7b7to3Y64Qg9gtcewO9pxLhEAAIAH4ZwiD7P3UIJyct13slp8UrqCAytr4cQbtfdQguKT0vXuij1KuZBV4mvDQvw17I52iuhQtxwqBQAAgKsgFHmY9Xvc/wye+OR0eXuZ8g9grezrrZnvby7y+bdf3UQ929VRmyahdIgAAAA8EKHIg8TsitPXvx42ugynSzlfsCsU0aGuxg3urvnLdish+e+pcnSGAAAAIBGKPEau2aK3Pt9hdBnlIijA94rHIjrUVXi7Otp7KEGJKRmqHuRHZwgAAACSCEUe47Of9is1LdvoMspFWIh/oY9fuqQOAAAAyMP0OQ+Qa7ZoxbpDRpdRLhinDQAAAHsRijzA3kMJOp/uGV0ixmkDAADAXiyf8wCJKRklP6mC8zJJ/9/enYdlVef/H3+ByiYiKgoq5YKCIqsjouQ2LtW4jTr561dTA4VIYjrmWGZqaozZjJoLKoiDVlOOZSqajpVazjRiRuaSMuS+LwSE5Mb+/cPhLkQNFDnAeT6u674uOfc593lzU96++Hw+78+LT3eiaQIAAADKjZEiE2jodPcbmVYXLz7VSd38mxtdBgAAAKohQpEJeLduJKe6dYwuo0I42NUq8bWLs70mhQapWwCBCAAAAHeH6XMm4dbQXtlXqv+6oueG+culvj1ttQEAAFBhCEU1XNL+c4pZvVeXa0g7bpf69rTVBgAAQIUiFNVgSfvPadbbyUaXUWFotw0AAID7gTVFNVRBYZHiE781uowKRbttAAAA3A+MFNVQKccylHGpZrTidnG2V8RvfWi3DQAAgPuCUFRDVfe9iexta2vU7/zkUt+eZgoAAAC4rwhFNVR135to3P8PZGQIAAAAlYJQVEN5t24kR/s6unytenWdc3SoozHDAwhEAAAAqDSEohqqlrWVBnVrpX9sOWR0KWVSz6GOBnX30P/r68lUOQAAAFQqQlENVlQNskU9hzqa+HSQfNq4WMJQQWGRUo5lsEErAAAAKgWhqIZK2n9Oqz6t+qNEzw8PkL9nY8vXSfvPKT7x2xKd8xrVt9PIIb5MqQMAAMB9wT5FNVBV3KPIwa5k/nZxttek0KASQad4s9mbW4lnXLquWW8nK2n/uUqpFQAAAObCSFENVBX3KHpuqJ9cnO1vOyWuLEFu2foDCvZpylQ6AAAAVChCUQ105EyW0SWU4uJsL982Lrd9vixBLj3rmlKOZdzxdQAAAIDyYvpcDXP64o9ava1qrSVycb6xAeudlHWz2eq+KS0AAACqHsNDUWFhoRYuXKju3bvL399fzz77rE6ePGl0WdXS6Ys/anLsDv14NU/WVWiK2cPBLVRQWKRvj6TrX9+c0bdH0lVQWFTinLJuNlvdN6UFAABA1WP49LklS5Zo1apVmjVrllxdXTV79mxFRERo48aNsrGxMbq8auPUhWxNjktS1o85atXMSU51bbXv8PdGlyVJWvlJqlZ9mqqf56CbO8p5t26kRvXt7jiFriwjTgAAAEB5GTpSlJubq+XLl2vMmDHq2bOn2rVrp3nz5unixYvasmWLkaVVKycvZGty7I1A1LpZfc0YGaLj5y4ZXVYJNw0MleooV8vaSiOH+N7xNSJ+60OTBQAAAFQ4Q0NRamqqrly5oi5duliOOTk5ydvbW8nJyQZWVn2cPJ+tybE7lHU5R62b11f0cyE6c/FHZV/JNbq0Mlm2/oBlKl2IXzNNCg1So/