-
Notifications
You must be signed in to change notification settings - Fork 6
/
Satellite.py
121 lines (93 loc) · 3.29 KB
/
Satellite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from math import acos, atan2, pi
from Earth import M
from Universe import G
import numpy as np
from igrf import igrf as MagneticFieldModel
import DCM
from datetime import date
import Magnetometer
import Gyroscope
import Filter
from Instrument import probe
m: float = 2.6
I = np.diag([0.9, 0.9, 0.3])
invI = np.linalg.inv(I)
def rotationModel(w, torques):
H = I @ w
c = np.cross(w, H, axis=0)
w_dot = invI @ (torques - c)
return w_dot
def attitudeModel(quaternion, w):
assert(quaternion.shape == (4, 1))
assert(w.shape == (3, 1))
p, q, r = w
PQRMAT = np.array([[0, -p, -q, -r], [p, 0, r, -q],
[q, -r, 0, p], [r, q, -p, 0]], dtype=float)
quaternion_dot = 0.5*PQRMAT @ quaternion
quaternion_dot = np.reshape(quaternion_dot, (4, 1))
assert(quaternion_dot.shape == (4, 1))
return quaternion_dot
def accelerationModel(position: list[float]):
rho: float = np.linalg.norm(position)
rhat: float = position/rho
Fgrav: list[float] = -(G*M*m/rho**2)*rhat
accel: list[float] = Fgrav/m
return accel
def magneticModel(position, posAngle):
rho: float = np.linalg.norm(position)
phiE, thetaE, psiE = posAngle.flat
latitude: float = 90 - thetaE * (180/pi)
longitude: float = psiE * (180/pi)
rho_km: float = (rho) / 1000
today = date.fromisoformat('2020-01-01')
BNED = MagneticFieldModel(
today, glat=latitude, glon=longitude, alt_km=rho_km, itype=2)
BNED = np.array([BNED.north, BNED.east, BNED.down], dtype=float)
assert(BNED.shape == (3, 1))
return BNED
def geocentric(position):
x, y, z = position
rho: float = np.linalg.norm(position)
phiE: float = 0.
thetaE: float = acos(z/rho)
psiE: float = atan2(y, x)
return np.array([[phiE, thetaE, psiE]]).T
def propagateVector(v, pos_angles, q0123):
assert(v.shape == (3, 1))
assert(pos_angles.shape == (3, 1))
BI = DCM.fromEulerAngle(pos_angles) @ v
assert(BI.shape == (3, 1))
body_B = DCM.fromQuaternion(q0123).T @ BI
body_B = body_B*1e-9
return body_B
def Magnetorquer(state):
return np.array([[0, 0, 0]], dtype=float).T
def Model(t: float, state: list[float]):
"""
Returns the change, d state/dt
"""
assert(state.shape == (13, 1))
angular_speed = state[10:13]
quaternion = state[6:10]
quaternion_dot = attitudeModel(quaternion, angular_speed)
position_cartesian = state[0:3]
acceleration = accelerationModel(position_cartesian)
if t % 20 == 0:
pos_geocentric = geocentric(position_cartesian)
BNED = magneticModel(position_cartesian, pos_geocentric)
pos_geocentric[1, 0] = pos_geocentric[1, 0] + pi # TODO: WHY
Model.BB = propagateVector(BNED, pos_geocentric, quaternion)
measure_B = Magnetometer.Model(Model.BB)
measure_omega = Gyroscope.Model(angular_speed)
[est_B, est_omega] = Filter.Estimate(measure_B, measure_omega)
probe(est_omega, 1)
probe(est_B, 2)
probe(Model.BB)
net_torques = Magnetorquer(state)
angular_acceleration = rotationModel(angular_speed, net_torques)
velocity = state[3:6]
dstate = np.vstack(
[velocity, acceleration, quaternion_dot, angular_acceleration])
assert(dstate.shape == (13, 1))
return dstate
Model.BB = np.array([[0, 0, 0]], dtype=float).T