-
Notifications
You must be signed in to change notification settings - Fork 13
/
s3dis_test.py
179 lines (140 loc) · 7.54 KB
/
s3dis_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import tensorflow as tf
import numpy as np
import time
from os import makedirs
from os.path import exists, join
from sklearn.metrics import confusion_matrix
from helper_ply import write_ply
from helper_dp import DataProcessing as DP
def log_out(out_str, log_f_out):
log_f_out.write(out_str + '\n')
log_f_out.flush()
print(out_str)
class ModelTester:
def __init__(self, model, dataset, restore_snap=None):
my_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
self.saver = tf.train.Saver(my_vars, max_to_keep=100)
self.Log_file = open('log_test_' + str(dataset.val_split) + '.txt', 'a')
# Create a session for running Ops on the Graph.
on_cpu = False
if on_cpu:
c_proto = tf.ConfigProto(device_count={'GPU': 0})
else:
c_proto = tf.ConfigProto()
c_proto.gpu_options.allow_growth = True
self.sess = tf.Session(config=c_proto)
self.sess.run(tf.global_variables_initializer())
# Load trained model
if restore_snap is not None:
self.saver.restore(self.sess, restore_snap)
print("Model restored from " + restore_snap)
self.prob_logits = tf.nn.softmax(model.logits)
# Initiate global prediction over all test clouds
self.test_probs = [np.zeros(shape=[l.shape[0], model.config.num_classes], dtype=np.float32)
for l in dataset.input_labels['validation']]
def test(self, model, dataset, num_votes=100):
# Smoothing parameter for votes
test_smooth = 0.95
# Initialise iterator with validation/test data
self.sess.run(dataset.val_init_op)
# Number of points per class in validation set
val_proportions = np.zeros(model.config.num_classes, dtype=np.float32)
i = 0
for label_val in dataset.label_values:
if label_val not in dataset.ignored_labels:
val_proportions[i] = np.sum([np.sum(labels == label_val) for labels in dataset.val_labels])
i += 1
# Test saving path
saving_path = time.strftime('results/Log_%Y-%m-%d_%H-%M-%S', time.gmtime())
test_path = join('test') # Save all results in the same path for the convinience of 6fold evaluation
makedirs(test_path) if not exists(test_path) else None
makedirs(join(test_path, 's3dis_preds')) if not exists(join(test_path, 's3dis_preds')) else None
step_id = 0
epoch_id = 0
last_min = -0.5
while last_min < num_votes:
try:
ops = (self.prob_logits,
model.labels,
model.inputs['input_inds'],
model.inputs['cloud_inds'],
)
stacked_probs, stacked_labels, point_idx, cloud_idx = self.sess.run(ops, {model.is_training: False})
correct = np.sum(np.argmax(stacked_probs, axis=1) == stacked_labels)
acc = correct / float(np.prod(np.shape(stacked_labels)))
print('step' + str(step_id) + ' acc:' + str(acc))
stacked_probs = np.reshape(stacked_probs, [model.config.val_batch_size, model.config.num_points,
model.config.num_classes])
for j in range(np.shape(stacked_probs)[0]):
probs = stacked_probs[j, :, :]
p_idx = point_idx[j, :]
c_i = cloud_idx[j][0]
self.test_probs[c_i][p_idx] = test_smooth * self.test_probs[c_i][p_idx] + (1 - test_smooth) * probs
step_id += 1
except tf.errors.OutOfRangeError:
new_min = np.min(dataset.min_possibility['validation'])
log_out('Epoch {:3d}, end. Min possibility = {:.1f}'.format(epoch_id, new_min), self.Log_file)
if last_min + 1 < new_min:
# Update last_min
last_min += 1
# Show vote results (On subcloud so it is not the good values here)
log_out('\nConfusion on sub clouds', self.Log_file)
confusion_list = []
num_val = len(dataset.input_labels['validation'])
for i_test in range(num_val):
probs = self.test_probs[i_test]
preds = dataset.label_values[np.argmax(probs, axis=1)].astype(np.int32)
labels = dataset.input_labels['validation'][i_test]
# Confs
confusion_list += [confusion_matrix(labels, preds, dataset.label_values)]
# Regroup confusions
C = np.sum(np.stack(confusion_list), axis=0).astype(np.float32)
# Rescale with the right number of point per class
C *= np.expand_dims(val_proportions / (np.sum(C, axis=1) + 1e-6), 1)
# Compute IoUs
IoUs = DP.IoU_from_confusions(C)
m_IoU = np.mean(IoUs)
s = '{:5.2f} | '.format(100 * m_IoU)
for IoU in IoUs:
s += '{:5.2f} '.format(100 * IoU)
log_out(s + '\n', self.Log_file)
if int(np.ceil(new_min)) % 1 == 0:
# Project predictions
log_out('\nReproject Vote #{:d}'.format(int(np.floor(new_min))), self.Log_file)
proj_probs_list = []
for i_val in range(num_val):
# Reproject probs back to the evaluations points
proj_idx = dataset.val_proj[i_val]
probs = self.test_probs[i_val][proj_idx, :]
proj_probs_list += [probs]
# Show vote results
log_out('Confusion on full clouds', self.Log_file)
confusion_list = []
for i_test in range(num_val):
# Get the predicted labels
preds = dataset.label_values[np.argmax(proj_probs_list[i_test], axis=1)].astype(np.uint8)
# Confusion
labels = dataset.val_labels[i_test]
acc = np.sum(preds == labels) / len(labels)
log_out(dataset.input_names['validation'][i_test] + ' Acc:' + str(acc), self.Log_file)
confusion_list += [confusion_matrix(labels, preds, dataset.label_values)]
name = dataset.input_names['validation'][i_test] + '.ply'
write_ply(join(test_path, 's3dis_preds', name), [preds, labels], ['pred', 'label'])
# Regroup confusions
C = np.sum(np.stack(confusion_list), axis=0)
IoUs = DP.IoU_from_confusions(C)
m_IoU = np.mean(IoUs)
s = '{:5.2f} | '.format(100 * m_IoU)
for IoU in IoUs:
s += '{:5.2f} '.format(100 * IoU)
log_out('-' * len(s), self.Log_file)
log_out(s, self.Log_file)
log_out('-' * len(s) + '\n', self.Log_file)
print('finished \n')
self.sess.close()
return
self.sess.run(dataset.val_init_op)
epoch_id += 1
step_id = 0
continue
return