olp8jdqn03AAAAUFEMnT534cIFSVLTpk1LHG/SpInOnz9vREnVyonz2ZoSt0OXLufKw72+oiNDVM/BRl8eqD7v3c0d5UL8minYp6lSjmXctn03AAAAUJEMDUXXrl2TpFJrh2xtbXXpUtWa/lXVHD93SVPikpR9JVdt3Ovrtf8FooLCIm3/5owhNfXs2Fz/+uZsua+7uaNcLWsr2m4DAACg0hg6fc7O7sY0qdzcklO9cnJyZG9vb0RJ1cLxc5c0OfZ/gegBZ8sIkXRjvx8jps65ONurX1CLu7qWjnIAAAAwkqGhqHjaXFpaWonjaWlpcnNzM6KkKu/Y2RuB6MeruWr7v0Dk6PDTSJtR+/iED+4gnzYupdYD/RI6ygEAAMBohoaidu3aydHRUbt27bIcy87OVkpKijp16mRgZVXT0TNZmhK3Qz9ezZXng856LTJEjvZ1Spxj1KjL39Yf0K4D53+xg9zN6CgHAAAAoxkaimxsbPTUU09pzpw52rZtm1JTU/XCCy/Izc1N/fr1M7K0KufImSxNiUvSj1fz5PVgA702snQgkn7a76eyFbfYPnkhW4O7t5ZT3ZLrxG7OPXSUAwAAQFVh+OatY8eOVX5+vqZMmaLr168rKChICQkJbNz6M0dOZ2nq0iRdvpYnrxYN9NrIrnKwKx2IpJ/2+5n1tjEtzVd+8p3lz05166hXxwfUxaepvFo21HcnMukoBwAAgCrHqqioqOiXT6se+vTpI0natm2bwZVUnMOnf9DUpTt15Vqe2rVooBl3CEQ/l7T/nOITv1XGpYpbY1SntrXy8gvLfR0jQgAAAKhs5ckGhk6fw50dOvVTIGrfsmGZA5F0Y7+fhCkP6/VRD2lQt1YVUk9Qe9e7uu7nG7QCAAAAVQ2hqIo6dOoHvbo0SVeu5cm7VUNNj+hS5kBUrJa1lbxbN1LSt/e+mWs9Bxv1D7m7cFW8QSsAAABQFRGKqqDvTmZq6tIkXbmerw6tG2naiPIHomIpxzIqZArd88P976rldjGjWoUDAAAAv4RQVMWknszUq/E7dbUCApEkfXng3keJhvXyUIhfM0sTh7vBBq0AAACoqghFVUjqiUy9uvRGIPLxaKTpI7rI3vbuGwQm7T+nDV8cu+e6/r33nGVNUIhfM00KDSrXiBEbtAIAAKAqM7wlN2747/FMTVuWpGs5BfL1cNGr4cGyu4dAVFBYpPjEbyuktuI1Qb5tXCTdCEbBPk2VcixDmdnXdS79ilZ+knrb69mgFQAAAFUZoagKSDmeoenLdupaToH82rhoaniw7Gzu7UdTUWuJit28JqiWtZUlJElSC7d6pVqAuzjbK+K3PrTjBgAAQJVGKDLYwWM3AtH13AL5t3XRlGfvPRBJFd/Y4JfWBN08esQGrQAAAKguCEUGOnA0XTP+9qWu5xYooG1jTX62c4UEIqliGxuUdU3QzaNHAAAAQHVAKDLIt0fT9VpxIPJsrCnPBsu2Tq0Ke33v1o3UqL5dhUyhu5s1QQWFRYwaAQAAoFogFBng2yPpmpHwpXJyC9TRq4leeaZzhQYiSZb22bPeTr7tOXa2tXQ9p8DytbWV9L8mc5Lufk1Q0v5zpdYXNapvp5FDfFlfBAAAgCqHUFTJ9h/5XjP+tku5eQXq2K6JJod1lk0FB6Jixe2zbw4o9RxsJBXpx6t5lmNOdW0UOcxPDRxt72l0J2n/uVsGsYxL1zXr7WRNCg0iGAEAAKBKIRRVon2Hv9drCTcC0a/aNdEr9zEQFStr++zsK7ma/fevNSk0SD07ut/VvcrSBnzZ+gMK9mnKVDoAAABUGYSiSrL3UJqiE3YpN79Qndq76pWwINWpfX8DUbHiBggFhUUK//Ondzy3PKHl5nVDBUVFv7iG6eY9jwAAAACjEYoqwZ7v0vTn5cYEop8ry95FZQ0tt1o35Ghfp0x1VHS7cAAAAOBeEIrus2++S9PM/wWizt5uejm0kyGBSCp7GPml8263bujytbxbnF1aRbYLBwAAAO4Voeg++iY1TX9esUt5+YUK7uCmiX8IUp3a1obVU9YwcqfzyrJu6E7KuucRAAAAUFmM+xd6DXfo1A9VKhBJP+1ddCe/FFrKMgXvTu5mzyMAAADgfiIU3Sf/PZGpvPxCdfVtWiUCkfTT3kV38kuhpaxT8BwdSq4vcnG2px03AAAAqiSmz90nA7u1lk/rRmrVrL6sq9DIyO32LirrRq1lnYL38tNBsra2uqc9jwAAAIDKQCi6T2pZW8nD3dnoMm7p5r2LyhNaiqfg3WkKnYuzvXzauBCCAAAAUC0YP6cLhijeu6hnR3f5liPAVMQUPAAAAKAqIRSh3Iqn4N3ctIF1QwAAAKiOmD6Hu3IvU/AAAACAqoRQhLtWPAUPAAAAqM6YPgcAAADA1AhFAAAAAEyNUAQAAADA1AhFAAAAAEyNUAQAAADA1AhFAAAAAEyNUAQAAADA1AhFAAAAAEyNUAQAAADA1AhFAAAAAEyNUAQAAADA1AhFAAAAAEyNUAQAAADA1AhFAAAAAEyNUAQAAADA1AhFAAAAAEyNUAQAAADA1AhFAAAAAEyNUAQAAADA1AhFAAAAAEyNUAQAAADA1AhFAAAAAEyNUAQAAADA1AhFAAAAAEyNUAQAAADA1AhFAAAAAEyNUAQAAADA1GobXUBFSktLU0FBgfr06WN0KQAAAAAMdP78edWqVatM59aokSJbW1vVrl2jch4AAACAu1C7dm3Z2tqW6VyroqKiovtcDwAAAABUWTVqpAgAAAAAyotQBAAAAMDUCEUAAAAATI1QBAAAAMDUCEUAAAAATI1QBAAAAMDUCEUAAAAATI1QBAAAAMDUCEUAAAAATI1QBAAAAMDUCEUAAAAATI1QBAAAAMDUCEXVVGFhoRYuXKju3bvL399fzz77rE6ePGl0Waa3ZMkSPf3000aXYUpZWVl69dVX1aNHD3Xs2FFPPPGEvv76a6PLMqWMjAy9+OKL6tKliwIDAzVy5EgdOXLE6LJM7fjx4woMDNTatWuNLsWUzp49Ky8vr1KP1atXG12aKSUmJqp///7y9fXVgAEDtHnzZqNLMpVdu3bd8v8HLy8v9enTx7C6aht2Z9yTJUuWaNWqVZo1a5ZcXV01e/ZsRUREaOPGjbKxsTG6PFN66623tHDhQgUFBRldiimNHz9eGRkZevPNN9WwYUOtXLlS4eHhWrt2rTw8PIwuz1RGjRola2trLVu2TA4ODlqwYIHCwsK0ZcsW2dvbG12e6eTl5WnChAm6evWq0aWY1nfffSdbW1tt3bpVVlZWluP16tUzsCpzWr9+vV555RVNnDhRvXr10saNGzV+/Hi5ubkpMDDQ6PJMITAwUP/5z39KHDt06JBGjhyp5557zqCqGCmqlnJzc7V8+XKNGTNGPXv2VLt27TRv3jxdvHhRW7ZsMbo807l48aJGjBihBQsWqFWrVkaXY0onT57Ujh07NG3aNHXq1EmtW7fW5MmT5erqqo0bNxpdnqn88MMPcnd3V3R0tHx9feXh4aGoqCh9//33Onz4sNHlmVJMTIzq1q1rdBmmdujQIbVq1UpNmjRR48aNLQ87OzujSzOVoqIiLViwQKGhoQoNDVWLFi00evRohYSE6KuvvjK6PNOwsbEp8f+Bs7OzZs2apYcffljDhw83rC5CUTWUmpqqK1euqEuXLpZjTk5O8vb2VnJysoGVmdPBgwdVv359bdiwQf7+/kaXY0oNGjRQfHy8fHx8LMesrKxUVFSkS5cuGViZ+TRo0EBvvvmm2rZtK0lKT09XQkKC3Nzc1KZNG4OrM5/k5GS9//77+stf/mJ0Kab23Xff8d9/FXDs2DGdPXtWgwYNKnE8ISFBkZGRBlWF9957T+fPn9ekSZMMrYPpc9XQhQsXJElNmzYtcbxJkyY6f/68ESWZWu/evdW7d2+jyzA1Jycn9ezZs8SxzZs369SpU+rWrZtBVWHq1Kn64IMPZGNjo9jYWDk4OBhdkqlkZ2frpZde0pQpU0p9XqByHTp0SI0bN9aTTz6pEydOqEWLFoqKilL37t2NLs1UTpw4IUm6evWqwsPDlZKSInd3d40aNYrPcYPk5OQoLi5OoaGhatKkiaG1MFJUDV27dk2SSq0dsrW1VU5OjhElAVXK7t279corr6hPnz580BkoNDRUa9as0eDBgzV69GgdPHjQ6JJMZfr06QoICCj1W3FUrtzcXJ04cUKXL1/WuHHjFB8fL19fX0VERGjnzp1Gl2cqly9fliRNnDhRAwcO1PLly/XQQw8pKiqKn4VB1q9fr5ycnCrRpIqRomqoeA5ybm5uifnIOTk5LGKG6W3dulUTJkyQv7+/3nzzTaPLMbXi6ULR0dHau3ev3n33Xc2aNcvgqswhMTFRX3/9tT766COjSzE9GxsbJScnq3bt2pZfZvr4+Ojo0aNKSEhQ165dDa7QPOrUqSNJCg8P19ChQyVJ7du3V0pKilasWMHPwgCJiYl6+OGH1aBBA6NLYaSoOiqeBpGWllbieFpamtzc3IwoCagS3n33XY0ZM0Y9evTQsmXLWMRsgIyMDG3cuFEFBQWWY9bW1vLw8Cj1dxbunzVr1igjI0O9evVSYGCgpavWtGnTNGDAAIOrMx8HB4dSszs8PT118eJFgyoyp+J/I3l6epY43qZNG505c8aIkkwtMzNTe/bsUf/+/Y0uRRKhqFpq166dHB0dtWvXLsux7OxspaSkqFOnTgZWBhhn5cqVio6O1u9//3vNnz+f1vQGSUtL05/+9KcSnZzy8vKUkpJCa/RKNGfOHP3zn/9UYmKi5SFJY8eOVXx8vLHFmUxqaqoCAwNL7Zt24MABmi9UMm9vb9WtW1f79u0rcfzQoUN68MEHDarKvL755htZWVmpc+fORpciielz1ZKNjY2eeuopzZkzRw0bNlTz5s01e/Zsubm5qV+/fkaXB1S648eP6/XXX1e/fv0UGRmpjIwMy3N2dnbsBVKJ2rVrp27dumnGjBn685//LCcnJ8XFxSk7O1thYWFGl2carq6utzzeqFEjNW/evJKrMTdPT0+1bdtWM2bM0LRp09SgQQN98MEH2rt3rz788EOjyzMVOzs7jRgxQosXL5arq6v8/Py0adMm7dixQ2+99ZbR5ZlOamqqHnjggSqz9INQVE2NHTtW+fn5mjJliq5fv66goCAlJCTw23GY0ieffKK8vDxt2bKl1F5dQ4cO1RtvvGFQZeZjZWWl+fPna+7cuRo3bpx+/PFHderUSe+9956aNWtmdHlApbO2tlZcXJzmzJmjcePGKTs7W97e3lqxYoW8vLyMLs90oqKiZG9vb9nf0cPDQzExMQoODja6NNNJT0+Xs7Oz0WVYWBUVFRUZXQQAAAAAGIU1RQAAAABMjVAEAAAAwNQIRQAAAABMjVAEAAAAwNQIRQAAAABMjVAEAAAAwNQIRQCAEtipAQBghCVLlujpp58u93WJiYnq37+/fH19NWDAAG3evLncr0EoAoAa5KWXXpKXl5fi4+PLfe2FCxcUGRmps2fPVnhdu3btkpeXl3bt2nXbc55++ml5eXmVePj4+KhXr16aMWOGLl26dMd7nDlzRl5eXlq7dm1Fl29x/vx5tW/fXjNmzLjtOampqfLy8tLKlSt/8fUqo2YAqA7eeustLVy4sNzXrV+/Xq+88ooef/xxbdy4Uf3799f48eO1Z8+ecr0OoQgAaojLly/r008/laenpz744INyj/gkJSVp+/bt96e4MvL29tb7779veaxYsUJhYWFas2aNIiMj7/g9NWnSRO+//7569ep13+pr2rSpQkJCtHnzZuXl5d3ynHXr1snOzk6DBg26b3UAQE1x8eJFjRgxQgsWLFCrVq3KdW1RUZEWLFig0NBQhYaGqkWLFho9erRCQkL01Vdfleu1CEUAUENs2rRJBQUFmjJlik6fPq3//Oc/RpdUbo6OjgoICLA8goKCFBYWpsjISO3Zs0f79u277bU2NjYKCAhQw4YN72uNv/vd7/TDDz/c8v3Nz8/Xxo0b9cgjj6hevXr3tQ4AqAkOHjyo+vXra8OGDfL39y/1/Oeff65hw4bJz89P/fr10/z585WbmytJOnbsmM6ePVvql1AJCQmKjIwsVx2EIgCoIdasWaPg4GAFBwerVatWWrVqValzNm3apGHDhsnf31+9evXS7NmzlZubq7Vr12rSpEmSpD59+ujll1+WJPXu3dvy52Jr166Vl5eXzpw5Yzm2detWPfnkkwoMDJSPj48effRRvfvuuxX2vfn4+EiSzp07J+nGVLsJEyZo7Nix6tixo0aOHHnLqWinTp3S2LFj1blzZwUFBSkiIkKHDx+2PJ+Tk6O//vWv6tmzp3x8fDRo0CD985//vGMtffv2lbOzsz766KNSz33xxRdKT0/X8OHDJUnJyckKDw9XUFCQfHx81Lt3b8XExKiwsPCWr32r91Yq/XMoLCxUfHy8+vXrJx8fHz3yyCP6+9//XuKa06dPa9SoUQoODpa/v78ef/xx/etf/7rj9wYAla13796aO3euHnjggVLP/fvf/9Yf//hHDR8+XBs3btS0adO0efNmvfjii5KkEydOSJKuXr2q8PBwde3aVcOHD9dnn31W7joIRQBQAxw9elT79u3T0KFDJUnDhg3T559/rosXL1rOWbVqlcaPH6/27dtr0aJFioyM1MqVKzV9+nT16tVLo0aNkiQtWrRIUVFRZb739u3bNXr0aHXo0EFLlixRTEyMmjdvrujoaH3zzTcV8v0dP35ckkp8aG7evFl16tTR4sWL9Yc//KHUNWlpaRo+fLiOHTumadOmac6cObp06ZLCwsKUmZmpoqIijR49WqtWrdIzzzyj2NhYBQYG6oUXXlBiYuJta7GxsdHgwYO1bds2Xb58ucRziYmJatmypYKCgpSamqqwsDA5Oztr3rx5io2NVceOHbVo0SJt2rTpnt6P6dOna+HChRo8eLDi4uL06KOP6vXXX9fixYsl3QhNkZGRunr1qv76179qyZIlcnZ2VlRUlE6ePHlP9waAyhIXF6fHHntMTzzxhB588EF169ZNM2bM0Mcff6wzZ85Y/g6eOHGiBg4cqOXLl+uhhx5SVFSUdu7cWa571b4f3wAAoHJ9+OGHcnJyUt++fSVJQ4YM0fz587V69Wo9//zzKiwsVExMjPr166eZM2darsvJydG6devk6OioBx98UJLUvn17ubu7l/neR44c0ZAhQzR58mTLscDAQAUHBys5OVkdO3Ys82sVFRUpPz/f8vWlS5f01VdfKTY2VgEBAZYRI0mytrZWdHS0HBwcJKnU6MqKFSt0/fp1rVixQo0bN7Z8b48//rj27t0rW1tbffHFF5o3b5769+8vSerevbuuXbumOXPmaODAgapd+9Yfk4899pjeeecdbd26VUOGDJEkZWdn67PPPtOYMWMk3Wi4EBISotmzZ8va+sbvIB966CFt375dycnJd73m6Pjx4/rggw80fvx4jRw5UpLUrVs3WVlZaenSpXryySeVn5+vo0eP6rnnnlPPnj0lSX5+flq0aJFycnLu6r4AUNlSUlK0f/9+rVu3znKseG3p0aNHVadOHUlSeHi45ZeC7du3V0pKilasWKGuXbuW+V6EIgCo5vLz87Vhwwb17dtXOTk5ysnJkZ2dnYKDg7V69WqNGjVKJ06cUHp6uiU0FQsLC1NYWNg93X/EiBGSbkxfOHXqlI4fP65vv/1Wkm7bjOB2kpOT1aFDhxLHrK2t1bVrV0VHR8vKyspy3N3d3RKIbmX37t0KCAiwBCLpRjOGzz//XJI0Z84cWVlZqWfPniWCWO/evbVhwwYdPnxY7du3v+VrF3fG27BhgyUUbdq0SYWFhZYP5iFDhmjIkCHKycnRqVOndPLkSR08eFAFBQXlfl9+7ssvv1RRUZF69+5dqu7Y2Fjt3r1bffr0UZs2bTR16lQlJSWpR48e6tatm2WKJABUB4WFhRoxYoTl79Wfa9y4sVJTUyVJnp6eJZ5r06ZNuRsHEYoAoJrbvn270tPTtXbt2lu2dv7888/VoEEDSVKjRo0q/P6ZmZmaNm2atm7dKisrK7Vo0UK/+tWvJJV/z6MOHTpY2l1bWVnJ1tZWTZs2laOjY6lzXVxc7vhaWVlZdxzxysrKUlFR0W1HstLS0m4biqQbo0XR0dH6/vvv1bhxY61fv149e/a0hLDr168rOjpa69evV35+vtzd3RUYGKjatWvf015QWVlZkqQBAwbc8vmLFy/KyspKy5cvV2xsrLZs2aJ169apTp066tu3r6ZPny5nZ+e7vj8AVJa2bdvq2LFjatGiheXYV199pbffflvTp0+Xt7e36tatq3379qlTp06Wcw4dOmSZ/VBWhCIAqOY+/PBDNW/eXLNmzSr13NixY7Vq1SpNnDhR0o0A83NZWVk6ePCgAgICbvv6BQUFJb6+evVqia8nTJigo0ePasWKFerYsaNsbGx07do1rV69utzfS926deXr61vu626lXr16pb5fSdq5c6fc3d1Vr149OTg46J133rnl9T//EL6VgQMH6o033tCmTZv061//Wnv27FFcXJzl+ZkzZ+qTTz7R/PnzFRISYhnVutN0juKRsJsbMVy5csXyZycnJ0nS22+/rbp165Z6jWbNmkmSXF1dNX36dE2bNk2pqan6+OOPtWzZMtWvX/+O+ywBQFURERGhcePGKSYmRgMHDtSFCxc0ZcoUNWvWzPILqBEjRmjx4sVydXWVn5+fNm3apB07duitt94q171otAAA1Vh6erq++OILDRgwwNJ57ueP/v37a8eOHbK1tVWDBg20bdu2Etd/9NFHioiIUE5OjmXdy885OjrqwoULJY7d3Dxh9+7deuSRR9SlSxfZ2NhIutExSCr9j/vK1KlTJ+3du1cZGRmWY5mZmYqIiNC2bdvUuXNnXb16VUVFRfL19bU8Dh8+rMWLF5eYmnYr9erV08MPP6xPP/1UmzdvVpMmTdSjRw/L87t371ZwcLD69u1rCUQHDhxQZmbmbd+X4hGx8+fPW44dO3bMMjokSUFBQZKkH374oUTdWVlZmj9/vrKysrRnzx6FhIRo//79srKyUvv27fXCCy/I09Oz1M8TAKqqRx99VPPmzdO2bds0aNAgTZgwQV27dtWiRYss50RFRWnMmDGW9aEff/yxYmJiFBwcXK57MVIEANXYunXrlJ+ff9upVEOHDtXKlSu1evVqjRkzRq+99pqmT5+ufv366cSJE5o/f76eeOIJNWzY0DICsWXLFvXo0UMeHh769a9/raVLlyouLk4BAQHavn17qY4+fn5++uijj9ShQwe5ublpz549Wrp0qaysrHTt2rX7/h7cTlhYmBITExUeHq7nnntOtra2Wrp0qZo0aaIhQ4bIyclJQUFBioqKUlRUlDw8PLR//37FxMSoW7duZdrv6LHHHlNYWJi+//57DRs2TLVq1bI85+fnp82bN+sf//iHPDw8lJqaqtjY2Du+L126dJG9vb3eeOMNjRs3TleuXNGiRYtKTHfz9PTU4MGDNXXqVJ09e1Y+Pj46fvy45s2bJ3d3d7Vs2VL5+fmys7PTSy+9pDFjxsjFxUVJSUn673//e8tOfQBQFbzxxhuljv3mN7/Rb37zmzte98wzz+iZZ565p3sTigCgGlu3bp3atm2rdu3a3fJ5Pz8/tW7dWmvWrNH27dvl4OCghIQEffjhh3J1ddWzzz5r6WAWHByskJAQzZ07Vzt37lR8fLwiIyOVmZmp5cuXKy8vT7169dLMmTMt7bulGx9i0dHRio6OliS1bNlSM2bM0IYNG/T111/f/zfhNpo2baqVK1dq9uzZmjRpkmxsbNS5c2fNnj3bEjLi4+O1YMECLV26VBkZGXJ1dVVYWJhGjx5dpnt07txZ7u7uOn36tB577LESz7388svKy8uzbDTo7u6uUaNG6ciRI/rss89KTUuUbow+LVy4UHPnztXo0aPVvHlzPf/886VahM+aNUtLly7VqlWrdOHCBTVq1Ej9+/fXuHHjVKtWLdWqVUvLly/X3LlzNXPmTGVnZ6tly5Z67bXXNGzYsLt6PwGgJrMqupfVngAAAABQzbGmCAAAAICpEYoAAAAAmBqhCAAAAICpEYoAAAAAmBqhCAAAAICpEYoAAAAAmBqhCAAAAICpEYoAAAAAmBqhCAAAAICpEYoAAAAAmBqhCAAAAICpEYoAAAAAmNr/ASnCTRaUUbGxAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "