"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%load_ext notexbook\n",
+ "\n",
+ "%texify -fs 18"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Deep Networks in a Nutshell"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "**Source**: Antiga, L et al. _Deep Learning with PyTorch_ [link](https://www.manning.com/books/deep-learning-with-pytorch)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Setup the learning process\n",
+ "\n",
+ "**Main Components of the learning process of a `NN`**:\n",
+ "\n",
+ "\n",
+ "\n",
+ "**Source**: Antiga, L et al. _Deep Learning with PyTorch_ [link](https://www.manning.com/books/deep-learning-with-pytorch)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "slide"
+ }
+ },
+ "source": [
+ "# Convolutional Neural Network"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "A convolutional neural network (CNN, or ConvNet) is a type of **feed-forward** artificial neural network in which the connectivity pattern between its neurons is inspired by the organization of the animal visual cortex."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "fragment"
+ }
+ },
+ "source": [
+ "The networks consist of multiple layers of small neuron collections which process portions of the input image, called **receptive fields**. \n",
+ "\n",
+ "The outputs of these collections are then tiled so that their input regions overlap, to obtain a _better representation_ of the original image; this is repeated for every such layer."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "## How does it look like?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "-"
+ }
+ },
+ "source": [
+ "\n",
+ "\n",
+ "> source: https://flickrcode.files.wordpress.com/2014/10/conv-net2.png"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "slide"
+ }
+ },
+ "source": [
+ "## The Problem Space \n",
+ "\n",
+ "### Image Classification"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "Image classification is the task of taking an input image and outputting a class (a cat, dog, etc) or a probability of classes that best describes the image. \n",
+ "\n",
+ "For humans, this task of recognition is one of the first skills we learn from the moment we are born and is one that comes naturally and effortlessly as adults."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "These skills of being able to quickly recognize patterns, *generalize* from prior knowledge, and adapt to different image environments are ones that we do not share with machines."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "#### Inputs and Outputs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "source: [http://www.pawbuzz.com/wp-content/uploads/sites/551/2014/11/corgi-puppies-21.jpg]()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "When a computer sees an image (takes an image as input), it will see an array of pixel values. \n",
+ "\n",
+ "Depending on the resolution and size of the image, it will see a 32 x 32 x 3 array of numbers (The 3 refers to RGB values).\n",
+ "\n",
+ "let's say we have a color image in JPG form and its size is 480 x 480. The representative array will be 480 x 480 x 3. Each of these numbers is given a value from 0 to 255 which describes the pixel intensity at that point."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "#### Goal"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "What we want the computer to do is to be able to differentiate between all the images it’s given and figure out the unique features that make a dog a dog or that make a cat a cat. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "fragment"
+ }
+ },
+ "source": [
+ "When we look at a picture of a dog, we can classify it as such if the picture has identifiable features such as paws or 4 legs. \n",
+ "\n",
+ "In a similar way, the computer should be able to perform image classification by looking for *low level* features such as edges and curves, and then building up to more abstract concepts through a series of **convolutional layers**."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "### Structure of a CNN"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "> A more detailed overview of what CNNs do would be that you take the image, pass it through a series of convolutional, nonlinear, pooling (downsampling), and fully connected layers, and get an output. As we said earlier, the output can be a single class or a probability of classes that best describes the image. \n",
+ "\n",
+ "source: [1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "slide"
+ }
+ },
+ "source": [
+ "#### Convolutional Layer"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "The first layer in a CNN is always a **Convolutional Layer**."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### tldr;"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "**Reference**: [conv_arithmetic](https://github.com/vdumoulin/conv_arithmetic)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "#### Convolutional filters\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "A Convolutional filter much like a **kernel** in image recognition is a small matrix useful for blurring, sharpening, embossing, edge detection, and more. \n",
+ "\n",
+ "This is accomplished by means of convolution between a kernel and an image.\n",
+ "\n",
+ "The main goal of CNN is to **learn** the convolutional filters to be applied on images."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "As the filter is sliding, or **convolving**, around the input image, it is multiplying the values in the filter with the original pixel values of the image \n",
+ "(a.k.a. computing **element wise multiplications**)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "Now, we repeat this process for every location on the input volume. (Next step would be moving the filter to the right by 1 unit, then right again by 1, and so on)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "fragment"
+ }
+ },
+ "source": [
+ "After sliding the filter over all the locations, we are left with an array of numbers usually called an **activation map** or **feature map**."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "### Convolution in a Nutshell\n",
+ "\n",
+ "Let’s talk about briefly what this convolution is actually doing from a high level. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "Each of these filters can be thought of as **feature identifiers** (e.g. *straight edges, simple colors, curves*)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "fragment"
+ }
+ },
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "#### Visualisation of the Receptive Field"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "fragment"
+ }
+ },
+ "source": [
+ "The value is much lower! This is because there wasn’t anything in the image section that responded to the curve detector filter. Remember, the output of this conv layer is an activation map. \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "---"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "slide"
+ }
+ },
+ "source": [
+ "### Convolution $\\mapsto$ Convolutional Neural Networks"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "Now in a traditional **convolutional neural network** architecture, there are other layers that are interspersed between these conv layers.\n",
+ "\n",
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "##### ReLU (Rectified Linear Units) Layer"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "fragment"
+ }
+ },
+ "source": [
+ " After each conv layer, it is convention to apply a *nonlinear layer* (or **activation layer**) immediately afterward.\n",
+ "\n",
+ "\n",
+ "The purpose of this layer is to introduce nonlinearity to a system that basically has just been computing linear operations during the conv layers (just element wise multiplications and summations)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "In the past, nonlinear functions like tanh and sigmoid were used, but researchers found out that **ReLU layers** work far better because the network is able to train a lot faster (because of the computational efficiency) without making a significant difference to the accuracy."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "fragment"
+ }
+ },
+ "source": [
+ "It also helps to alleviate the **vanishing gradient problem**, which is the issue where the lower layers of the network train very slowly because the gradient decreases exponentially through the layers"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "(**very briefly**)\n",
+ "\n",
+ "Vanishing gradient problem depends on the choice of the activation function. \n",
+ "\n",
+ "Many common activation functions (e.g `sigmoid` or `tanh`) *squash* their input into a very small output range in a very non-linear fashion. \n",
+ "\n",
+ "For example, sigmoid maps the real number line onto a \"small\" range of [0, 1]."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "As a result, there are large regions of the input space which are mapped to an extremely small range. \n",
+ "\n",
+ "In these regions of the input space, even a large change in the input will produce a small change in the output - hence the **gradient is small**."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "###### ReLu\n",
+ "\n",
+ "The **ReLu** function is defined as $f(x) = \\max(0, x),$ [2]\n",
+ "\n",
+ "A smooth approximation to the rectifier is the *analytic function*: $f(x) = \\ln(1 + e^x)$\n",
+ "\n",
+ "which is called the **softplus** function.\n",
+ "\n",
+ "The derivative of softplus is $f'(x) = e^x / (e^x + 1) = 1 / (1 + e^{-x})$, i.e. the **logistic function**.\n",
+ "\n",
+ "\n",
+ "[2] \n",
+ " [http://www.cs.toronto.edu/~fritz/absps/reluICML.pdf]() by G. E. Hinton"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "#### Pooling Layers"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "fragment"
+ }
+ },
+ "source": [
+ " After some ReLU layers, it is customary to apply a **pooling layer** (aka *downsampling layer*)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "fragment"
+ }
+ },
+ "source": [
+ "In this category, there are also several layer options, with **maxpooling** being the most popular. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "Example of a MaxPooling filter"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "fragment"
+ }
+ },
+ "source": [
+ "Other options for pooling layers are average pooling and L2-norm pooling. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "The intuition behind this Pooling layer is that once we know that a specific feature is in the original input volume (there will be a high activation value), its exact location is not as important as its relative location to the other features. \n",
+ "\n",
+ "Therefore this layer drastically reduces the spatial dimension (the length and the width but not the depth) of the input volume.\n",
+ "\n",
+ "This serves two main purposes: reduce the amount of parameters; controlling overfitting. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "An intuitive explanation for the usefulness of pooling could be explained by an example: \n",
+ "\n",
+ "Lets assume that we have a filter that is used for detecting faces. The exact pixel location of the face is less relevant then the fact that there is a face \"somewhere at the top\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "#### Fully Connected Layer"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "fragment"
+ }
+ },
+ "source": [
+ "The last layer, however, is an important one, namely the **Fully Connected Layer**."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "slideshow": {
+ "slide_type": "subslide"
+ }
+ },
+ "source": [
+ "Basically, a FC layer looks at what high level features most strongly correlate to a particular class and has particular weights so that when you compute the products between the weights and the previous layer, you get the correct probabilities for the different classes."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "---\n",
+ "\n",
+ "## Hands-on on `Fashion-MNIST`\n",
+ "\n",
+ "**Deep Learning Training in `10` steps**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##### 1. Import Required Packages"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# imports\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "\n",
+ "import torch\n",
+ "import torchvision\n",
+ "import torchvision.transforms as transforms\n",
+ "\n",
+ "import torch.nn as nn\n",
+ "import torch.nn.functional as F\n",
+ "import torch.optim as optim"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##### 2. Get Dataset and Setup Data Pipeline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Transformers\n",
+ "\n",
+ "# transforms\n",
+ "transform = transforms.Compose(\n",
+ " [transforms.ToTensor(),\n",
+ " transforms.Normalize((0.5,), (0.5,))])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# datasets\n",
+ "trainset = torchvision.datasets.FashionMNIST('./data',\n",
+ " download=True,\n",
+ " train=True,\n",
+ " transform=transform)\n",
+ "testset = torchvision.datasets.FashionMNIST('./data',\n",
+ " download=True,\n",
+ " train=False,\n",
+ " transform=transform)\n",
+ "\n",
+ "# dataloaders\n",
+ "trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,\n",
+ " shuffle=True, num_workers=2)\n",
+ "\n",
+ "\n",
+ "testloader = torch.utils.data.DataLoader(testset, batch_size=4,\n",
+ " shuffle=False, num_workers=2)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# constant for classes\n",
+ "classes = ('T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',\n",
+ " 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle Boot')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# helper function to show an image\n",
+ "# (used in the `plot_classes_preds` function below)\n",
+ "def matplotlib_imshow(img, one_channel=False):\n",
+ " if one_channel:\n",
+ " img = img.mean(dim=0)\n",
+ " img = img / 2 + 0.5 # unnormalize\n",
+ " npimg = img.numpy()\n",
+ " if one_channel:\n",
+ " plt.imshow(npimg, cmap=\"Greys\")\n",
+ " else:\n",
+ " plt.imshow(np.transpose(npimg, (1, 2, 0)))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##### 3. Define Model and Loss"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We’ll define a similar model architecture from that tutorial, making only minor modifications to account for the fact that the images are now one channel instead of three and 28x28 instead of 32x32:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "class Net(nn.Module):\n",
+ " def __init__(self):\n",
+ " super(Net, self).__init__()\n",
+ " self.conv1 = nn.Conv2d(1, 6, 5)\n",
+ " self.pool = nn.MaxPool2d(2, 2)\n",
+ " self.conv2 = nn.Conv2d(6, 16, 5)\n",
+ " self.fc1 = nn.Linear(16 * 4 * 4, 120)\n",
+ " self.fc2 = nn.Linear(120, 84)\n",
+ " self.fc3 = nn.Linear(84, 10)\n",
+ "\n",
+ " def forward(self, x):\n",
+ " x = self.pool(F.relu(self.conv1(x)))\n",
+ " x = self.pool(F.relu(self.conv2(x)))\n",
+ " x = x.view(-1, 16 * 4 * 4)\n",
+ " x = F.relu(self.fc1(x))\n",
+ " x = F.relu(self.fc2(x))\n",
+ " x = self.fc3(x)\n",
+ " return x\n",
+ "\n",
+ "\n",
+ "net = Net()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We’ll define the same `optimizer` and `criterion` from before:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "criterion = nn.CrossEntropyLoss()\n",
+ "optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now we’ll set up TensorBoard, importing `tensorboard` from `torch.utils` and defining a `SummaryWriter`, our key object for writing information to TensorBoard."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from torch.utils.tensorboard import SummaryWriter\n",
+ "\n",
+ "# default `log_dir` is \"runs\" - we'll be more specific here\n",
+ "writer = SummaryWriter('runs/fashion_mnist_experiment_1')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Note that this line alone creates a `runs/fashion_mnist_experiment_1` folder."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##### 4. Writing in TensorBoard"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAB5CAYAAAAtfwoEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABInElEQVR4nO29a4yk2Xke9py636u6+t7TPbO7s6NdavZqriQKjAKCkiHSJswICAQpjEMjAhYKGMRODIRU9MNJfilI4MQBHBuEJYsOJFKKpEQLS3bCrOwlSC6VJekFuTszu9O7MzvTM32r6rrfLyc/qp/T73f6q77MdHVXlb4HaHR3Xb7L+c55zvs+73veo7TW8ODBgwcP0wPfRV+ABw8ePHg4W3jE7sGDBw9TBo/YPXjw4GHK4BG7Bw8ePEwZPGL34MGDhymDR+wePHjwMGV4LGJXSn1GKfWeUmpdKfWVs7ooDx48ePDw6FCPmseulPIDeB/AXwewAeAtAL+qtb5xdpfnwYMHDx5Oi8BjfPenAaxrrT8EAKXUNwB8HsBQYk8kEnp2dvYxTunBgwcPf/Vw7969nNZ6/qSffxxivwTgvvh/A8DP2B9SSr0K4FUAyGaz+PKXv/wYp/TgwYOHv3r40pe+9NFpPj/y4KnW+qta61e01q8kEolRn86DBw8e/srjcYj9AYA18f/q/msePHjw4OEC8ThSzFsArimlnsSA0H8FwH90mgMopRAIBODz+aCUeoxLcUJrbX5Ocy2Pch63v92OfVb3qLVGr9dDr9dznNPn8yEYDJ5pOx53Dd1u19HW8hrkz7Bj8He320W32zXv8XvBYBA+n8+8dtaQ9yDPHQgE4Pf7z/x8J4VsU/ms2Y/kZwCYvuXz+eD3+8+lD9jX2+l00O/3zWtKKfj9/pFfj/3s7Pf6/b5pPzdOYLvx56g+O2rweu0++Sh4ZGLXWneVUv85gP8bgB/A72it3z3VyQMBPP3001heXjYd9iygtUalUkGtVgPgfOB8uPIByoEs35cPmtfX7/fR7/ehtUa73TadRv5mB+dAC4VCyGQyiEajj31v3W4X9+7dw927d83DV0phYWEBV69ePZNzHId2u40PP/wQd+/eRaPRQC6XQ7PZxOLiIp5//nkkk0kkEgmkUqmhz7Xf76PT6aDX6+HWrVv48Y9/jG63i1AoBL/fj7m5OVy/fh0zMzOO9j9L5HI5vP/++6jX6+a1WCyGn/iJn8BFBvl7vR7K5TIajQb29vawvr6OarWKRCKBTCYDpRTK5TKq1SoCgQAWFhaQSCQwMzODlZUVRCIRx/HcyOwsUa/X8cEHH2B7e9txjitXrmBtbQ2BwOPYj0fDnkzkvfX7fezu7uLu3btot9uoVCpoNpuO7ycSCczPzyMSiWBubg4zMzMj6WsnQb/fx8OHD7G+vu4wdB4Fj9XiWus/B/Dnj/p9v9+P5eVlXL169cyJvVwuY29vz1iSSikzIwJOKzoUCiEYDJr3SeyBQMAxowMwFkCv10Oz2TTk1O12DenzodBiiUajWF5ePhPS7XQ6aLVauHfvnqNTz83NnSuxVyoV3L59G7VaDRsbG8jlcmZwzM7OYnZ2FplMZuhzZZt1u11sbW1ha2sLrVYLsVgM4XAY2WwWa2trWFhYcLT/WSIWi+HevXsOYo9EIrh8+TKWlpbO/HwnRbfbRaFQQLlchs/nw9tvv21IM5vNwufzodFoIJ/PIxqNYmlpCZlMBktLS7h69eqFEHupVHIQu8/nw+LiIq5evTpyYpeGmm3ERSIR5PN5lMtldDodVCoV8z0AiMfjmJ2dRTwex9raGubn5y+M2Hu9HgDgzp07F0vsZwG/328s27MCCbbZbKLf75tzAHBYufyhHADA4faS2OX3u92uscr5d6/XM64oX9NaGzeUHfss7rHf77sOTOmKnyWka8j7bDQaKBaLqNfrpo0BmIETDAYRDocRDocdLq6UX3q9HlqtlvmObFOlFOr1Omq1GhqNBvx+v5F4/H7/mRGFmzzGNrwIKYZt0Ov1UK1Wsbe3h52dHZRKJVSrVUQiEezt7cHn86FUKqFSqZhJIBgMIh6Po91uGw+U/W/UxD5MZhzF2LbB+5Pjmf2Uxler1UK/30csFoPf73fIM+Fw2LRZq9VCt9uFz+e7MDnurJ7NhRP7KNDv97Gzs4Pvfve76Ha7CIfDCAQCCAQCiEQiCAQCxlq09WIOLurFHCChUAhaa5RKJdRqNQSDQaysrCCVSqHT6RiLoN1uG7JjB1pZWcH8/DwmMSuo2Wxia2sL9Xod7777Lt566y20Wi00Gg0zmfl8PmSzWZRKJXzzm99EMBhEIpFAOp1GIBBANptFKpVCt9tFs9lEt9tFrVZDoVBAu91GPp83x2m1Wmg2m1hfX8fXv/51JBIJLC0t4dq1a4hGo1hZWcHs7OyFWVWPAmlMHPWZRqOBcrmMYrGI1157DW+//TbK5TLu37+Per2OWCyGVCplJr5ms4lQKIT33nsPiUQCTz31FFqtFubn57G4uIiFhQUHubtp0MRF6cqPCttA498AUKlUcOvWLZRKJezs7GBnZwfhcBgvvPACVlZW0Ov1UKvV0Ol0UCgUcOfOHXQ6HeRyOVy6dAmxWAyXL19GOp2+sPt7XEwlsWutkc/ncfPmTXS7XUPm4XAYyWQSwWAQ7XYbrVYLvV7PDBJKMSQZaXGEw2H0ej0Ui0WUSiXE43E0Gg2srKyg1WqhVCqh3W6j3W6j0Wig1+uh3W4b6eRnfuZQiv9EoN1u4+HDh9jZ2cHrr7+O3//930en08GVK1ewurqKSCSCTCaDWCyGRqOBH/3oR2i322ZCDIfDWF5exszMjCH0TqeDWq2GnZ0ddDodzM7OGsJiG5bLZdy+fRvdbhfXrl1DqVQyLnM2m73oZjkxThoEI7Hn83k8ePAA3/72t/Hnf35Y5ZTxH/ZPWszb29tYXFzE2toagsEg5ubmjNXpRuonmXDGHW7XXq1W8YMf/ABbW1vmHjOZDBYXF3HlyhUz5tvtNgDg+9//PorFIiqVCnK5nJES2ScnEVNF7LS8aTkDB64arXFajPyhVENXX2YWcMAEAgGHBq+UMpMFNT5a+L1ez3y/0+mY89brdTQaDfO5cbY4pUyys7ODDz/8ELu7u6jX60ilUuj3+5iZmUEqlUIwGDT3EwgEEI/HEQ6HARxkmLDdKbVw4oxGo0ayobzCtqTe2G63obVGLpdDq9XC9vY2stmskXtCodCFtdNJ4CaFSHmL/bXT6WBjYwMffvghHjx4gEql4mgTAAgGgyaLjO0o+2m9Xsfm5ia63S6y2SxmZmYQiUQQDocdUpaUTqZla0wZ86pUKgiHw0in04jFYiboHI/H4fP5oLU27TEzM4NnnnkGxWIR3W4XrVYLlUoF1WoV9XrdcINMriDGmfSnithbrRb29vbQaDSwu7t7KD2Mbj5wOHgai8UQDAaRSqUQi8UcxyWx9/t9VCoV1Ot1Q+6tVgsATMCKpM5JhtLMxsYG+v0+UqkU5ubmxpqQ2u02bt++jc3NTdy6dQtvvvkmcrkcAOBjH/sYgsEgZmdnkUgkHCRBr0immQEwLq9EMBjE4uKiIX+2h5yESV6dTgfvvPMOfD4fKpUKdnd3kc1mcf369QvNXjkpbALodrsolUpotVrY3d3FBx98gFKphHfffRe3bt0yAelUKuUI6KfTaczPz0MphVwuh1KpBOAgLlAsFvHGG28gEongzp07WF9fRyaTwfPPP4/V1VUEg0FEo1HT1jLGNGnWu32drVYLN2/exL179+Dz+TA/P4+lpSVcvnwZKysrCAaDiEQijtRQBlcXFhbQ6XRw8+ZNvPHGGyiXy1hfX0er1UIymcTS0hL8fv9EtdNUETu1s1qt5khrkhILLSVamHRlmRmTSqWMFs6HyIAdA6LU20k+doCUnYAPv9vtolgsIhaLGSt/nNHr9ZDP57G+vo6PPvoI77//Pvb29rC8vGzc/EQigXg87kj1pHUDDMicbU3rX1qMgUAA0WjUkUNMyIC21hrFYtHINul0GolEAouLi3jqqadcteNxBvtis9lErVZDLpfDe++9h1KphFu3buHtt982Hk04HHb02UgkYtI/6/U6qtUqtNamH7fbbTx4MFgjSGMlk8lgeXkZs7OzJlhot5mbVzGuGPa8e70ednZ2sL6+jmw2iytXriAajRrPRQZCpcHHya7X65k4UL/fRz6fN/17fv7EJVrGBlNF7K1WCzs7OygUCrh79y4ePHiAfr9vXCkpBUhQTggEAkilUmZmp/UtOwI1YFtWoGtna+ztdhvVahWZTAatVgtKKaysrFxE8xyJfr+Per2Oer2Ovb093LhxA+vr6ygUCkgmkwgEAshkMibP3OfzGUvSbeEH209rjVAo5EgdlQQv00gBJ8lwAIfDYczPz5uJ9OHDh6jX67h27RpCoRBCoRDi8biZVC4Sw4in0+lgd3cXhULBpIoyRfD+/ftoNBooFAquEz8zPJja6PP5UCgUDOHL4GEoFIJSCtVqFRsbG9jb24NSCh999BFSqZQJCiaTSczPzx/yHMfZIpVZVewnzGSpVCrodDqmn66srBgZRkqodjqkbLu5uTn83M/9nBkHd+7cQb/fxxNPPGG+MymT4NQQu9YatVoNt27dwvb2Nm7evIm33noLWmuTG93v903AlDq8zF7x+/2IRCKG6KPRqJnpSWQ8F3XzTqdjUs2CwSAajYbRk+Vk0e/3sb29DZ/Ph4997GMX2VSu6PV62Nrawvr6OjY2NvC9730Pt2/fRiwWw+zsLILBoCFRkjOlFjuXGHCmwIXD4UMWovwsnwHfsz8Tj8cRjUbR7/dRLpdx69YtswiqVCphfn4ezzzzzIUTu008Eu12G9/5znfwxhtvGOu8UCg4Uu/oyfAY9Fro8USjUVy+fBmBQACbm5sm/sBzyT5bKpXwwx/+EFprfPe734XP50M6ncZzzz2Hubk5fPzjH8fnPvc5hyxz3D1cJKQBIY2BWq2Gvb091Go1tNttI62sra2ZNR0kdrfYggxGLywsYGZmBo1GA9/61rfw1ltvodFo4LnnngPg7JvjLstMDbEDTilGZrpQT6Pm3e/3HVkxDKTKxUp+vx+xWOyQRMDfMlgTDAaNtUBNHYA5ViAQQKPRMHnZ4woGnrhqt1gsGrJhm9g5y0dZL9LbcQsWDzuOW24yPS5O4H6/H9VqFeVyGclkcmzkLZsQSSqdTgfb29t48OAB8vk8NjY2UK1WHeslIpHIocVFwEF+O+BM77M9JRn8b7VaqNfrjpxutlW73calS5fQbDZNH7/IEgqnhWxjrqugNxwKhUywmHExu/zGMMggKduQHOFm8Y8zporYSd5McZybmzO6Ikm3Wq06FiForU1aIuC0NGmRAk6y4f88hiS+fr9vrCB2slAoZCYTZsqMG5RSiMViWFxcRKfTMRo64wlSdrHzhiXcFoC5fc5+zc1SdzsutedIJIJkMmlSIMchy8gt+6VSqaBQKGB3dxc3b97EjRs30O124ff7kUwmHd9TSpmFcrKcBdvi/v37ePPNN+H3+7G+vo5er2f6IBeDsY/xHJQJgQFZPXjwALlczlioa2treOKJJ7C6umommHHsn4Tt6VUqFdy7dw9+vx/z8/NYXl52pHnK7wwjZXm/NEJSqRSy2SxCoZBZFBaNRs0iJ/t740b4U0Xssv5IKBTC/Py8CeoppYyFDQweBN17zsxygRKPJ101m9BIJpLcgYMHHo1GTboZif1xlwqPCrQYZ2dnDbHHYjEzSckaOcNcUDfr8ahJwO09Gc9wOzaJPRQKIZVKmSymiyZ2ee9SA97b28M777yDe/fu4Z133sEHH3xg2jkej5s4jUx9lFq5vK/NzU1sb287yJcBa9nH7DRIGh3dbhc7OztoNBoolUpoNBrIZrP4pV/6JSwtLRkZaNxICjgsFfHvYrFoAqYvvPACstmsydbi947yFu3+zM/HYjFks1mEw2Hs7u6i2WyamjI2sY9je00VsQNwrXxIfU1quYSd/uQWCDwJaNUChyUGKfecReW2UYEarYwzAIOgtCyrABzWG91wFKmf5rN0p+Xz4+Bj/GScBpe8Fgb26vW6Wdo+zNKTcRy+R2Lm9+T9c9m7bY0OmzABZzpps9lEs9k0az7GGW4kKmUuesr0zk/bH2wJLRgMGsNGrpge17FrY6qIXWrsDDjJgcLXOp2OSXEE4EhhlAubCDv4IicAqd1TurHrynAlJjXhcdGDJXw+n1lcpJQyZQCYXdHtdnHp0iVH8HTYZCiJ5igXmO+5WU2E1hrNZhPlctlR3jcYDGJ1ddVICBcdOB0mS7H9tre30Wq1zGIu9gu77UhKMiDK4DuzrJj6yGchA6BcSCcnAZk6Sk9AWp4X7e0cBzcy5UTXarVQq9UwMzNjyli4pc+e5PjSO0+n03j66afR6XRQrVZRKpWQTCY9Yr8IcLBQWqGezYdBUu/1eo6HTWuUrw/rCHYARQ4gWTyMA0YWdSqXywgGgyagO25QSplVoMwVj0QiqFQq2NvbQ7vdRiKRwMLCgkMWkeTB1+Qx7b+HafBuEwHbs9PpoFgsGmJk+iTT9sbFWneTpprNJvL5PEqlErrdrrGypbQlv2/HcIBBFUqttaP4WSQSOVTJU/Y9aTxIK51pubJu/jjDzbuR445ZQ/1+3zX4LD3Kk94rZdpsNot6vW7KDTQajbEcu26YKmIHnA/dbfCEQiGT2siZnZY1waCUDBbKLA3mZ7OYmMzpllaQ/DxdxEnIPvD7/bh06RJ2d3cRi8VMlkwikXAMLreSqaeRX3gct89LT4AWJguKzczMYGFhAfF4/AzvejRgeQZ6dMcF8gAnwcvUPrk2wJbG+Bk7DsLv8bj8zdiSTByYFNBz47UftVnPoxAxjRwGtxmUtj3tcZ4Up5rYZa0WDoZUKmUGhyQmAA4dkwNCDgpaUQy6krTl6kCZMkUNmAEuVpcc5w4BDPLOf+qnfgpPPfUU1tfXEQqFUCwWHVkTTA/lj9Q1h/0m3Aab/Vmeg7V86GI///zzeOWVV5BMJjE3Nzf2bckCcSyxK0mI106jQr4niYqE3u/3TR0euTORJHi5q5VcZ2CTO8v9drtdRz36cYOc3Nn3Wq0WCoWCSSEOh8OIRqOHJLyTwu57Pp/PeKzRaBTr6+smT97NEBnHPjh1xA44rUmSer/fN2lhzDuX5QVszVgeB4BjYHBQSetbnpPg+WQhoYvYuuy08Pv9mJmZQTgcRqvVQjabdUx4wMH9ktRt4rD/5neOC7RKUMZSSpnFUUtLS1hZWUE0Gr1wXf0kYHXPZrPpsNhlvGYYbFlL5pvzPbvdbX1dfl8elxZ7IBAY2xTcYdcki+odZ7ETR8V53F6jIcb8eBlDc/uuHXy9aEwVsXOBTblcNoszgINaL8xbl3sgAgdkLV1cScZygQLgXDDC47NwGINjdN9YpY/ZG+M4gGwwpdDv92N1dRWf/vSnUSwWkcvlsLu7azRv3hslpqOCoBLDdGWttYmBsE39fj+y2SxWV1cRj8fx5JNPIpPJODyjcQWty3K5jHK57CB29ic3I0L+L40O4LBHI18bthhH9nmCxM5+KifqcSIoN3S7XTQaDeNpxGIxh8Vuy3iPEhyW1juD88cdZ5zIfaqInS7aw4cPjW4u9W3AqUNyIMmUMT5Elgngwia5fJsDitZ+MBg09VTkph2NRgPVatVhrdtW/TiCqYRaa8TjcSwvL6Pf72NzcxPvv/8+isUi3n77bWxtbZk6LaxxwslUDih5v0dp8pTPGo0G4vG4CeK++OKLeOmll0zRMFlWedxRrVaxtbWFYrFosrGkZyj7A1N1gYOAPq1Hu5aObT3K79tt7Ja11O/3jcXL2kb2svtxgN13gEF5hlKphHq9bhYTJZNJx0Tvlnp8HGxvk31Mlks+7hrHBccSu1LqdwB8DsCO1vq5/deyAP4AwBMA7gL4Za11YdgxzhPDcsVJqsNgPzQ+VJI1ByOAQ8eRszrgtJC4AnAcH/4wSMKl56K1RiKRQCKRQLvdNkFnuZGDJBLb8pOWvN0W8rNy4mWpVcYq3JbbjytIpszakPXTCbsf2RY1cCCbyP5H2OTu1q5u78s4CbPB2O7jROrDQM+OQd/H9d6Ou2dOxtIjOMn3LhInMXl+F8BnrNe+AuB1rfU1AK/v/3/h8Pv9iMfjpqg+VygqpRyFltyyCWjtsNYL89lZGIzlfFlDwo6S2/U8pPxD0qe8Mc4dgpDuLMH7Yt60DNTJz7i5xEeBkyhJjJpvLBZDOp0euwVIx4ELWlgpk6lyMogpJzC2qyQQtgNjQfaaDLlBh9yHlx6N/LEnU/7PSqTlchmVSsUswhknuE1O3W4X1WoVtVrNBJQfZVGSG9z6cygUMkaFrDE1zjjWYtdaf0sp9YT18ucBfGr/768B+LcAvnyWF/YooJadTqdRq9Uc1qPtZtqzL91iEruttdMdzufzaLfbUEoZoub3pRtNvZ7ELouLjTtJ2Vo5IT0TTpb2Skn7OyeBjHEwwwgYlGRIpVImE2RSwEwTLmzhgjm69MCBRc4+wr9lG9CilgYJJwYaIcBBaq3cCUw+A6mvy6Atv8/Cb+zvNIbGDdLTqFQqZiMMuUPU42CYZMhVqACMtyqTKMYRj6qxL2qtN/f/3gKwOOyDSqlXAbwKYOR7VbKx+WODqXNysNhV8+SgkJonNXa7MJi0/t1cafuz49oRTgLZvm4BJQ6Gk8pOwzISSGBy271JajcpFdDSPkoGlEE3t/u0s7PcJl0pE9p9X/ZbKXnxO5SL3HK1LxJH9SXb4xklZNkCGjNuAepx6qOPHTzVWmul1NCRrLX+KoCvAsCVK1dGKjQzmyMSiZgVnvIBkJRkHjE7PX9YG8Lv9xuLRlZllPnr0gq3A2G2DCGt90mF3+9HNBpFp9NBMplEKpUyQSV573YHHzZA3axKbhoej8dNUExuBiGzHdzONQ7odrsol8smf539h16f3f+4JkAGhekd0YtkzEFmenCxnfScmPklJ9lWq2X226VsITX1SqVi6rszjjIucMvS4aIvrjh1m/jdYhInOZfdh/v9wR4Ae3t7KBQKZlvMcR/Hj3p120qpZa31plJqGcDOWV7Uo4KDwY5gSyKwNXb58KUmzqASc5BrtRoAmCXtcnDJY0nLyU6JdFstOI6wZSqCVjQXhHBTh2GDaNhx5HtyMFG+4tJwpoi6udnjZiFJsGZRtVp1ZJz0ej1HBUWZsSK1dukJyvgP4Azk8bNSX5cBUBmzYGqjnIiBg7IHu7u7JgNsnDDMg5HrUIb1A7dJ4bTn03pQ/58bXLfbbUeWkv3ZcemTj8oyrwH44v7fXwTwp2dzOY8H6b4DMO6lHASy1IAccLICo3SjGZji+8DhLA77GqipcxBxoRIX2YzLwz8taKkMqyr4OHAj/0lZ0GWj3x/saVqtVh2Lf+jVySwUW9e14xv2KtVhueqEnEztRXhuMSYAqNfryOfzyOVyE1FeQLYjJ62TbqbxKKDxcpQUI69tHHCSdMevYxAonVNKbQD4BwB+C8AfKqV+DcBHAH55lBd5UgQCASSTSTQaDWxvb6NUKkEphfn5ecRiMcc+pBxA8mHRZa3Vao40R26jB8BUxbNztDn4WH+drwEwey/OzMyMVdGq04LBaUombqR7mlQwN6uV4CTNPVYnpc0ofWxubmJrawvVatWxboK57DI4J40Om9QBODzQo1L8+B25gxLbVXqZTP1l229tbeHWrVvI5/O4fv36WFmedoYKX2N2CpMkUqnUyNIQKaPSu+EmKePUTjZOkhXzq0Pe+vkzvpbHhlIHW9sBA22crq+9lyS1dWm90wKglUPrVGqYckDa55ZBP+Bg8NGCl+mXkwiSkB0rGIXVLttz0trLLh9NSGPiuMUuvH9a24BT3nMLkgLOrBfbWrfjSwQrGI6jFOMGtiEnylHvTCZLObjt9zCOGO8IwCkRDAaRyWTQarXMzjpy5SktapI6pRWpYdJCXFtbw6c+9SnMzMzg/fffx3e+8x2jUwLO/FaZo86/5YBk0IqbMk8CUQ3TxZmyZ9cNd/uetLCkHDEMUibgzyQSe6fTQS6XQz6fR7VaNa/bMRhJ3sDhLCupq5OspYcjs0LsuBKNFb/fj6eeegpXr15Fu93GxsYGyuUyAJhN11n2IBKJjJ0UI++baLVapowzawYNy2N/3L6j1KCEbzwed6yNcfOWxglTRewsEqWUwubmpqkIKOu0cEMNudGBzCiIRCJoNBp46aWX8Ou//utYW1vDn/3Zn+HmzZvI5/OmA7GWCfcFZSCRg7Pf7zv2moxGo0in04jH42PXCY6C9FBk8JSeh/yR5H0U4btBDmB5PrcFZeMOKcUUCgVXHZ2gRygnTfZPfk5ObvwsrVWSupsOz/rrH//4x/GpT30KxWIRb775Jm7cuAGllJGJKF2Oq8Uu+5LW2lxvp9MxxersgnBnNcbIH+l02ix8pBzrFq8YF0wVsdOKpoVuZyAAB6UFpDtMUpEFl2KxGGZnZzEzM4P5+XkHkcnzyQwF6ebKzAQZdBzHTnBSSMIFcCIr3Cay444v/3aTDSYBMh1P7rFLDPNG7Ht1k/3kBCoxzHtSSiEej2NhYcGxalh+Ri6IGqc8duBw/5HXKlfcypTls5RJZO0dnp8/XEBme5rjgKkhdpJnLBYz+dVuqyLtyo5Sp6MeyswaauR0xViEys6gUWqwy49dhIiTh1x9OkmBQBvSiuaGyMyQkfVw3O7vqOwP+ZqcgOVuSZPUZp1OB6VSCblcDo1GwxgTbLtIJGIsTbldImVDabHbJMV2pjEBOKUrG0opszEzCbBQKBhNms9OZnGdJ9ykO4L7ssrFQZ1OB3t7eyanv1Ao4Pbt29jd3TXlpmVhM3keN0NEtps8Pwm7Wq3i9u3bKBaLKJfLKBaLxvtOpVKmAGA0GjX845bjPqrA7jBMDbEDB5JHIpEwLi5wkPvLwWIvhW+326jX6476MFxZGQgEDLFHIhFD6iyCRZ1elq6l9kmNkz+TUGqWcNM2pZXZbDZRLBYRiUSMHMXPyN82bDIfdm6uEZBlGyYF7XYbxWIROzs7Ji4jg5exWAyrq6tIJpN48OCBIXafb7CJCwmNWVnU4yWZu8Ue3Nrc5xtsGpHJZNBut9HtdlEqlQzR8bpoeJznBGqndtro9Xomf5yletvtNnZ3d00ueaFQQD6fRzQaNfuSVioV5PN5tFothxHhlqZoy4n84Ypn+b1cLoeNjQ0EAgGjuUejUTzzzDOYm5sz48AmdrvPn0cbTxWxHyd52DMyX7OLJtk52pR4aCUQcnKQHZQ6qaw3I3O/Jxlu1qEbQUvryM1SGkbqMv10nFzb04CTui0LSIKPx+OO2I/M0DpKDjmuPdzIXnpaAIZ6sm5VUUcNW1rS+iD/vtPpmAJltMLb7bYhel4zJ0AuImSBMHvPY7e2HUbszWbTkfyglDLP1O/3m635ms0mdnZ2zPvZbNbwz0UG/qeK2BnQ7HQ6jhKvkqxlo8t8YpYQYIU7WUyJO8WnUimUy2UjvwCHCYpWJs8LDLaaYy77JFUqtK9TxhM40dl6u71iku+5WUr23wzkMVUQcNYlP+raxglMNZSaNftRKBTC7OwsVldXkUql0Gg08O6775o1FLT2SCD8rpu27tam7OfHZW1IEut0OigUCmbsnBekV8jr63a7uHv3Lm7duoVarYbd3V1D0ix/TLKX6cm8bpYEYbmBowLXbtdDD6nZbBpvi4kRskAdFxv6fD7cuXMHoVAIa2tr+OxnP4uFhQWzclpW1zzPPjtVxE7Lmhsfy9ftnGBq34CTlNyK6jNdMZFIoNlsotFoOM5rZzlwUul2u8Y1Y+bMWVShuyhI648eiJ2Kx8/RCnU7xrBjAweyGOMdk0bqgJPYpeTBjKJkMolMJoPZ2Vk8ePDAEIZcCGe3p21IuBGFzCJyW2Vqf56kwzLDJNDzhJuu/tFHH+Ev/uIv0G63zV6jzGKjdQ44A6ncectN33Yzwobp7ey3rPVDoy4YDJo24nlCoZCjvPL169fx4osvIhQKIZPJIBqNDr3PUWOqiF0OHmrgwMEgsOtsMEVK1qA+KhPDrgQpKx3aMgsHN60MeexJhRwMMrjn9rokKdk2sg3ctHM3t3gSIHVcaa3LeiYzMzNYWFgwFp3dZ9hH5fHk8Y+DXOEqj0FCokHCeIitP9vPdBRtzzaRxfR4LSx4Vq/XHRtpyICxHL9StpOlsd2C8zyH229CekZyJzVJ4twDVZ5LGon5fB6pVMpY+rbxKPv1KIPVU0Xsfr8fiUTCEHy1WjWulUxl1FqbQlYkYHkMu1iXDKBIi5XHILnLjqH1IN82n8+bZfiTFDx1gyQAErdcYCOtqmaziWazCQAOL4htOyzbRU7AZ12PZpTgZNbv91Gv11Gv182GLZ1OB7FYDC+88AKuXr2KcDiMTCZj+o0d7wEOFjDZ5zjJdfD7wMBo2dvbw71797C7u4t+v49UKoVOp2NkRz5TXqs891m3fa/XMzXquWiPZTu4Ocnm5iZqtZqJUwWDQdOvKJOSVDlxMm4Rj8dN/7QDppLwh01e1MqZKBEKhZBIJBz7H/d6PVNFVra5UgrvvfcednZ28OSTT6LfH2wCwklKKWVy7iORyKHKpWeJqSJ2Ei61X1mwx9Yp2WHYKQipU9qwg07sYG4WprTYWYhs0ix2t45vZxjYwWQGszhQCVuuOWmAcFLaS056JEgZEPX5BntzcgGd1M8J2X84YZ42mOlmjTKDSVYotb0B21ofpcXebDaNRs5Jn6TOiph2tpk0zDjpy7HL8RgOhx2eul0OxP7hd+02lJVeZWkRWaLETVYtlUpot9uIxWJYWVlBNBo1Ro7P5zPZdQBGWh55qoid7o2somhbfNLV5cpT5rB3u12TXheJRA5ZUpRupAso37ej53KAU2Of5FoxDGCxaiFjGdKytt17TrayCJX8rMx+4UDl6mDmDbvVZAfGi/R7vR4ajQaazabJE2f/YD+iZsxJr9PpIJ/PG91YyijDUvPc5BlbApSkRQ8il8uhWq1CKYVkMmkC1PLzvV7PpP2SuM7aw+z3+9jb28ODBw8c41MaAyxvwDZgmibblCnN9JJarZZJfuB2efbCIratTfLDrlG2LYPe/X7fMX4py8g9GTgp3b9/H1oPVrqXy2VUq1VEIhG8/PLLWFpaOrJC5Flgqohd1ga3A6iAMw+bHZ6ZGNzxnLmolHQAd+1eShAkfb5GMqe1zo0jmBUzCUvk7SCd1oOqhblczuyPyRW+dhBVFlYDYLYWs61BO6WRchVTADc3N6G1xtLSEuLx+FjLWL1eD3t7eyiXy9je3jZZGcBBULPRaBjLeXNzE5VKBffv33dIH+xbcuDb/cW2ym3yku/1ej2Tf80NPebm5qCUMuUOeH5mnNRqNWPYnHWbd7tdfPTRR3j77bdRLBaxsbGBRqOBZDJp1p9QUuUWeJQyuHlONpvFzMyM0eSZvUL5S3pElFaBwyWPT0LsNDTsrfFYPZOVHoPBoAm6AsDOzg7effdddLtd7O7uYnd3FwsLC4hGo5idnR35Ct+pInapC8oHKtMaCZuA+CBJLFL/JfkcR8jSYpXHldk240xOx4HBI7l4xs7AkJDv2RaphJw85Gfr9brJihg2CEclGZwWUnqz64Pz+qRVWqlUUCwW0Wg0HFLhaSd9Wwu3iR048LSkvGHXVpH3QDltVBYl4zPVahVbW1sol8uYnZ01Egg9tGHeizTQ5ORDr2NYAoS00t08H/t/+zgyvmbnyBM0ZjiJt9tt7OzsoFAomMnzPNazTBWxAwcknE6nsba2ZoIttFZsrZ0RdS4F5ubJsVjMDDLmxycSCSOncGCwI8mcZWmVcpl4NptFJpM5tE/ouMLWxLUe7CSzsbFhLFPgIK5BbVOuzGVgmRUwmRpmewP2QPX5fGi32/jwww+xvb2NcDiMy5cvm+uyMQ7krrU2OjFJVBIpJYhoNGqkEU5anPAjkYgJ6Ms6M25kZFvTfF72hEJLtlQqATjo73LBkhwL1WoVlUrFSB5nDVZO7Xa7WF9fx8OHD9FqtZBIJBCPxx0bfst7IOHzOovFojEU7CCmvDc53m2Slt+xJ45IJGLy1JlRxAAt70MaKeQBeuSM8dGj6PV6WFxcxOXLl7G0tHToPs8aU0fsAAyxLy8vG2tPZr4ABw+fVgKJPRaLmR8+fDnoYrGYo0woA4ZSZ5Y58z7foDYIywjLTjdpqNVqeP/991Eulw2xK6VMTINlYNnJmdLHiZCxB3vFrnwWHMTNZhP37t0DACwvL+Pll18237EH5TiA3owM/slsLAAoFAoIBoOoVCrY29szA55BOGZKyB27hnk5MuYjvUT5efYzEjvb2c1z5DFqtRqKxSKA0Ww+7/f7sbi4iHA4jH6/j3feeQflctlRCsSemDiJcYyR2IGDdSPy/t1ia/J48n/2V2nsyfN1Oh1Uq1W0Wi1kMhlTh4qcQgudBiQXKJLYafBorTE/P4/l5WVkMhnX6ztLTC2xy4CmDJq4ZVxIApfpjjJD4bgt4WRndAt6HSVZjCvsa+UGEvV63eHy2nqwvNdh7XQS2EQ17qBHIrOxOFnZ77sRES3uk8og0tp0+7w8LnduYiE6aa3LiVJuDTmKiZPBxnA4bFZoy/eG3YMcO7SEgQMPxO37UuJzO678283rI2/I5Ap7ErCPKfdM5vOk8XPUPgZnjakkdsA568raI+wg1BnZ+OzsLGolLXauJOt2u8jn8wDcl9DLnHmbkI4iu3GEmxRTrVaxsbFh1gfQEpdLuBm0lml+JAyboG1isqUG+bd8fxzbj1JMuVx25K8zy4p9g0vg7cwLBuQKhQIAOFatut0vLUU7T1sej55Au91GqVQypC4lADsmRG2YHtZZgwkKPp8PMzMzRnbiGJVJCQBMFoqMiVUqFWxvb5tsM/ZDVswcZrETNqnbsTROhGwPljVg2nIwGHQsoOJ9UX6Mx+NmoVWj0YDP5zN7MZxXjO0ke56uAfgXABYBaABf1Vr/I6VUFsAfAHgCwF0Av6y1LozuUk8HGeQADogXOOj4MrjK31w8INPrqK3V63VH0MktMGiTkIyuT5oEYw+MZrOJfD6Per3ukJZo1Wh9sAiLVpV0d22iciN2OajtXO9x0NKHgQTFGiPS8iZhuNUMp2cJwKHL28TkZo1K8rc/J/s4c8elBQk4A63sv61WC5VKxezpedYgMVJ6AmDSGe0+wLZh0JHkX61Wsbu7a/LKg8GgWZzEY9uSy7B2lK/ze5RXuWKXmUK8Znoakk/4P0ua+P1+0x94bXz9PHASi70L4O9rrX+olEoC+IFS6psA/g6A17XWv6WU+gqArwD48ugu9XQgsdiFmEiwstPLoJMkdvnAIpHIoRRKKRVMcraLhBt5SkKWrqad4kjZgWTuZjnJv+VxZeaSlCUAmEFN+Wcc21oGT7nK0A5OUn+ljCAziwB3Gc8+h4QtJdqQ52f/5opJSTLy+51Ox6QNjkICY7vYVVjlpCNlFymr0mhIpVKYn593lMWWwU7Cbi83g8vuu1I+Ixdw1zOmQsv1LAS9CWYgyR8Zlzsv4+4km1lvAtjc/7uilLoJ4BKAzwP41P7Hvgbg32JMiF1rfajGOnBQzEsub+dgarfbxo2am5sz9R6AwYCcm5szUoO0LGz3kYRmu9qTIMHIzm4POA465vMy0wWAg3SlRyNdeSld8ZjUcSlX2HEKTsp0aeWq4nGz4judDnZ3d7G9vW0WAkmtFQBisZiRHyglsB/SUpT9yA22HCV/S5ICnHuldjodRKNRJJNJzM7OmgJ1Uh7UWpuKitFo9FDCwVmAerPW2mxcA8DIeVpro0fL+yHJAoO+l81mh050JFlpONheoS1BSaOCz44lQ0KhENrttrHGpRcqjTuZd18qlZDP59FsNpFOp01CxnmV7j6Vxq6UegLAywD+EsDiPukDwBYGUo3bd14F8Cowmij7MDCroN1uOyLqtBbkQ5QWDTfWkFIMtTOm7wFHL4kfdz34NLDdYxlclhKUPTBsd1hCDkA391uSttSlZSlb+xovup1psTcaDbMi0a77IgtL8TuAsxwy7/k4611C9mNblrG9H+mRugXzWfe80WiMzGLnOaXFTjKWE470+jhuZXotcFhGkrnvxDDJz43YpbxKI4J1821vkUadjHfQW6MMQyl4WAmCUeHExK6USgD4YwB/T2tdtlxqrZRy7YVa668C+CoAXLly5dzy0xgk4kIHO9PAdslIVLLsr5RiZKojX3ODTXR0Hy+aeB4VvB/bQuF7gHPykgOLHV5a48POYcO2SEeh954lWNxqb2/PBJcp27FvcXUlSxIzTVYew22BkU3cMo1Sto9tsUttnyugU6kUFhcXUa/XHWUeeDwGgFnLZZSwNWmuNbElOUnSbq8BzhjaMEveriRpW/PSKOEkw75vZ9VJY4IxJV6HrO7Z7/eRyWSwvLyMxcXFkRX9snEiYldKBTEg9d/TWv/J/svbSqllrfWmUmoZwM6oLvK0oHVEUmentlewyRxWWqLMp5UaO614Lh2WpGMTvLT+uThp0vbslOD9MA1OBrEkpHwCwCHfDPNgbOtJHou/7c+PK7rdLnK5HO7du2f2ggUOLFEufpudnTVWnV0kTE6GwzwfaaC4xSUkSdlB2V6vh9nZWVy9ehWNRsNIA5LYy+UycrkcUqnUSKQYCaUGwchEImGIHYAZO1LisCHjEnIykCV+5XkAZ8kRcoEdgJYeBBMCZMBbHltOAjLIq/elXX4nnU7j6tWrWFpaGsmiLzccq+SrwV38NoCbWut/KN56DcAX9//+IoA/PfvLe3TYurZ8eDaRyIcqXT55LLkZ9UkCIBysMjg2yXAjYPt/t9eP+8xRZG1b7eMMuuFMdZTgPVJCkLsk2fcvLcPT3vewNpUTBuv2DJMF5Mbuo55I7THq5m0QUjaRVvQwo4Dfsc9npx0P++H33drTvka3a5VeBTe85kR6HjiJxf5JAH8bwI+VUm/vv/bfAPgtAH+olPo1AB8B+OWRXOEjQuplDMxwJRnf52wrpRquHpM6PK0trbUJngAH1qy0emSdjUAgYKz/cczkOAmk1WhnWdjpctK6HEbutmwjPRw3614GF4cR3TgQv9bapAqycqK08iiDLC8vm4JzdkrksKwJ2c58HnJJuu2J2m0tl7ZLL5JbQcq+m8/n4fP5kMlkRr6bEi3bZrNpVihTV3dLdWWwXb7HPmJr5nLlrwwiu/1Ir0kGu/lb1p06ypt0MwaBQWzxypUrplzJeeAkWTHfBjBs5Pz82V7O2eE4YudDlB2BZCxTmoCDPHattZl15YRgWwJ8j4sn5GQwibA9D9si4f9HeSa2C+umCbtZiLJtjyL3iwaDdww8cnUu0ev1kEgkcOnSJezt7Rlil5KWXRranvhkG3P1ptSCbcJiOzMFj3Vp2L/pYcj2ZcnhS5cujVyKodzRaDTMgihKGnZ8Qo5Rvi6J3Y4D0cCSx3HzNm1iB5xpp25yK1+3+zP/5vl4L7Ozs1hcXDR59ueBqV15aluZ0n2T7q4kKOAg6GprdLLg/lGuGgciv3ectTkpcOvIRxGyfN22KOX7j+vuj0u7BoNBzM/P48knn0ShUDCbKtPaW1xcNKuZbaKw3X/5+6i0x2HtOuzznBhIOjKfneUyUqkUZmZmjO49SjDzhOmuvE7AaanbJRrk+wQNKknU/Nu2wu2/ZVva7c/37OfjNqYlwQMHlj4NvPOMtU0tsTMQykg7g3/UDhlkkR2FVRxlehOPxUHJOtV84LRqWNGQLi8As7hB5utOGmxClx3cJh1pKcoJVL4uIQcgj8/PD7uOcSFyGzMzM/jCF76AX/zFX8T9+/exvr6OTqeDZDJpytBmMplDlqec/O3Mo2EaL+Dcp9fO2ZbeKnB4EQ6lxatXrxovlDLB2toalpaWsLa2hlQqNdI242TYaDTM2JSBTgZ97eQHGlp228mMFAb6mYUivRIpvcrnITdHkW0nnxffk4uh2Oa2rBiPxxEOh81EOeqKjhJTTewyZ5gLYkjAgHsNknA4fEgT57H6/b6pRQE4s2rkKkkupaeeOSmbaxwFN3J3y4wBDnsytoXkpnceRdjjTOhENBrFs88+i16vh6effhorKytoNpuYn583hJ7L5VAsFg+l77nJDcdZ4m7ZIvYE6RZIpLUei8WQzWaxurqKVCqFZDKJaDSKa9eu4amnnsLc3NzIMzj8fj8ymQwqlQrK5TIajYYZR1JGtaUm+b6UYqS1zu9Jfd2eMG25SxoZMoOm3W4fInzbs7fPQSOQ2XS2vDtqTDWxh8NhoyHKOh1uLqzsJHJBE9/j4KPLahdhYsqTfexJIKXjYAdQj7KsJWwSH/YZ+7PDjj3u7cg+E4vFsLS0ZCz2eDxuqgMWi0XU63WHLAIclmDcYLv6w2QJwCkVyN+UX+bn53H9+nUsLy+bFdfhcBhPPPEEFhYWTAndUYLSTzqdNp609KxZEkRmwgAHRhq9blnmmBazDLofJ8lKSAnMniRkO8udwyRXSAv/IiXYqSR2ukrJZNIES7l91rA0KeCgJgz1MHk8ztB2uVEuC2e6G3/bkftJhcxQkGWLgYMVlYSbpCIlK3uhkpvcMGwSsBfkjBu42EbrwdZtzKJie9Xrddy4cQN37tzBzs6O8f6kJOiWK23D7XX5efnbzukOhUKYnZ1FJpMxudW8dttw4f2MEpFIBE8//TRisZjZJ7TX66FarSIUCplVsCxgdpxHIi17euvSspafsScLKaUAcARh6/X6ITmG5+EaF1Y0lbtV0dO/CG99KokdOAjMcKERH6ZbIIawg522/CC1PVu/JMm5BXnGlYxOAjcJxh5Qw8hG/m1r8m7ZMPbzOIkkMS6Q7UNvUYIWZaVSQaPRAIBD3o99v4/Sb9yel3yPUiM3qLjINFxmm83MzJjNq2mxs+wxrWWbVEnAdpDTHne2V+SWA29b7vI9Pje71DLLVfO4bGvJMXas4zwxtcQuSRo4WAwi0xvt9wAcymN3Oy5TxaSeZluftiY3DWB96maz6VrzxCZrW8u0pS35OblKlceSREnLd9wnSjdjga+zhrdbeQv73s7yHlmnhLnrjAG5yTpnfe6jQCkGgNGh2TZ23XoZiJf59bxuKcXI12ngScjgqdTXbdATl+Bx6U3IGjDyGhKJBNLpNBKJhNkx6TwxtcRON0huY0UyloEndhQOLkotw+q7yJWp7HwAHEFUOzg27mR0HHj93W4XtVoN1WoVyWTykLUniV1aVW55woDTkpd1wm2SkSl649yObt6FtOaYs91sNgG4pzk+jpUu/7clGS5KYo69UsoER+UkLI816rYOBALIZrOIRqOYm5tz7Jsra9rb1jULrQEHAfxer4dms+mQWng/7Ke2Fn6U5MUECpm6zPMxoMo8eUpeXC/DxWjXrl3DzMwMZmdnh/btUWFqiR1wd3XlQgZCWtcnzTtnxNyt49kPb5zJ6DSQern0VuT7w6STYe/Zr7t9ZlSW7HmDfUW66jaOkrWOu3c3gpdBPJmm6yZ7nTfo/fZ6PZM5JgnULYtFWszyumU9I6mlc0Utf7tVZ3VbV0BDY1jqqfQyZS0efoabb6fT6XPNhiGmltilhSet9Ha7DZ/PZ2Z8+Xl2NFrkwwYZB6fMWac8weL6DNrEYrGJyWO33XO393lfgFMukXIU4CRsGX8gbK2Tg9Ctfopb9sGkwI7FyF2Shn1uGE5C8G5FsOzzDFtc4/Z7lKDGHg6HTXol+wglK5kZM2x7RfYjt6Jdw1Jyh70m5VmmONtBbdlfaaXzO7yGeDyOZ599FrOzs0ilUofGyagxtcTODizdJL/f73DhWKxJ7phEYj+qY/Mhy30PWQuaaVpyZxcuapoUDLt3tqdc9m7LCUcRu22d21aZPRiljCWDYOOK48iQFqVMyTvOOxym2R91PttLlGQuUwAf9T7OCpQx+v0+UqkUotGokTc5nvg/s02YhSaDlVKOYX/i5GmnNdqTo1t70sCQdaUk2JdpsTMLRioB8Xgcly9fRjabRSKRGDqRjgpTS+wStislZ3W53Pg01ooM5kgrnn/LmheTZGkedZ1MgeOO98DwrBg3HEVS0hqS70+TlCVzq90Guluwblib8G8bx1mDtqRw0ZATN40qKW24rcSV8Zph9yFJepi85/a3BM9jt799PCnrylo+LCXgJvWMGlNL7DaB80fuN8lZ/VFyTWkVcOECV6fRdZT1OKLR6MSRk9tkF41GMT8/j2g06tgpSH5HbpbAQWETkcxYoKxjW/oyp3qS69kTbD8uVmKfk1a7DEa7eUInIXW5OEa+TsNDphDK988rqDcMXHfCPPZcLufog1LDBtzLG9uyl/1ZvndS2FKOG8kDB/XuOd55L+l0GvF4/EIMu6klduDwKjIZvJKkfNqHLUlIHs8Opvp8gz1WL2qRwllAEjPrndjaov15t0nB7thyrYB8BvL7lLPc2m5cLM6TQillKn0y68puA0nucim8m6dDK1eCBsWwwKw0RuwA6kkDtKMC41HcRLtarQKAWWREwwxwbrIh24mQFr2E7GNukF6423oUO7NL1p3p9XomTToYDCIajZpnfRGYWmKXDW4/SNtCopYnLXu3gWMf33YP7VWER13DJKLT6Zha4/RM2I7s+LQE7fiD1s5NiuWScZvg5YQ8qXXsbWitUa1WUSqVUCqVzL2TtJRSDl3XtriJoyQESUj9ft+shpTBR24EMuqSvKeFTEZg6WMpt8hxJMeTLWEdNc6Os9ztycGWGeXfrNrIWJtcsToOmFpiZ16rbHQZhGOaFQCTn80cX2rIbhsf2LN5r9dzbOPFgcQ892azeS670YwaWmvU63VsbGygWq2adlXqoOIll1/LWANXW9ZqNSSTSVy5cgXxeBz1eh3b29vodrtIJpMmc4CDRy4JP04jnQT0ej1sbm7i3XffRblcRqFQQLPZNG2olDKEdlK4abc0WlhiWmtt+mCtVkOxWESxWDSbWowLWq0WCoUCCoUCcrkcSqWSKVYWDAYdhF6v11Gr1Q7JU0d5N8PePyrecJQ8xSqwAMz6GCl1XTTBTy2xS2KRD4jELmdjuqgyWHPSc9i/ZRrfUUXHJgG2xdLtdtFoNFAul81rtAr5PsmKoJVP17rVaiEcDpu00G63i3A4bDKJeL5hhD6pIMGS0BmToSWtlDJezqPeN4PbUqqRfZJWsVxYNy5gfIpWuyRLO/+eBpPdP4fFCo4i9qNeHwZOnGxruanHuEyWU0vsoVAIqVQKzWYTkUjEBOJIHvyttTavSz18mAzDz/Ghusk8DJyGw+GJrsduu6EzMzO4fv26Q4ph3Xsuq6bFGA6HTfra5uYm9vb2kEgkcOXKFWQyGbMKk5MfBzIHN7cVDIfDmJ+fn8j2kwgGg3jxxRdRLpdRrVbx8OFDU+yKOmylUjETIO/Xvm834pB6Pfu1LPlA2evKlSt47rnnsLq6imQy6Tj2aWNNZ410Oo1nn30WxWIR6XQaW1tbZq9QWuwk9maz6bDYCVvGA5yLFIdZ0ae9b6UGFTwjkQgAGGKX+8kuLy9faJ+dSmKnPLC4uIher2c6B6UVuVsLg1okIi69HpZmFwqFEIvFDqX82Zofq76l02mk0+mJ14qVUlhYWMAv/MIvoNlsolwuo1KpIBgMIp1OIxwOIxaLIZ1Om1V38Xgc/X4fGxsb2NraQjwex+rqqsnrZfsVi0Xk83l0Oh2USiUUi0VTpCoYDGJpaWniiT0UCuETn/gEnn76aZRKJdy4ccN4PiQtSoHAQY63G6SHSBK30//s0tNaaywtLeGll14y7UniJ6lfVGqpUoPt4z75yU+i0Wjg4cOHyOVyCAQCSKfTpkAYpRg7+Mvrl3Vi3Cx3mdNuT2onuUYJjnH7enj8J5988kLH/LHErpSKAPgWgPD+5/9Ia/0PlFJPAvgGgFkAPwDwt7XW7eFHcoeMdp8V5AIQRqmZU0prWz54Rq/5uixIJR8oHxqPE4lEzIpTTgj9ft8ci8FCGT0/q3uzIQNMZwF7YLA9o9GoQyYJBAJmL0em8wWDQeOpcGKt1+uIx+NmpaGcYCnhsKofPQHmANvt56ajPgrc2lJKaGcJ9gsWvcpms4ckBmllUyMn7Mwh/qYsYBO7TdwAkMlkHJvIyH5uH/O09+bmSci1IkeB56QFnMlk0O12jdEgKz8OO59MZJAEK89tB10J/i0/e1TJAX6Hz08SO6U0coFbPxrWxqeRgY/DSSz2FoBPa62rSqkggG8rpf4VgP8KwP+stf6GUuqfAvg1AP/kNCfv9Xp4+PChIY2zQr/fx87ODsrlMvr9PtbW1kyJUrcFA3RlM5kMtra2hlYSbLfbqFaruHz5MtrtNlZWVhzlA7hijcQ0Pz+Pfr+PcrmMO3fuoFAoPPa9dbtdbG1tHYrw53I5fPDBB2e2640bsZdKJezt7Rki5u7ylE7C4TAqlYojf7/f72Nvbw/FYhGRSAT1ev0QsVerVVSrVUcQm4TFrBFOoMPc5tOSkdYa+XzeFOQims0mPvroI1QqlTO1Xnu9HiqVCprNJur1utGI5bVTzgKcBauGXT9h78PLY9oac71ex927d1EqlRzv2R7nae+70Wggn887Xuv3+0ZOOW7DDq21CShzjMk4QK1Wc1joR2nlPPew87jhUZ6zTLN0Wz29vb1tDL5h12Cft9/v4+HDh2diVKhTBg1iAL4N4D8D8GcAlrTWXaXUzwL4b7XWv3jU969cuaK//OUvy+MZl/GsIV03ORMe9RBp5RzlAssl4ce1na19ntXk5ZZCSe9klK60vejDtjyknikJQn5P5gETbpaWxFm2nX0/bvtZumVDndX5gAPvijgvbXtU9yatVnmu04xt+extmeW013JesCdTiZMWE7QxLD36S1/60g+01q+c9Dgn0tiVUn4M5JanAfxjAB8AKGqtGVrfAHBpyHdfBfAqMHA/JdghRh2hP02dkZNcz2kGxlGEdZaQtW/OE7IDjuoezzPTgJP3NOI87+2sxvY4Z0YddW0XnXV0IobSWve01i8BWAXw0wCePekJtNZf1Vq/orV+JZFIPNpVevDgwYOHE+NUPpnWugjg3wD4WQAZpRQt/lUAD8720jx48ODBw6PgWGJXSs0rpTL7f0cB/HUANzEg+P9w/2NfBPCnI7pGDx48ePBwChwbPFVKvQDgawD8GEwEf6i1/u+VUk9hkO6YBfDvAPzHWuvDVaGcx9oFUAOQO4NrH0fMwbu3SYR3b5OJv0r3dkVrPX/SL58qK+YsoJT6/mmiu5ME794mE969TSa8exuOyV7O58GDBw8eDsEjdg8ePHiYMlwEsX/1As55XvDubTLh3dtkwru3ITh3jd2DBw8ePIwWnhTjwYMHD1MGj9g9ePDgYcpwrsSulPqMUuo9pdS6Uuor53nus4ZSak0p9W+UUjeUUu8qpf7u/utZpdQ3lVK393/PXPS1PgqUUn6l1L9TSv3L/f+fVEr95f6z+wOlVOiir/FRoJTKKKX+SCl1Syl1Uyn1s1P0zP7L/b74jlLq60qpyKQ+N6XU7yildpRS74jXXJ+TGuB/3b/HHyml/trFXfnxGHJv/+N+n/yRUur/5KLQ/fd+Y//e3lNKHVlokTg3Yt8vJPaPAXwWwE8C+FWl1E+e1/lHgC6Av6+1/kkAnwDwpf37+QqA17XW1wC8vv//JOLvYrDCmPgfMCjT/DSAAgZlmicR/wjAv9ZaPwvgRQzuceKfmVLqEoD/AsArWuvnMFhQ+CuY3Of2uwA+Y7027Dl9FsC1/Z9Xccry4ReA38Xhe/smgOe01i8AeB/AbwDAPqf8CoDr+9/53/a59Eicp8X+0wDWtdYf7m/I8Q0Anz/H858ptNabWusf7v9dwYAgLmFwT1/b/9jXAPwHF3KBjwGl1CqAvwngn+3/rwB8GsAf7X9kUu8rDeDfB/DbAKC1bu/XP5r4Z7aPAIDofg2nGIBNTOhz01p/C8Ce9fKw5/R5AP9CD/A9DOpYLZ/LhT4C3O5Na/3/iGq538Og/hYwuLdvaK1bWus7ANYx4NIjcZ7EfgnAffH/0FK/kwal1BMAXgbwlwAWtdab+29tAVi8qOt6DPwvAP5rAKyXO4sTlmkeczwJYBfAP9+Xmf6ZUiqOKXhmWusHAP4nAPcwIPQSBqW2p+G5EcOe07Rxy38K4F/t//1I9+YFTx8TSqkEgD8G8Pe01mX5nh7kkk5UPqlS6nMAdrTWP7joaxkBAgD+GoB/orV+GYO6RQ7ZZRKfGQDs682fx2DyWgEQx2F3f2owqc/pOCilfhMDmff3Huc450nsDwCsif8nvtSvGmwV+McAfk9r/Sf7L2/TDdz/vXNR1/eI+CSAv6WUuouBXPZpDHTpaSjTvAFgQ2v9l/v//xEGRD/pzwwAfgHAHa31rta6A+BPMHiW0/DciGHPaSq4RSn1dwB8DsAX9MECo0e6t/Mk9rcAXNuP0ocwCAi8do7nP1Ps686/DeCm1vofirdew6CMMTCB5Yy11r+htV7VWj+BwTP6C631FzAFZZq11lsA7iulntl/6ecB3MCEP7N93APwCaVUbL9v8t4m/rkJDHtOrwH4T/azYz4BoCQkm4mAUuozGMiff0trXRdvvQbgV5RSYaXUkxgEiP+/Yw8o95sc9Q+Av4FBxPcDAL95nucewb38exi4gj8C8Pb+z9/AQI9+HcBtAP8vgOxFX+tj3OOnAPzL/b+f2u9Q6wD+DwDhi76+R7ynlwB8f/+5/V8AZqblmQH47wDcAvAOgP8dQHhSnxuAr2MQK+hg4Gn92rDnBEDhYMvOH2OQGXTh93DKe1vHQEsnl/xT8fnf3L+39wB89iTn8EoKePDgwcOUwQueevDgwcOUwSN2Dx48eJgyeMTuwYMHD1MGj9g9ePDgYcrgEbsHDx48TBk8YvfgwYOHKYNH7B48ePAwZfj/AbBz61w4KZ4LAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# get some random training images\n",
+ "dataiter = iter(trainloader)\n",
+ "images, labels = dataiter.next()\n",
+ "\n",
+ "# create grid of images\n",
+ "img_grid = torchvision.utils.make_grid(images)\n",
+ "\n",
+ "# show images\n",
+ "matplotlib_imshow(img_grid, one_channel=True)\n",
+ "\n",
+ "# write to tensorboard\n",
+ "writer.add_image('four_fashion_mnist_images', img_grid)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### 5. Running `Tensorboard` Server\n",
+ "\n",
+ "🛑 **STOP** HERE ✋\n",
+ "\n",
+ "Please Run the following command in your terminal:"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "```bash \n",
+ "cd cnn-and-adversarial\n",
+ "tensorboard --logdir=runs\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now you know how to use TensorBoard! \n",
+ "\n",
+ "$\\rightarrow$ [http://localhost:6006](http://localhost:6006)\n",
+ "\n",
+ "This example, however, could be done in a Jupyter Notebook - where TensorBoard really excels is in creating interactive visualizations. We’ll cover one of those next, and several more by the end of the tutorial.\n",
+ "\n",
+ "**NOTE** ⚠️: If possible, use **Google Chrome** for better performance, see [here](https://github.com/pytorch/pytorch/issues/30525)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##### 6. Inspect the model using TensorBoard"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "One of TensorBoard’s strengths is its ability to visualize complex model structures. \n",
+ "\n",
+ "Let’s visualize the model we built."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "writer.add_graph(net, images)\n",
+ "writer.close()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "🛑 **STOP** HERE ✋\n",
+ "\n",
+ "Now upon refreshing TensorBoard you should see a **Graphs** tab."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Go ahead and double click on “Net” to see it expand, seeing a detailed view of the individual operations that make up the model.\n",
+ "\n",
+ "TensorBoard has a very handy feature for visualizing high dimensional data such as image data in a lower dimensional space; we’ll cover this next."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##### 7. Adding a “Projector” to TensorBoard\n",
+ "\n",
+ "We can visualize the lower dimensional representation of higher dimensional data via the add_embedding method"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# helper function\n",
+ "def select_n_random(data, labels, n=100):\n",
+ " '''\n",
+ " Selects n random datapoints and their corresponding labels from a dataset\n",
+ " '''\n",
+ " assert len(data) == len(labels)\n",
+ "\n",
+ " perm = torch.randperm(len(data))\n",
+ " return data[perm][:n], labels[perm][:n]\n",
+ "\n",
+ "# select random images and their target indices\n",
+ "images, labels = select_n_random(trainset.data, trainset.targets)\n",
+ "\n",
+ "# get the class labels for each image\n",
+ "class_labels = [classes[lab] for lab in labels]\n",
+ "\n",
+ "# log embeddings\n",
+ "features = images.view(-1, 28 * 28)\n",
+ "writer.add_embedding(features,\n",
+ " metadata=class_labels,\n",
+ " label_img=images.unsqueeze(1))\n",
+ "writer.close()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "🛑 **STOP** HERE ✋\n",
+ "\n",
+ "Now in the “Projector” tab of TensorBoard, you can see these `100` images - each of which is `784` dimensional - projected down into three dimensional space. \n",
+ "\n",
+ "⚠️: If possible, use **Google Chrome** for better performance, see [here](https://github.com/pytorch/pytorch/issues/30525)\n",
+ "\n",
+ "Furthermore, this is interactive: you can click and drag to rotate the three dimensional projection. \n",
+ "\n",
+ "🧙 \n",
+ "Finally, a couple of tips to make the visualization easier to see: select `color: label` on the top left, as well as enabling `night mode`, which will make the images easier to see since their background is white."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##### 8. Tracking model training with TensorBoard\n",
+ "\n",
+ "In the previous example, we simply printed the model’s running loss every `2000` iterations. \n",
+ "\n",
+ "Now, we’ll instead log the running loss to TensorBoard, along with a view into the predictions the model is making via the `plot_classes_preds` function."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# helper functions\n",
+ "\n",
+ "def images_to_probs(net, images):\n",
+ " '''\n",
+ " Generates predictions and corresponding probabilities from a trained\n",
+ " network and a list of images\n",
+ " '''\n",
+ " output = net(images)\n",
+ " # convert output probabilities to predicted class\n",
+ " _, preds_tensor = torch.max(output, 1)\n",
+ " preds = np.squeeze(preds_tensor.numpy())\n",
+ " return preds, [F.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def plot_classes_preds(net, images, labels):\n",
+ " '''\n",
+ " Generates matplotlib Figure using a trained network, along with images\n",
+ " and labels from a batch, that shows the network's top prediction along\n",
+ " with its probability, alongside the actual label, coloring this\n",
+ " information based on whether the prediction was correct or not.\n",
+ " Uses the \"images_to_probs\" function.\n",
+ " '''\n",
+ " preds, probs = images_to_probs(net, images)\n",
+ " # plot the images in the batch, along with predicted and true labels\n",
+ " fig = plt.figure(figsize=(12, 48))\n",
+ " for idx in np.arange(4):\n",
+ " ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])\n",
+ " matplotlib_imshow(images[idx], one_channel=True)\n",
+ " ax.set_title(\"{0}, {1:.1f}%\\n(label: {2})\".format(\n",
+ " classes[preds[idx]],\n",
+ " probs[idx] * 100.0,\n",
+ " classes[labels[idx]]),\n",
+ " color=(\"green\" if preds[idx]==labels[idx].item() else \"red\"))\n",
+ " return fig"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Finally, let’s train the model using the same model training code from the prior tutorial, but writing results to TensorBoard every `1000` batches instead of printing to console; this is done using the `add_scalar` function.\n",
+ "\n",
+ "In addition, as we train, we’ll generate an image showing the model’s predictions vs. the actual results on the four images included in that batch."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##### 9. Model Training (loop)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Finished Training\n"
+ ]
+ }
+ ],
+ "source": [
+ "running_loss = 0.0\n",
+ "for epoch in range(1): # loop over the dataset multiple times\n",
+ "\n",
+ " for i, data in enumerate(trainloader, 0):\n",
+ "\n",
+ " # get the inputs; data is a list of [inputs, labels]\n",
+ " inputs, labels = data\n",
+ "\n",
+ " # zero the parameter gradients\n",
+ " optimizer.zero_grad()\n",
+ "\n",
+ " # forward + backward + optimize\n",
+ " outputs = net(inputs)\n",
+ " loss = criterion(outputs, labels)\n",
+ " loss.backward()\n",
+ " optimizer.step()\n",
+ "\n",
+ " running_loss += loss.item()\n",
+ " if i % 1000 == 999: # every 1000 mini-batches...\n",
+ "\n",
+ " # ...log the running loss\n",
+ " writer.add_scalar('training loss',\n",
+ " running_loss / 1000,\n",
+ " epoch * len(trainloader) + i)\n",
+ "\n",
+ " # ...log a Matplotlib Figure showing the model's predictions on a\n",
+ " # random mini-batch\n",
+ " writer.add_figure('predictions vs. actuals',\n",
+ " plot_classes_preds(net, inputs, labels),\n",
+ " global_step=epoch * len(trainloader) + i)\n",
+ " running_loss = 0.0\n",
+ "print('Finished Training')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "###### 9.1 Training on a GPU"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "tags": []
+ },
+ "source": [
+ "Just like how you transfer a Tensor onto the GPU, you transfer the neural\n",
+ "net onto the GPU.\n",
+ "\n",
+ "Let's first define our device as the first visible cuda device if we have\n",
+ "CUDA available:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "jupyter": {
+ "outputs_hidden": false
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "cpu\n"
+ ]
+ }
+ ],
+ "source": [
+ "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n",
+ "\n",
+ "# Assuming that we are on a CUDA machine, this should print a CUDA device:\n",
+ "\n",
+ "print(device)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The rest of this section assumes that ``device`` is a CUDA device.\n",
+ "\n",
+ "Then these methods will recursively go over all modules and convert their\n",
+ "parameters and buffers to CUDA tensors:\n",
+ "\n",
+ "```python\n",
+ " net.to(device)\n",
+ "```\n",
+ "\n",
+ "Remember that you will have to send the inputs and targets at every step\n",
+ "to the GPU too:\n",
+ "\n",
+ "```python\n",
+ " inputs, labels = data[0].to(device), data[1].to(device)\n",
+ "```\n",
+ "\n",
+ "Why don't I notice MASSIVE speedup compared to CPU? \n",
+ "\n",
+ "Because your network is really small."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "🛑 **STOP** HERE ✋\n",
+ "\n",
+ "You can now look at the scalars tab to see the running loss plotted over the `15,000` iterations of training"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##### 10. Model Assessment and Precision/Recall Curve"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# 1. gets the probability predictions in a test_size x num_classes Tensor\n",
+ "# 2. gets the preds in a test_size Tensor\n",
+ "# takes ~10 seconds to run\n",
+ "class_probs = []\n",
+ "class_preds = []\n",
+ "with torch.no_grad():\n",
+ " for data in testloader:\n",
+ " images, labels = data\n",
+ " output = net(images)\n",
+ " class_probs_batch = [F.softmax(el, dim=0) for el in output]\n",
+ " _, class_preds_batch = torch.max(output, 1)\n",
+ "\n",
+ " class_probs.append(class_probs_batch)\n",
+ " class_preds.append(class_preds_batch)\n",
+ "\n",
+ "test_probs = torch.cat([torch.stack(batch) for batch in class_probs])\n",
+ "test_preds = torch.cat(class_preds)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# helper function\n",
+ "def add_pr_curve_tensorboard(class_index, test_probs, test_preds, global_step=0):\n",
+ " '''\n",
+ " Takes in a \"class_index\" from 0 to 9 and plots the corresponding\n",
+ " precision-recall curve\n",
+ " '''\n",
+ " tensorboard_preds = test_preds == class_index\n",
+ " tensorboard_probs = test_probs[:, class_index]\n",
+ "\n",
+ " writer.add_pr_curve(classes[class_index],\n",
+ " tensorboard_preds,\n",
+ " tensorboard_probs,\n",
+ " global_step=global_step)\n",
+ " writer.close()\n",
+ "\n",
+ "# plot all the pr curves\n",
+ "for i in range(len(classes)):\n",
+ " add_pr_curve_tensorboard(i, test_probs, test_preds)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "You will now see a “PR Curves” tab that contains the precision-recall curves for each class.\n",
+ "\n",
+ "Go ahead and poke around; you’ll see that on some classes the model has nearly 100% “area under the curve”, whereas on others this area is lower"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/2-cnn-and-adversarials/2 Adversarial Attacks.ipynb b/2-cnn-and-adversarials/2 Adversarial Attacks.ipynb
new file mode 100644
index 0000000..32e8020
--- /dev/null
+++ b/2-cnn-and-adversarials/2 Adversarial Attacks.ipynb
@@ -0,0 +1,21772 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "%load_ext notexbook \n",
+ "%texify"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "73COBSgLtrGF"
+ },
+ "source": [
+ "# Adversarial attacks\n",
+ "\n",
+ "**Original Version**: [Tutorial 10-UvA DL Notebooks](https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial10/Adversarial_Attacks.html)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "1-o99kX-trGG"
+ },
+ "source": [
+ "[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/WebValley2021ReImagined/privacy-preserving-data-science/blob/main/cnn-and-adversarials/2%20Adversarial%20Attacks.ipynb)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "EtL4bl-LHNFS",
+ "tags": []
+ },
+ "source": [
+ "Threat Model\n",
+ "------------\n",
+ "\n",
+ "For context, there are many categories of adversarial attacks, each with\n",
+ "a different goal and assumption of the attacker’s knowledge. \n",
+ "\n",
+ "However, in\n",
+ "general the overarching goal is to add the least amount of perturbation\n",
+ "to the input data to cause the desired misclassification. \n",
+ "\n",
+ "There are several kinds of assumptions of the attacker’s knowledge, two of which\n",
+ "are: **white-box** and **black-box**. \n",
+ "\n",
+ "* A *white-box* attack assumes the\n",
+ "attacker has full knowledge and access to the model, including\n",
+ "architecture, inputs, outputs, and weights. \n",
+ "\n",
+ "* A *black-box* attack assumes\n",
+ "the attacker only has access to the inputs and outputs of the model, and\n",
+ "knows nothing about the underlying architecture or weights. \n",
+ "\n",
+ "There are\n",
+ "also several types of goals, including **misclassification** and\n",
+ "**source/target misclassification**. \n",
+ "\n",
+ "1. A goal of *misclassification* means\n",
+ "the adversary only wants the output classification to be wrong but does\n",
+ "not care what the new classification is. \n",
+ "\n",
+ "2. A *source/target\n",
+ "misclassification* means the adversary wants to alter an image that is\n",
+ "originally of a specific source class so that it is classified as a\n",
+ "specific target class.\n",
+ "\n",
+ "In this case, the **FAST GRADIENT SIGN ATTACK** (`FGSM`) attack is a *white-box* attack with the goal of\n",
+ "*misclassification*. With this background information, we can now\n",
+ "discuss the attack in detail.\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "XzyhqzBgtrGH"
+ },
+ "source": [
+ "**Example**\n",
+ "\n",
+ "For instance, take a look at the example below (figure credit - [Goodfellow et al.](https://arxiv.org/pdf/1412.6572.pdf)):\n",
+ "\n",
+ "
\n",
+ "\n",
+ "The image on the left is the original image from ImageNet, and a deep CNN classifies the image correctly as \"panda\" with a class likelihood of 57%. \n",
+ "\n",
+ "Nevertheless, if we add a little noise to every pixel of the image, the prediction of the model changes completely. Instead of a panda, our CNN tells us that the image contains a \"gibbon\" with the confidence of over 99%. \n",
+ "\n",
+ "For a human, however, these two images look exactly alike, and you cannot distinguish which one has noise added and which doesn't.\n",
+ "\n",
+ "While this first seems like a fun game to fool trained networks, it can have a serious impact on the usage of neural networks. More and more deep learning models are used in applications, such as for example autonomous driving. \n",
+ "\n",
+ "Some attack types don't even require to add noise, but minor changes on a stop sign can be already sufficient for the network to recognize it as a \"50km/h\" speed sign ([paper](https://arxiv.org/pdf/1707.08945.pdf), [paper](https://arxiv.org/pdf/1802.06430.pdf)). The consequences of such attacks can be devastating. Hence, every deep learning engineer who designs models for an application should be aware of the possibility of adversarial attacks."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "id": "_Hf12FVZ1Mup"
+ },
+ "outputs": [],
+ "source": [
+ "## Standard libraries\n",
+ "import os\n",
+ "import json\n",
+ "import math\n",
+ "import time\n",
+ "import numpy as np \n",
+ "import scipy.linalg"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "id": "GLvH-UyU1Muq"
+ },
+ "outputs": [],
+ "source": [
+ "## Imports for plotting\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline \n",
+ "from matplotlib_inline.backend_inline import set_matplotlib_formats\n",
+ "set_matplotlib_formats('svg', 'pdf') # For export\n",
+ "from matplotlib.colors import to_rgb\n",
+ "import matplotlib\n",
+ "matplotlib.rcParams['lines.linewidth'] = 2.0\n",
+ "import seaborn as sns\n",
+ "sns.set()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "id": "TujCwxVO1Muq"
+ },
+ "outputs": [],
+ "source": [
+ "## Progress bar\n",
+ "from tqdm.notebook import tqdm"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "id": "u2MjW9VP1Mur"
+ },
+ "outputs": [],
+ "source": [
+ "## PyTorch\n",
+ "import torch\n",
+ "import torch.nn as nn\n",
+ "import torch.nn.functional as F\n",
+ "import torch.utils.data as data\n",
+ "import torch.optim as optim\n",
+ "# Torchvision\n",
+ "import torchvision\n",
+ "from torchvision.datasets import CIFAR10\n",
+ "from torchvision import transforms"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "eiMxm5nQtrGH",
+ "outputId": "5e4a708c-edfc-4f71-aec0-5472d4b2d958"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Global seed set to 42\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Using device cuda:0\n"
+ ]
+ }
+ ],
+ "source": [
+ "# PyTorch Lightning\n",
+ "try:\n",
+ " import pytorch_lightning as pl\n",
+ "except ModuleNotFoundError: # Google Colab does not have PyTorch Lightning installed by default. Hence, we do it here if necessary\n",
+ " !pip install pytorch-lightning==1.3.4\n",
+ " import pytorch_lightning as pl\n",
+ "from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint\n",
+ "\n",
+ "# Path to the folder where the datasets are/should be downloaded (e.g. MNIST)\n",
+ "DATASET_PATH = \"./data\"\n",
+ "# Path to the folder where the pretrained models are saved\n",
+ "CHECKPOINT_PATH = \"./checkpoints\"\n",
+ "\n",
+ "# Setting the seed\n",
+ "pl.seed_everything(42)\n",
+ "\n",
+ "# Ensure that all operations are deterministic on GPU (if used) for reproducibility\n",
+ "torch.backends.cudnn.determinstic = True\n",
+ "torch.backends.cudnn.benchmark = False\n",
+ "\n",
+ "# Fetching the device that will be used throughout this notebook\n",
+ "device = torch.device(\"cpu\") if not torch.cuda.is_available() else torch.device(\"cuda:0\")\n",
+ "print(\"Using device\", device)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "vFgbK_JVtrGI"
+ },
+ "source": [
+ "We have again a few download statements. This includes both a dataset, and a few pretrained patches we will use later."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "UBF9Yts1trGJ",
+ "outputId": "f2bea346-20a4-4b28-d9a3-8835bc90fc08"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial10/TinyImageNet.zip...\n",
+ "Unzipping file...\n",
+ "Downloading https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial10/patches.zip...\n",
+ "Unzipping file...\n"
+ ]
+ }
+ ],
+ "source": [
+ "import urllib.request\n",
+ "from urllib.error import HTTPError\n",
+ "import zipfile\n",
+ "\n",
+ "# Github URL where the dataset is stored for this tutorial\n",
+ "base_url = \"https://raw.githubusercontent.com/phlippe/saved_models/main/tutorial10/\"\n",
+ "\n",
+ "# Files to download\n",
+ "pretrained_files = [(DATASET_PATH, \"TinyImageNet.zip\"), (CHECKPOINT_PATH, \"patches.zip\")]\n",
+ "\n",
+ "# Create checkpoint path if it doesn't exist yet\n",
+ "os.makedirs(DATASET_PATH, exist_ok=True)\n",
+ "os.makedirs(CHECKPOINT_PATH, exist_ok=True)\n",
+ "\n",
+ "# For each file, check whether it already exists. If not, try downloading it.\n",
+ "for dir_name, file_name in pretrained_files:\n",
+ " file_path = os.path.join(dir_name, file_name)\n",
+ " if not os.path.isfile(file_path):\n",
+ " file_url = base_url + file_name\n",
+ " print(\"Downloading %s...\" % file_url)\n",
+ " try:\n",
+ " urllib.request.urlretrieve(file_url, file_path)\n",
+ " except HTTPError as e:\n",
+ " print(\"Something went wrong. Please try to download the file from the GDrive folder, or contact the author with the full output including the following error:\\n\", e)\n",
+ " \n",
+ " if file_name.endswith(\".zip\"):\n",
+ " print(\"Unzipping file...\")\n",
+ " with zipfile.ZipFile(file_path, 'r') as zip_ref:\n",
+ " zip_ref.extractall(file_path.rsplit(\"/\",1)[0])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "C6ooTINytrGJ"
+ },
+ "source": [
+ "## Deep CNNs on ImageNet\n",
+ "\n",
+ "For our experiments in this notebook, we will use common CNN architectures trained on the ImageNet dataset, in particular we will be using the `ResNet34` model, (luckily) provided by the `torchvision` package, already **pre-trained** and ready for use. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 66,
+ "referenced_widgets": [
+ "d76957fdf7cf43a5b8b7f2cfc2b5a8e5",
+ "8064a2498e214a2185ba203a0b3bd653",
+ "1aa20359cc6e43169d7aa57c3796d983",
+ "505f74c946324d6e89d5a471c6350791",
+ "9f364948303f40288a1c17be5302bff6",
+ "b29d0b3ab3a2422185f396854412fc03",
+ "29046cf541ed48d1b18d833e96d17a47",
+ "bb8a434458f0498ba066506d892a8182",
+ "a72fda9fe7f54401a2d557bdaa4eefae",
+ "83d376256e744b14b99cd03ca60c1f4f",
+ "e2fa97666400468499b2a57d8712f625"
+ ]
+ },
+ "id": "b6mYhhGRtrGJ",
+ "outputId": "197171ae-b0cf-4494-a27a-226b77ab6937"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Downloading: \"https://download.pytorch.org/models/resnet34-b627a593.pth\" to ./checkpoints/hub/checkpoints/resnet34-b627a593.pth\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "d76957fdf7cf43a5b8b7f2cfc2b5a8e5",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0.00/83.3M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Load CNN architecture pretrained on ImageNet\n",
+ "os.environ[\"TORCH_HOME\"] = CHECKPOINT_PATH # where to download\n",
+ "pretrained_model = torchvision.models.resnet34(pretrained=True)\n",
+ "pretrained_model = pretrained_model.to(device)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "32RympAX1Mut"
+ },
+ "source": [
+ "Setting up the model in **Inference Mode**, that is: no `gradient` is necessary to be computed:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "id": "NbxnDlC_1Mut"
+ },
+ "outputs": [],
+ "source": [
+ "# No gradients needed for the network\n",
+ "pretrained_model.eval()\n",
+ "for p in pretrained_model.parameters():\n",
+ " p.requires_grad = False"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "muiCll9c1Muu"
+ },
+ "source": [
+ "### Dataset: `TinyImageNet`"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "OEg_VmOmtrGK"
+ },
+ "source": [
+ "To perform adversarial attacks, we also need a dataset to work on. \n",
+ "\n",
+ "Given that the CNN model has been trained on ImageNet, it is only fair to perform the attacks on data from ImageNet. \n",
+ "\n",
+ "For this, we provide a small set of pre-processed images from the original ImageNet dataset (note that this dataset is shared under the same [license](http://image-net.org/download-faq) as the original ImageNet dataset). \n",
+ "Specifically, we have 5 images for each of the `1,000` labels of the dataset. \n",
+ "\n",
+ "We can load the data below, and create a corresponding data loader."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "id": "UzMkeEDqtrGK"
+ },
+ "outputs": [],
+ "source": [
+ "# Mean and Std from ImageNet\n",
+ "NORM_MEAN = np.array([0.485, 0.456, 0.406])\n",
+ "NORM_STD = np.array([0.229, 0.224, 0.225])\n",
+ "\n",
+ "# No resizing and center crop necessary as images are already preprocessed.\n",
+ "plain_transforms = transforms.Compose([\n",
+ " transforms.ToTensor(),\n",
+ " transforms.Normalize(mean=NORM_MEAN,\n",
+ " std=NORM_STD)\n",
+ "])\n",
+ "\n",
+ "# Load dataset and create data loader\n",
+ "imagenet_path = os.path.join(DATASET_PATH, \"TinyImageNet/\")\n",
+ "assert os.path.isdir(imagenet_path), \"Could not find the ImageNet dataset at expected path \\\"%s\\\". \" % imagenet_path + \\\n",
+ " \"Please make sure to have downloaded the ImageNet dataset here, or change the DATASET_PATH variable (currently set to %s).\" % DATASET_PATH\n",
+ "\n",
+ "dataset = torchvision.datasets.ImageFolder(root=imagenet_path, transform=plain_transforms)\n",
+ "data_loader = data.DataLoader(dataset, batch_size=32, shuffle=False, drop_last=False, num_workers=2)\n",
+ "\n",
+ "# Load label names to interpret the label numbers 0 to 999\n",
+ "with open(os.path.join(imagenet_path, \"label_list.json\"), \"r\") as f:\n",
+ " label_names = json.load(f)\n",
+ " \n",
+ "def get_label_index(lab_str):\n",
+ " assert lab_str in label_names, \"Label \\\"%s\\\" not found. Check the spelling of the class.\" % lab_str\n",
+ " return label_names.index(lab_str)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "iev8oCvf1Muu"
+ },
+ "source": [
+ "**Verify Model Performance**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "z8ELaZpatrGK"
+ },
+ "source": [
+ "Before we start with our attacks, we should verify the performance of our model. \n",
+ "\n",
+ "As ImageNet has `1000` classes, simply looking at the accuracy is not sufficient to tell the performance of a model. \n",
+ "\n",
+ "Imagine a model that always predicts the true label as the second-highest class in its softmax output. \n",
+ "Although we would say it recognizes the object in the image, it achieves an accuracy of 0. \n",
+ "\n",
+ "In ImageNet with `1,000` classes, there is **not always one clear label** we can assign an image to. \n",
+ "\n",
+ "This is why for image classifications over so many classes, a common alternative metric is **Top-5 accuracy**, that is \"how many times the true label has been within the `5 most-likely` predictions of the model\". "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "id": "G7lBF9YatrGL"
+ },
+ "outputs": [],
+ "source": [
+ "def eval_model(dataset_loader, img_func=None):\n",
+ " tp1, tp5, counter = 0., 0., 0.\n",
+ " for imgs, labels in tqdm(dataset_loader, desc=\"Validating...\"):\n",
+ " imgs = imgs.to(device)\n",
+ " labels = labels.to(device)\n",
+ " if img_func is not None:\n",
+ " imgs = img_func(imgs, labels) \n",
+ " with torch.no_grad():\n",
+ " preds = pretrained_model(imgs)\n",
+ " \n",
+ " tp1 += (preds.argmax(dim=-1) == labels).sum()\n",
+ " tp5 += (preds.topk(5, dim=-1)[1] == labels[...,None]).any(dim=-1).sum()\n",
+ " counter += preds.shape[0]\n",
+ " acc = tp1.float().item()/counter\n",
+ " top5 = tp5.float().item()/counter\n",
+ " print(\"Top-1 error: %4.2f%%\" % (100.0 * (1 - acc)))\n",
+ " print(\"Top-5 error: %4.2f%%\" % (100.0 * (1 - top5)))\n",
+ " return acc, top5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 137,
+ "referenced_widgets": [
+ "b259250faa1d40f389f084458f105eb4",
+ "ddbf474456c04b508add5a3f34c19cda",
+ "2eec333dea004091abfe292fa807f3df",
+ "5af275e6b27c4e11b9cadbc42df4d1ac",
+ "cf0bd37e96dd4253b3ecfa70d98efdcd",
+ "fd7081a1095841c6a69b878b9b3d6b05",
+ "fdbcc442572c4dd9b41c314cf0f46875",
+ "af9334b020e04d779304e9f89e0dd037",
+ "acb509414a1144c3a901b2323a74c9e6",
+ "1075fdc5d6aa47c9a1876cdfbf0204c7",
+ "59030050e34a47c0adb7eac7923d963f"
+ ]
+ },
+ "id": "_JBtNScqtrGL",
+ "outputId": "ed099fa6-59eb-40c5-a8ba-4dbec2147ed1"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "b259250faa1d40f389f084458f105eb4",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Validating...: 0%| | 0/157 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
+ " return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Top-1 error: 19.10%\n",
+ "Top-5 error: 4.30%\n"
+ ]
+ }
+ ],
+ "source": [
+ "_ = eval_model(data_loader) # BEWARE: This takes time on a CPU"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "mSvequB3trGL"
+ },
+ "source": [
+ "The ResNet34 achives a decent error rate of `4.3%` for the `top-5` predictions. \n",
+ "\n",
+ "Next, we can look at some predictions of the model to get more familiar with the dataset. \n",
+ "\n",
+ "The function below plots an image along with a bar diagram of its predictions. \n",
+ "\n",
+ "We also prepare it to show adversarial examples for later applications."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "id": "H1GG6mAHtrGM"
+ },
+ "outputs": [],
+ "source": [
+ "def show_prediction(img, label, pred, K=5, adv_img=None, noise=None):\n",
+ " \n",
+ " if isinstance(img, torch.Tensor):\n",
+ " # Tensor image to numpy\n",
+ " img = img.cpu().permute(1, 2, 0).numpy()\n",
+ " img = (img * NORM_STD[None,None]) + NORM_MEAN[None,None]\n",
+ " img = np.clip(img, a_min=0.0, a_max=1.0)\n",
+ " label = label.item()\n",
+ " \n",
+ " # Plot on the left the image with the true label as title.\n",
+ " # On the right, have a horizontal bar plot with the top k predictions including probabilities\n",
+ " if noise is None or adv_img is None:\n",
+ " fig, ax = plt.subplots(1, 2, figsize=(10,2), gridspec_kw={'width_ratios': [1, 1]})\n",
+ " else:\n",
+ " fig, ax = plt.subplots(1, 5, figsize=(12,2), gridspec_kw={'width_ratios': [1, 1, 1, 1, 2]})\n",
+ " \n",
+ " ax[0].imshow(img)\n",
+ " ax[0].set_title(label_names[label])\n",
+ " ax[0].axis('off')\n",
+ " \n",
+ " if adv_img is not None and noise is not None:\n",
+ " # Visualize adversarial images\n",
+ " adv_img = adv_img.cpu().permute(1, 2, 0).numpy()\n",
+ " adv_img = (adv_img * NORM_STD[None,None]) + NORM_MEAN[None,None]\n",
+ " adv_img = np.clip(adv_img, a_min=0.0, a_max=1.0)\n",
+ " ax[1].imshow(adv_img)\n",
+ " ax[1].set_title('Adversarial')\n",
+ " ax[1].axis('off')\n",
+ " # Visualize noise\n",
+ " noise = noise.cpu().permute(1, 2, 0).numpy()\n",
+ " noise = noise * 0.5 + 0.5 # Scale between 0 to 1 \n",
+ " ax[2].imshow(noise)\n",
+ " ax[2].set_title('Noise')\n",
+ " ax[2].axis('off')\n",
+ " # buffer\n",
+ " ax[3].axis('off')\n",
+ " \n",
+ " if abs(pred.sum().item() - 1.0) > 1e-4:\n",
+ " pred = torch.softmax(pred, dim=-1)\n",
+ " topk_vals, topk_idx = pred.topk(K, dim=-1)\n",
+ " topk_vals, topk_idx = topk_vals.cpu().numpy(), topk_idx.cpu().numpy()\n",
+ " \n",
+ " ax[-1].barh(np.arange(K), topk_vals*100.0, align='center', color=[\"C0\" if topk_idx[i]!=label else \"C2\" for i in range(K)])\n",
+ " ax[-1].set_yticks(np.arange(K))\n",
+ " ax[-1].set_yticklabels([label_names[c] for c in topk_idx])\n",
+ " \n",
+ " ax[-1].invert_yaxis()\n",
+ " ax[-1].set_xlabel('Confidence')\n",
+ " ax[-1].set_title('Predictions')\n",
+ " \n",
+ " plt.show()\n",
+ " plt.close()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ilxJaoMOtrGM"
+ },
+ "source": [
+ "Let's visualize a few images below:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 961
+ },
+ "id": "WjAYifs4trGM",
+ "outputId": "b51a9163-d362-4983-9106-2e492aafd0ea"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDUwMC43MzQ3MDI1ODk0IDE3NC4wMTA2MjUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnic1VhNbxs3EL3zV/DYXqiZ4ZAcHuOmNdpT0wrooejB0UciV7YQWWnQf9/haqUlpapI0oUM25AX+yzO8r2ZnQ+ivTeTV2jfPVn9Y8He6+eT/d3+ode5YrcFN6B3DyYAuOQ5gdfbdX2LiR0gRAqKQ3v73pil+WCTI8vkcgwFRhCX6HDZLuxv9tFOXtF+I/f6GTYBuonJ68Vfq9nil9sbM3tSawjZlk2Va2t59mAnP6J9vbFvzBv74WAUHAYleGa7wLf9f83N1E5+QItkp0vD7CJESbrZkFyUzvp0br7ZLR5n77+103v7/fQgHriMKaoWQeTshjNgjpDEbs8lVnbms1cbQz47hMAhVJwfDGdyiVFQKnhdwxjwQGJdW2nwzldFteMX+ORRFLyLvv/lSw78aS+0aSNpcKJVJ15gcmlr5tevdicWd5IP6s8jIwpuH6DFo3Dw5rWoS3KS0QO31Ad4XOoCvV0MTC11ujZ376OLKelOGu4VPCp3T3lv16foW+p8deoSHEcPmjAb6gM8LvUkvV2fNAE03OO1ubNnRywSWu4VPCp3prS3S1kgttzl6tzFO9gXyob7AI/LPZELxS4FydxyRziSb4qd9+S0TLBKpmxtdqn7+nebx+VqrvVuce0MWVUBLy5AYvZtnavw/68ZZjXGlHtKqGHpKaUQYnnUWdV/BhUwaV8Q1a8nKgz4CCpIdJgzQa8Cem3wonAMWfusosK7zXq+XD09oxA5qWfOu54BHkGGmOtgyN4hh+zT/hV6e7fd3s02H3d3zydCil3njbEVYYBHaBqQXQbynQz6RM0pIQAJQ8ZOh8Vy93wCBA1U9gKpFWCAx4gCzQESU/8yaIbOkRGzR6FOgO1m9qd9u7j7uPt7LCF0EvDHH91V1BlAG1fSNA6OdQZgjz75MkcUFtht/cIKc7KimR2QNVSOAmp/GKOXHGt83eAeHCXd8snwUME6O9yMIUCp2D6TDl2F834OUkaF22ES4laACyvMyYpWANJQCSRZSuPNRUUNdK7xdYOD9pECmE4EqOAXJgAEF6LWvdwPXZ5INHNU+LrGJTuQTBFbAWr4ZQkgmt+60N3Tp0QcZEDXNRq1k86ir1VLvoZfFvkut5WwPZBHoAFcVyBrf3HosuqRvYKP1PtcSyWbO2X8aZSx/1/PNh4unm3oii87JGkXVLb+8xmgJL/8UEmTtAOVOGIJgtOTpZ+3i/lqtlttHp+OFcX8AyFJKH8KZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iago5MjUKZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMyID4+CnN0cmVhbQp4nDVRO3IFMQjrfQpdIDPmb59nM69K7t9GsJNmYQEJCec92IjElxjSHeWKb1mdZhl+J4u8+FkpnLwXUYFURVgh7eBZzmqGwXMjU+ByJj7LzCfTYscCqok4zo6cZjAIMY3raDkdZpoHPSHXByNu7DTLVQxpvVuq1/da/lNF+ci6m+XWKZtaqVv0jD2Jy87rqS3tC6OO4qYg0uFjh/cgX8ScxUUn0s1+M+WwkjQEpwXwIzGU6tnhNcLEz4wET9nT6X2Uhtc+aLq+dy/oyM2ETOUWykjFk5XGmDFUvxHNJPX9P9CzPn+aMFRHCmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjUgPj4Kc3RyZWFtCnicRY87EgMhDEN7TqEjgH/AeTaTir1/G8s7SRosjCU/ois69srDY2PKxmu0sSfCFu5SOg2nqYyviqdnXaDLYTJTb1zNXGCqsMhuTrH6GHyh8uzmhK9VnhjCl0wJDTCVO7mH9fpRnJZ8JLsLguqUjcrCMEfS90BMTZunhYH8jy95akFQmeaNa5aVR2sVUzRnmCpbC4L1gaA6pfoD0/9Mp70/3PQ9gAplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzcgPj4Kc3RyZWFtCnicRVFJcgQhDLv3K/SBqcIr8J5Ozanz/2ssM0lOFmBrMWmBgS14iSHWwMyBL7l8Teg0fDcy2/A62R5wT7gu3JfLgmfClsBXVJd3vS9d2Uh9d4eqfmZke7NIzZCVlTr1QjQm2CERPSMyyVYsc4OkKa1S5b4oW4Au6pW2TjuNkqAjFOFvlCPh6RVKdk1sGqvUOqChCMu2Log6mSSidmFxavGWISKfdWM1x/iLTiJ2x+P+rDDrUSSS0mcH3XEmo02WXQM5uXmqsFYqOYg+XtHGhOp0qoFjvNe29BNp4Ln2X+EHPn3/jxj6ud4/xu5cIgplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMwID4+CnN0cmVhbQp4nDVRSW7DMAy86xXzgQDiLr/HQU/t/68d0glgYGhLnM0RGxsReInBz0HkxlvWjJr4m8ld8bs8FR4Jt4InUQRehnvZCS5vGJf9OMx88F5aOZMaTzIgF9n08ETIYJdA6MDsGtRhm2kn+oaEz45INRtZTl9L0EurEChP2X6nC0q0rerP7bMutO1rTzjZ7aknlU8gnluyApeNV0wWYxn0ROUuxfRBqrOFnoTyonwOsvmoIRJdopyBJwYHo0A7sOe2n4lXhaB1dZ+2jaEaKR1P/zY0NUki5BMlnNnSuFv4/p57/fwDplRTnwplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjI3ID4+CnN0cmVhbQp4nDVPO7IDIQzrOYUukBmMbWDPs5lUL/dvn2SyDRL+SPL0REcmXubICKzZ8bYWGYgZ+BZT8a897cOE6j24hwjl4kKYYSScNeu4m6fjxb9d5TPWwbsNvmKWFwS2MJP1lcWZy3bBWBoncU6yG2PXRGxjXevpFNYRTCgDIZ3tMCXIHBUpfbKjjDk6TuSJ52KqxS6/72F9waYxosIcVwVP0GRQlj3vJqAdF/Tf1Y3fSTSLXgIykWBhnSTmzllO+NVrR8dRiyIxJ6QZ5DIR0pyuYgqhCcU6OwoqFQWX6nPK3T7/aF1bTQplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ1ID4+CnN0cmVhbQp4nEVQu41DMQzrPQUXCGD9LHued0iV2789SkZwhSFaP5JaEpiIwEsMsZRv4kdGQT0LvxeF4jPEzxeFQc6EpECc9RkQmXiG2kZu6HZwzrzDM4w5AhfFWnCm05n2XNjknAcnEM5tlPGMQrpJVBVxVJ9xTPGqss+N14GltWyz05HsIY2ES0klJpd+Uyr/tClbKujaRROwSOSBk0004Sw/Q5JizKCUUfcwtY70cbKRR3XQydmcOS2Z2e6n7Ux8D1gmmVHlKZ3nMj4nqfNcTn3usx3R5KKlVfuc/d6RlvIitduh1elXJVGZjdWnkLg8/4yf8f4DjqBZPgplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzkyID4+CnN0cmVhbQp4nD1SS24FMQjbzym4QKXwTXKeqd7u3X9bm8xUqgovA7YxlJcMqSU/6pKIM0x+9XJd4lHyvWxqZ+Yh7i42pvhYcl+6hthy0ZpisU8cyS/ItFRYoVbdo0PxhSgTDwAt4IEF4b4c//EXqMHXsIVyw3tkAmBK1G5AxkPRGUhZQRFh+5EV6KRQr2zh7yggV9SshaF0YogNlgApvqsNiZio2aCHhJWSqh3S8Yyk8FvBXYlhUFtb2wR4ZtAQ2d6RjREz7dEZcVkRaz896aNRMrVRGQ9NZ3zx3TJS89EV6KTSyN3KQ2fPQidgJOZJmOdwI+Ge20ELMfRxr5ZPbPeYKVaR8AU7ygEDvf3eko3Pe+AsjFzb7Ewn8NFppxwTrb4eYv2DP2xLm1zHK4dFFKi8KAh+10ETcXxYxfdko0R3tAHWIxPVaCUQDBLCzu0w8njGedneFbTm9ERoo0Qe1I4RPSiyxeWcFbCn/KzNsRyeDyZ7b7SPlMzMqIQV1HZ6qLbPYx3Ud577+vwBLgChGQplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMzID4+CnN0cmVhbQp4nE2PQRLDMAgD736FnoCxAfOedHpK/n8tkDbuBe2MgJGGMAg8YgzrMCW8evvhVaRLcDaO+SUZRTwIagvcF1QFR2OKnfjY3aHspeLpFE2L6xFz07SkdDdRKm29ncj4wH2f3h9VtiSdgh5b6oQu0STyRQJz2FQwz+rGS0uPp+3Z3h9mPjPXCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicRVJLcsUwCNvnFFwgM+Zn4/O8Tlfp/beVcDrdPPQMCAkyPWVIptw2lmSE5BzypVdkiNWQn0aORMQQ3ymhwK7yubyWxFzIbolK8aEdP5elNzLNrtCqt0enNotGNSsj5yBDhHpW6MzuUdtkw+t2Iek6UxaHcCz/QwWylHXKKZQEbUHf2CPobxY8EdwGs+Zys7lMbvW/7lsLntc6W7FtB0AJlnPeYAYAxMMJ2gDE3NreFikoH1W6iknCrfJcJztQttCqdLw3gBkHGDlgw5KtDtdobwDDPg/0okbF9hWgqCwg/s7ZZsHeMclIsCfmBk49cTrFkXBJOMYCQIqt4hS68R3Y4i8Xroia8Al1OmVNvMKe2uLHQpMI71JxAvAiG25dHUW1bE/nCbQ/KpIzYqQexNEJkdSSzhEUlwb10Br7uIkZr43E5p6+3T/COZ/r+xcWuIPgCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjMgPj4Kc3RyZWFtCnicRZC5dQQxDENzVYESeIA66hk/R7P9pwtpvN5A+niEeIg9CcNyXcWF0Q0/3rbMNLyOMtyN9WXG+KixQE7QBxgiE1ejSfXtijNU6eHVYq6jolwvOiISzJLjq0AjfDqyx0Nb25l+Oq9/7CHvE/8qKuduYQEuqu5A+VIf8dSP2VHqmqGPKitrHmravwi7IpS2fVxOZZy6ewe0wmcrV/t9A6jnOoAKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiFtCNEGUglgQpWYmZhBJOAMilwYAybQV5QplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODEgPj4Kc3RyZWFtCnicPcy7FYAwCAXQPlO8EUJ8gOzjsdL9W8FEG7h81QMdIRnUDW4dh7SsS3eTfep6tYmkyIDSU2pcGk6MqGl9qX1q4Lsb5kvViT/Nz+cDh8cZawplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoingYAn30MtQplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYxID4+CnN0cmVhbQp4nEWQSxLDIAxD95xCR/BHBnyedLpK77+tIU2zgKexQAZ3JwSptQUT0QUvbUu6Cz5bCc7GeOg2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlHcPVf9Uex7pzNxMBk5Q6EZvUp7nybHVFd3WR/0mNu1mt/FfaqsLSspeWE285dM6AE7qkc7f0FqXM6hAplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE0ID4+CnN0cmVhbQp4nD1QuxFDMQjrPQUL5M587TfPy6XL/m0knKRCNkISlJpMyZSHOsqSrClPHT5LYoe8h+VuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rXL3UtzvPRxvooiUdPCu+eX0y88tvE49jkS6vfmKa3GmOgpEcEZq8op0YcWyyEOk1QQ1PQNrtQCu3nr5N2hHdBmA7BOJ4zSlHEP/1rjH6wOHilL0CmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE1NyA+PgpzdHJlYW0KeJxFkLkRQzEIRHNVQQkSsAjqscfRd/+pF/lKtG8ALYevJVOqHyciptzXaPQweQ6fTSVWLNgmtpMachsWQUoxmHhOMaujt6GZh9TruKiquHVmldNpy8rFf/NoVzOTPcI16ifwTej4nzy0qehboK8LlH1AtTidSVAxfa9igaOcdn8inBjgPhlHmSkjcWJuCuz3GQBmvle4xuMF3QE3eQplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzMyID4+CnN0cmVhbQp4nC1SOY4kMQzL/Qp+YADr8vGeHkzU+/90SVUFBapsyzzkcsNEJX4skNtRa+LXRmagwvCvq8yF70jbyDqIa8hFXMmWwmdELOQxxDzEgu/b+Bke+azMybMHxi/Z9xlW7KkJy0LGizO0wyqOwyrIsWDrIqp7eFOkw6kk2OOL/z7FcxeCFr4jaMAv+eerI3i+pEXaPWbbtFsPlmlHlRSWg+1pzsvkS+ssV8fj+SDZ3hU7QmpXgKIwd8Z5Lo4ybWVEa2Fng6TGxfbm2I+lBF3oxmWkOAL5mSrCA0qazGyiIP7I6SGnMhCmrulKJ7dRFXfqyVyzubydSTJb90WKzRTO68KZ9XeYMqvNO3mWE6VORfgZe7YEDZ3j6tlrmYVGtznBKyV8NnZ6cvK9mlkPyalISBXTugpOo8gUS9iW+JqKmtLUy/Dfl/cZf/8BM+J8AQplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzE3ID4+CnN0cmVhbQp4nDVSS3JDMQjbv1Nwgc6Yv32edLJq7r+thCcrsC1AQi4vWdJLftQl26XD5Fcf9yWxQj6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPfgyJxUi1M/U6Dp4YZc+A68QTikWeAeTAAav4V94lE6DwDsbMt4Rk5EaECTBmkuLTUiUPUn8K+X1pJU0dH4mK3P5e3KpFGqjyQgVIFi52AekKykeJBM9iUiycr03VojekFeSx2clJhkQ3SaxTbTA49yVtISZmEIF5liA1XSzuvocTFjjsITxKmEW1YNNnjWphGa0jmNkw3j3wkyJhYbDElCbfZUJqpeP09wJI6ZHTXbtwrJbNu8hRKP5MyyUwccoJAGHTmMkCtKwgBGBOb2wir3mCzkWwIhlnZosDG1oJbt6joXA0JyzpWHG157X8/4HRVt7owplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcgPj4Kc3RyZWFtCnicMza0UDCAwxRDLgAalALsCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEgPj4Kc3RyZWFtCnicRY/LDQQhDEPvVOES8hk+qYfVntj+r+swmkFC+EEiO/EwCKzz8jbQxfDRosM3/jbVq2OVLB+6elJWD+mQh7zyFVBpMFHEhVlMHUNhzpjKyJYytxvhtk2DrGyVVK2DdjwGD7anZasIfqltYeos8QzCVV64xw0/kEutd71Vvn9CUzCXCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzEgPj4Kc3RyZWFtCnicTZBNDkIhEIP3nKIXMKHzA4/zaFzp/bd28PnigvRLIUOnwwMdR+JGR4bO6HiwyTEOvAsyJl6N85+M6ySOCeoVbcG6tDvuzSwxJywTI2BrlNybRxT44ZgLQYLs8sMXGESka5hvNZ91k35+u9Nd1KV199MjCpzIjlAMG3AF2NM9DtwSzu+aJr9UKRmbOJQPVBeRstkJhailYpdTVWiM4lY974te7fkBwfY7+wplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTM4ID4+CnN0cmVhbQp4nD2PQQ4DMQgD73mFPxApdkJY3rNVT9v/X0ua3V7QCIwxFkJDb6hqDpuCDceLpUuo1vApiolKDsiZYA6lpNIdZ5F6YjgY3B60G87isen6EbuSVn3Q5ka6JWiCR+xTadyWcRPEAzUF6inqXKO8ELmfqVfYNJLdtLKSazim373nqev/01XeX1/fLowKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDggL3plcm8gL29uZSAvdHdvIDUyIC9mb3VyIDU0IC9zaXggNTYgL2VpZ2h0IDY3IC9DIDgwIC9QIDk3Ci9hIC9iIC9jIC9kIC9lIC9mIC9nIC9oIC9pIDEwNyAvayAvbCAxMTAgL24gL28gMTE0IC9yIC9zIC90IC91IDEyMSAveSBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTQgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTMgMCBSID4+CmVuZG9iagoxNCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC9DIDE3IDAgUiAvUCAxOCAwIFIgL2EgMTkgMCBSIC9iIDIwIDAgUiAvYyAyMSAwIFIgL2QgMjIgMCBSIC9lIDIzIDAgUgovZWlnaHQgMjQgMCBSIC9mIDI1IDAgUiAvZm91ciAyNiAwIFIgL2cgMjcgMCBSIC9oIDI4IDAgUiAvaSAyOSAwIFIKL2sgMzAgMCBSIC9sIDMxIDAgUiAvbiAzMiAwIFIgL28gMzMgMCBSIC9vbmUgMzQgMCBSIC9yIDM1IDAgUiAvcyAzNiAwIFIKL3NpeCAzNyAwIFIgL3NwYWNlIDM4IDAgUiAvdCAzOSAwIFIgL3R3byA0MCAwIFIgL3UgNDEgMCBSIC95IDQyIDAgUgovemVybyA0MyAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvSTEgMTIgMCBSID4+CmVuZG9iagoxMiAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4IC9Db2xvclNwYWNlIC9EZXZpY2VSR0IKL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMyAvQ29sdW1ucyAxMDkgL1ByZWRpY3RvciAxMCA+PgovRmlsdGVyIC9GbGF0ZURlY29kZSAvSGVpZ2h0IDEwOSAvTGVuZ3RoIDQ0IDAgUiAvU3VidHlwZSAvSW1hZ2UKL1R5cGUgL1hPYmplY3QgL1dpZHRoIDEwOSA+PgpzdHJlYW0KeJx8vOmvZEl2H3aWiLhbrm+vrauru6e3mZ6Vs5DTw00kREoiLYEUIdEWZJmw/xZ/EAwIAvxNgCF/kgTZgg1JtiVxGQ7J4XDIWXq6p7urq2uvt+eed4nlHH/IV6/fDA0HCvnujYzMjPO7v7NFxCn8k+++h4gAoKoiYowBAABARCLa9G8G4PO2uYbnbdOpqlfHqGrbtiF4aw0zPHh077/8/r9/592/IPYuw1VTEzrDpbVFUZSIIuqR0Jris5/5yi9+/ddefvENx5YgIUQBSmoBGJQREEkQI1ASYAVEpM2MAEU1ggopgSLART8CbcYQKyIQIRIgwsU1Kl5IoQAKoIACAKCsyilqUhEgVRAFwIshm++98geMiDCzqqrqBrhLmETkEpRLpDbvXr3eYH35etnvnBORum7z3N1+4c6v/Mqvrev5k6cf+a6x1lqbr1etKooIE1rHzpher3/r5s29vV3mzUwQAAEE0AMwgAEABQFMCAIgCISACAgAoBsxP3nAl20zMRElQhElQGS4MuGNdBtZLtECAEACFEQFvei5eGTwyc1FI5HkfaeaVOU5KaOqbH7marva89ffvdpEBACIyBpr2KYEoPbF25/69V/7r27dfEWSbdZN1zSo0jV126xT9M7aIi9SipPpeZKomi6EUQIAQAGIgEEhAERVUVVUIUgEiTShCiqQIoPB54KqwpXZbmTTzQUoqIIIqIAqbnRp8wqKz5/fBX/hkqqgiJ/o3EY5N//47/7W7xRFoSrMDKAiIiIb2K/q9VWN/imlvsrQS/5uGpOxNkNEFUWi4XCQZfnTp88m0+Ou80nEWqOajCHnDIAqwrMnz9qme/3V1y0bAgLYyEUA9Fw8QmBQJjCgTEgACEqgRGBRSVGez/CT1+dTvhT+E2bhT8sCn6jCBdFBVfViMG4G4hVWIgL/49/7741hRBBJlwBvqHoVGiK6ahmvInupIFd7Lue0+XQIQUWZud/rM5vZ7Dz6iADDQS/PDZHmhS2KjBiXy0W9XhPSaDDo93oAAMiIRkWJGAARGZQBWJUA0AePjEigisSsoIgCACml53ghbrD+RC2fiwAIAISfKOkVGT95FnIhHgAqbCzJFY3eXPPf/a2/n+c5ImwMJeAlHATPvc0lxeCvGUEA+P+7xYQIxISAbds2Tc2GR8MhIZ2dnsXQpdQOhwVRUgnE6gpXljlIevzowf7u3vVr15kYUIK0bbdou8X5+bF1zIYRMWoyGX547935+rTo8fnsaDo/K/s5CiECMz83eZcaAwAbJ3OFgs8pcTn9K9cXxlavMIeeU/kqjgjAX/zKV1+8c1tUABRp82G9iuOlJ/nr7IOfbH99JGIEkEvyrterGENRFDtbe866xXJSNzNA3+s5H+qQ2qZrrGUEBQBD9MqdlxHxdPLs3Q++8+3v/MEP3/nzH7zz52x0Z2ekGh4dPaxG5sd3v/t///6/XdTPfvjet//0L/5gvFvtDG+CkojiJ5q4mfZzWFEBNs7zE1Q2uF1BVz+5J0QkoA2OPy36BY6/8KtvV72iLAvY2CfdGDgg4s0gVRARItz89vOfgSuG5ZPbq3qNCIRyYdRFAdQwr9crAM2y8uBgf2dnu65X0+lpkZt+ldf1Cth0bZsX+fn5ZL1uXrh1Z3/v2sNHH/7H//S/33/w4Tvvfu/k9On59ATJv/f+9x8f3z86e/ijH38n6uL773zn6OTRdHb64OHdnLZv3boNioR84TQQFGWDB1wwTXVDFVJF3Ii+gVNRAUHhwsgqAgLB888hIKgSPtfLTT8Cf+2Xbn3rT35/f38f1IIYRMvMAEBEiBtybUgmiKAqzIR4GSJcuLCfAvHympRQCQRAFRWYGBW71nNher3x9YNX7tx8Y3qyPDs6yq0WznYdFmWRUIVhtliMR7s3r9/+7l9973s/+OFksramms4WCvGDj37w8Ml79x798N33v3t+fmxtPjlfqdh6FSbnK8H4yqsvl66k5FCtgiaKghGRL+VOIEqqLIE0ICUEAFEJIXVRJAGGmJKIAiqgSCLawKUkyhe+BDaB6cbe8o0714InptJQ2e+Ni6JIEkUTKF5q6CaQvHTfcMVK/nXt/gmSil61pwDgnDOGwUCZV0x2e7x164XrTx4/mE5P87IAAwqJLRZF4Wz+5NGzFGS1Xr33/o8ePXp8fj7p9fq7u3vOZinpqlkjYp4Xq1VTFCUib+/s3rlz58GTe6Nhf3//mrW5ACqSIioyC6ISAoICI6EoJiFVSihNc/b06Xf/7Nv/x//27/7iz77z5P6jP/qjb37rT//s+OgkzzeZwnMzqiAiTAQASM99OgL+L//mXzTrQFg0tdy58/JoNBANiEDo8CdTGiK6Ct9Vx301l/mJACjFT4y26obmCiocmZylnAA0NSen9//Vv/oXwLXY5bJeJtCUlLEi6N3YuzNfrH/wzg/PzybOFdeuXfuFX/jGh3ffE4mun54dP7Y2Wy5WWVZUVT8G6ff763C2Pdr/+pd/9Ze/8Rul21HJABhACRJu4icFBCUUid2TJ4//4jvf/bM//ePp6XG9WqzXax+TzUubO85sSunG9Ruf/synv/H22y+/8vJgMGTQ9z/4wDr70ksvsbFAuHHl/NWf++Us62+N927dul1V1QZxBCAyPxXcbIj5U/zatAtb8ZODAQDkE2tNRJunYoxhx0wWlVMCVa2q6tq1G+/9+L26PSNCQk0xdp0HgMls9vDRw6btEKkoqq2t3d/+7b+fog5H47yy88ViNl0sl2smlgQiOhqPvM6Wq1nd1qPxaHdvj9EgEAIohwQihEKgDCenx//23/6bf/7P/9k3v/mHjx5+fHZ6vFouBDGodiGEFDWlermaTSb37n70h3/wBz9+971HDx78X//xP/yv//JfTqfTsir6g36eZ4AAqvy3fuO3b964PRiMENEY3nhtSWkTfW8yk03KeNVNX2aQzxv9dW9+6RA/4SqiMYaIFJE2UR9A3TQK0B8Od3a2H9z/cLVYWzZMzMxdCMgICOt13bSNddmtF27dunVjtpi++96Pnh0/bZr29OSsqnqquFyumBkREnTzxWJdr9br5bDfc4bLzEEKmtaIqYstsv7gnb/6p//0f/yP/+H/nE1OfLfu2pVqCKEVkNZ3CbRrmrau27ZNKa2Xy+Vy+fjhw+985zs//OH31+uV79qPPvpoOBzcvn2biUCF/+F/809UxTnrnN2kQYQoF0n5Jd0uUprLaPyKEcSfet1Av7mQlED1kokX6F+MJdwYF4Kz89MooepV497o7vv32rrpVZWCJhCfQhRVwBADgCqIy2m+OH/0+N7x8bH3oSz7RAaRnbNFUYQQetVAkobQHR09efbk/r0P3jManIYPv/Ptx/c+fPrw43d++L3/+Z/9T+9977t+NQPfFoyV4yozmAKBWsOWjcSQYiBSAmWDkkJTr7u2iTFkmbPWeN91vhsM+wf7+9Za/sYv/g0AyQuXZ1Y1AYAqPofiEw9zmTJfTbGvQnl5fXUAgV4a2c0zeB4YMyBtklo2QBbu37+3Wq4rN3JsQ9shJHYcNAmCD7EoitVqGWJAksdP7p+ePzmfHT97doxo8jyvqur111+bTmcpie88pmw0HLftOs9gtTgL9WI9P5fV4uG3vvPh939w990f/bt//a/nJ8fXR8OdMt/Os/3B8IXdnWujYY5oBDJgA6iafOxQk6TACCqx6xqRyMzOZcaYpm0ePnzYef+5z36uqipz48YBEq7XK2s5y3Lvvcty51yMEUCREFARlQhVRZI+jyufZ54XfxTxIk5DUFVRUCYm2mRReAXEjT1JoIKICkIIzpjxcPzowcePz47Ojo+kFSXu2q7oVU27KPtV9HDtxs5quSakEEPqVEmcLZbzJoVoCL//V9/d3tl55ZVP3f/4Afi1ilAhtjA9cb1O+HR678G3zSQ5ovPjIw7+i6+9+sL+rhNhUWZDBF3X5qHbqUrlbDJfPZrV7XoVVZUo19IYNpkFEUDe6Jl4EZX3f/Tu+z9+b3d31yxXy7quAeDo6Kjf7/f7/SzLiqLI83zj5gFQlHAThCtKFCIiZny+XgUKCmljGC+ZuIEQlPX/K5VEiJtvRgUVcOS2hztH/GAyuXd+etIs1imlyJElKcmqW2dZ2R+VXbeaTxcqWYSYSMbjrfW8GfZ7mbWWgSB1zfra/nZ7ftbqquhzs1wOYrGn/Z2G0jLVaM5mU7Tus1/4ws5oUMQwtmxU1GBKKXOow6oTTGQN4rJrpstl50MT4jKuDHNpOTfsMuec0ySp84hYL5btuiYEw8w3btzIskxEQgi9Xm+zlKuqzJxS2nibC3TwJ5z4pd28WOK6shKsqiklQrpqUj/JAa7eAqhqWZbjre26Cadnk9Vs2XUNWC1TVWyXycdVtyhcv8jcElofg2Big6R+b39QFj3DxiddLVcfffRev5fDehkNrE66g/72tlQ9zZaT1WpeN5aHW+N+VczbBhCQOala64hIFQpmN84S2YS2yJoGcNLU9WRmCNqYokiXIhiOiirarNcoOhgMer3eer3uuo5v3XlpvV5vpCUiZjbGXEaCV/O8DQJMDFei8Q12Gz5emtTLeBORmfmnnDvCZuHkEzOaUgKAosg0+Y8+uj+fz5umXtYrYGBmBYwSy9xk1hHY+XylIHv72+Nh+cLNG9f2r3dd2NraTqkj7gTWSSEJcKReZ1/IdquUI9hsMDRlngg/fvzwo48/cobLLO+a1lrX6w+csRbZGZe5zLlCFZWwi2G5WkWFJLrRrhiCD9G3PoXgrN3b29s/ONjd2//Ua6+at99+eyMGM3vvN6KWZbkRcuNqN06GmVPcrE5iSomZN1RNKRHrxgBeDXrgJyPwK/0Il9nrFSiNcZ969a3X33zUNm3VL7tQA0vB2XDQc70sc7perCzR3s5OXma9sSszunZtazTcr+t6vV4VBSXFVb1uhRmttslVxcHODV3E2gSfokkYJarv9sajtq6nZq4+npxPX36RdwYDSwZFgVjY9KpiEP3BaPjs0HVJPGJSRQS5WHBQ51xeFABQ1zUzlUXJX/36271er9/v53leFEXXdVfps4n4VDXGCACGWAU2FLtUamamK+ual/ENESF84l4u+xFRIV2CeElqEXU2298/WCwXq9X85ZfuHOzvZWxdltncZBYHZRV8qor+YNi3FjLHEmNTr62FLEfEkKRtu7oDCFGNmpHtH/R3WamT5CW5BCDChNvjcee78+mUXD5f1cv1ams0ZkCDZK0DNkJkDDNS03WT+cInQSJiYmJAssbkzjlrQYGYbty69TNf+TL/w3/0j4low0RmFpGr4d6ln93YO0RiMpd4XQZDF3tDz8G6XOnYQH35JZfB+UXi/ZOpERGLkHV2OOrN55PHjx/cvnlLgsxXC+FoSCSmzBQArCAhtslHBCAKbTcJcbFcnq9XaxAyRLnLc8pGtj8ylaw7X9cQYxFRQyAVRAWm08msVcTMPTl8aoi2BkMGJLZKGBEMIaEq0uHZ+bJto4gkuXQGZVEQkqq6zH3xS1/8wpe+aAaDwUZ/Y4yLxaKqqizLvPeXQfUl6Ta3grIh4wbljU3YxEaXsfqlKUCkn1JtEVFFYkgpXV0Hgc2SkLAqXb9x8/Of/0Ly9ccffbwz3iqLYtEtDCFEcaavSbuuUw5Irqk7toBUd91iXS+bNRgurXQhdbvbt3Z643q+MNNWQ8izLDMWlJKSV3BENs8en5zsHhwI83t3714fb9n+AKNHzpUQk+bGVHk+GvRPluu02dpRFdEsz9gYEYkxtm27tbUdY6QYlU3mbEForbUqMYbasIAoKkhMmgREQdQQGyLRoJCQVDQmCUmCD01K8dJ9Xzp3EbnYbUNREJEYUwBUgeix9RpCIpEseBJRRS8yNzo3EBCzm3c+ffu1L3jO/uwHf5XierfnyMve1oEmBYgx1MF3y6aOqtHH4JNPooassyapNOagOHgx37OTRufrGNqkPknglDJiVmJgUt4ZjnrOLGfTLO83XTyenNehrX3tQwPBQ4gUUwayU2V9pw4iIYiiNabf7yPZROyqftYbbO/tAoEJoUGEdbfKsqzIC0QhEgAlIlAlRN91AGCM2aTGiJBSuMxbNky/iMo3sRHzhnoXG2caUfBitwcphAigPkn00K0bhAgqoi3akBl0xIJG0eSl+fznfya0MwmTxfR8NLiZUEMX8yL3cZXneRe6ROoyE+oaKCEaY/PURSLMbH+/fxBnrW2lMCaqLJvG+2RUbVEYayNpZW0dw+2D/bP50ge5ef06ISaNIQpFto5URWJklcrxoHB1CFHBWptnlpkROHMZsLF5nldVlufmv/yXf3/92q3r126NRzuGkAizzH2SqTxfodi4go3mXvgcY6y1z/X3k8WLSwsrIsSgoiJIhIAcuoRoJ5PpB/cefO+vfiACPsSN/y7KfDAebu/tvvTSnb2dEiQVefn5tz4L3eTo8Gg6aYBEcFn0isG4PDtfELrxdmkhYIe5LZJPIDErSh/9iEtporTBkDWWl/XibDEBgABVKb1qNMycTTHujYZl6yBI3cY7N67dOthV32pKyXeMhEps2BiuimJYVcsuSdRExhgbYxyPRkjMxiCitRYAzNPHd4+fPT749b9rGAmZyaowMSKmDSIbZl0aso0b+YnFCBFm3tDwajyoqiJps1Mao4DikydH3/rWn737o/e7xpJlslh3TVItsspQFz6emfLwj7/1zo0be2++9uKt66Pt0Yuf+dLfaf/8m4uHH7D1WQHns6fs3O7+/nzRsoWSjV9hvWiUWRMDE1k3tiNoxAgQaZK4atemyPKqzJNlZ5S1yF0zb7p6lRvTIwDSfp4Zojqm0LWZMSpCZEWRQEvnxr3+tO6adbcBiIiYTV4URVm+cOf25hQFv/XWHUlxtaxv3rztbIHIyIbYgMarQR9eaZeQXYbuF+x77t835L3w+wopgQr6Lj16+PSP/vCP57O10X7bRWTTdF2KCoIaJDStdK1frZ48eDQ5ny3q+ORkZfs3tra2Qjs5nxy1cZmwi9IZh8NxXyEQgCVTd2nRxTpqvWwp4k237xIURIWhELs2hnnbXLt1a1CWvcGAmI0xVV6WNu+X1bW9/Zs3bx6fnCya+ujs7Hw6iylaa0FBVEKKSUQQT8+ntQ82L4qyyLICALMsY2O+8fPfePsbX7fW8K/9zbcNuxBkb+cgL3pInESZCSBdKvXVrddN5kdEbdsCgLV280AuY++fCD+BkmAMGqMGnxD4xo2boHB+Mml9C0AxRdRkwWfYjbP0M69d/4WvfvrVF7YHOYivD58+u3f3vsW0PSrbzoeURGFV1/PVTNETYfTi1Zjhth3vury/XYxv9LaLljKEfu4qZ6y1QeG9D+8Phlvbw6GIHB4eoWCv7FdlVeWVtc6D3H/y5L2PPz5br89m8+W67vf7SCgpMjMosrFBofZRkNCwdc6wq9t2MBy++eabL738YlHm/Es//2VELrLeat3u7OwTGwFBRqbnOTL9xAbsJpm5SG/S5mld9F9mhJc4xkggpECgKIIxpbIoPvvWW009e3p4iMQgAKm9vu2+9vkX/uYvfvqLr41u78GNYXNnJ712YHbMqjv64PGDByfT4OwYtDeddJPpAlmTdCjQeelMfuPTn997+bU7L7667/r+6Tl0vszMsMoKawgxRJzNG9/puCpQeTFbStSt0dZosOWsWzfNj+/fe3hyskhpLZqIJtMZMY8HA00RFQyzACagZdOBMeuudS5zNmvb9s5LL33mrc+Mx8Nev+K33ryzmK9dVjI5YiOg1lkERdAN7zZLFZc4XobZn4TWcBHuXG4UX3qeGFmVVDDGTbTV5EU+HPXfeP120/kolKK8cG37H/y9X/rU7SrDc4fHUj/q40kvPi3bxzt0/uqWgBndO80m53EyiYBF1R9khWn9enJy0kZJ1dDuXpsHnR9PFveeZrOWMVa56+eWVSVojNR6LMths5watl3TdZ2XpIQMQIfHR4/OT6AspCgaBTQGAJp1vb81rjIHqimJKC7b9myxTEhoDBvnQxwMR7/3e79389bN1WrpMse/8/atG5Xuc3NAzTjMh+1yHLoytIQBogcgQZso82oC2kiqJqHjxBCJkqHEJhCJRmIRSkIhoSSVKChgRfMIHAA8yiI2nhP1bXKyXemdO298+Ys/+7m3Dt54Ne30znR+Vh8+23Iz8ivp5gY9UxPDmTGLW4P7o3hy7/7e/UX7dHa/mXcsg6QjoGKlocvqDOrdRZvdO6vWKfhYgo56FTMGSY0PErEyvdB0La6b2DVdc76YzNaLRnxyOF3OnDNI4CzVyxlqHA56jW8t8a2btyJAnbpZ157V6+P5Ytl1aIqy6CnAW5/7/Fe++tXHT57dvHl7a7xnXrnmLCFLxDRVmQA+aWekM4bEanLO+2IKV/byvCAktXuQ385zANxgZ5AwxCgxMoNIEI2IBMqIQqiEQQGTYhAgbxJkGVXGc6qEU14YUwzN5Ojp4tEPt8n0Mo4rAU25w2ZVQ2olJUm+sINXb9d/u/p48f+Uj/zA5/PpCvLlYDDsDcbX6vWxPQqss0FjWSloZ8kw0GZ7WWJs61jl2+dnE8jtfLHqlRWymS7mCbQ3GmS5q6goRU5X8xtb20+OjrKKh71eSlFBlbD24Xw+P50uEmBQiF1z/eb18Xj82hsvf/+Hf3H3o7v9Ufbk6L4xTQ8pNetJryIEH9MaNEAKtl0pGiUHguhcBAhN2xG3rnDOKYAAJJHOd8aYhJtt4STiRVPmcucKFRBx1hTElWquUPpgqmpruL134vqWRsPtrbC+12+eantchgDRLdSJpGDIMkjo2qauymLWZMj1nfJ7v/rK/jcfvvGYDxKv4zzvWpbFrCzyXSlHZEY2b1KTwkppqKKsbG3hydfLmcVyNOzfP13GADO/7PVHbCyhnp4c9vNqZ+egTSnlUaNcG20tVnVVlYU1wbdN107miycnp/MAdQIvuLM13D/Y+8pXv4Ksu/vbx2ePZ8ujz33+c0bVheCBq6DgO9+FkOcmKazNIMakASFpFkPJaAFtWnF3qp2KJiYonemx5nmeUgRU6xhRFDa5IIAKmgUgBA91CwCFhVzndrpwtRs42jJnexzqOH8Mq+X5tHW2XHPnvbdsiywjBEaqF00d5o5dzw7euPXUjvb++ONrH83QszdJua5vjfs7SUdkLNJSpUm+6HzXBgeU51TYvMjd+flRf7BVFYO6Pm18m5XFYDSKoUnBc1ZgF0vnqBpCAoNGoqSQitGg9d1i3Zwvlofns44zqvqj8fjVV998+xu/WFXl6fnx/fsPz84nd+9+ZJ3h3/rVsZiVuDZyG9ErS4SQiDvebiVLUCTI1iuvyiFo0yQ2faYecWVd39qedX2gLGeLSQ05iy43uUHLQBlnuXEZFQzWsS2t6ZemX2LlujE/7sExtk+0PcS0StErUx3r1k8ltSm13tdNs04p+tCR9xZknTI19vr+7KBXPXkyPHeLiE93+vLCNm9lkmU2MK80TZbL2EQGYgVSssYQc93Vddvk5WBdr0+nZz6F4bAXQseoOVkTkZCMYWOtcc5kbr5a9gc9RZzWzcfPjid1B1neG2+99sbr/+B3/tHOzsFiuSrKcrmuh6Otk9PT88nM5MVguaqRnSQkQkZNvmPVUjoOnSpgimw10w5iq9gE14EloIQZiVMhURTDweRRkioyOUsEKbSC4rudFADJsiHE5JwViQa5ir2EKVkvGSWitp+SJtulXlekqBJFFAiNSGIy2IQQ4lI0dZ0/XpYqr71448kzF6EdjDLnOs5M4NAoRVVONFutQZEVDRAWuSuycliE1UpSs7s3WnSz08l52TODojBsRaQNnXbMqAnVh7CoV4u2dqv1kMzHz46PZit1+XB762d/7mu/8Zu/8eorrz95enjt+v7J+clkNg2hi0k+9/kvGqqHAx77pALQ1Ctfzx1JWZrF9HBdt1vb21GDNZp87YywyUJENsYQGAJDopiIxVpniGIARJuSiiJCqZrU1AJdSomVDLFABiREJsI2UiTsRBIBggaiWPQZCwZFERWFZ89mReWyEmMVCh7smKFv54tVXyh/84Bg/Mr3f/y0RM4AATAi+RQx+CrGM98hUD8vq0y0bYQSOHCloaAM8OrrL5bHDlQVhIi6tttsURdFBoZTVLDGEzw7Oz88Xzw5OS+G409/4Qt3Xnnpv/0n/+idH3zvR+99O6RUt/XDR48ms6ej8fjOzRuT6bHRtEJGkM4w9Ipa3Tq3kmKksnLGroJn5lVbM2LhsspxqckiogrFiKREiRFROIkBNaDZ+dlkf2+XrQIk4AkS+y5KVEkaWnA2J7JdrqpREyBkDoq+GSXwiF7yGhSjQlLdvp6zIWew0Qx4btY160h3HQ9G1wZf+8qbL//ozfTeD9/JYMGYoiqkYELIY0ySFvXqjIz62C+dKREMcEaOyBAiyAs3b4hIarpYt12MkYglOVAFZcP9Qa+YuaaJrY9f+bm3/+v/7n/44le/cnZ+8u6Pvv/j9965//TDhPLVr33t2dHd4bhnXZjOj54d3+ef+bnPBeuiCoE469j2Eo+jGQUAh11aHPY14LpmEOUuURegTRw7qRNDAkrqfHIoBsElqBKUAm5jDUgDoSOqJDCCJQXHCmkNccHxWERU+0ZzDl1uQpJOtClxbgKzZGqBq5A7qKIpkZ1jLiEVC6Uptqe6eD+tvjvcrV5747Yw1B3F4FIjIcZl6FaxWa7WTStRbVBSQh8b0RTUBS/QJuxC8l1QP0/LlSpkY1MUzjoMIcwn80cPBjH0MhmOy1/5lb/zt37zd2211RvvGZevmvXJ5FGI67ZdhdjO5xNJ4ejw6fT83Iz3ruUYoaHV9NCUmXNWkohK4dhQZqoq1pEob7x0GsIyVGWZixGJ1HbMnogIqWWxztlcXIb9fmYworQpdikESlivV7lzqCKSUDbLG9ZHCbgE1zHHNkWPtA7cwq0cE0MwQE1NbK2yMlMURGZjjQ/BGkZIKdbN2X+2+c1Pv/CFxejFu/dmj5vOW+lyjwFSHRft3K/iWgZlyK1FYznKWkPCEDmJYQICR728zKphr3RZSvHZ4bN2tQS0VTWstvM3fvZny3FfWADTYjVtuvnjx3fPzp5VvcqaQqybTbq2WRSFy3NnOK9SWFvryqov0qUYjbEQBSV09SpFQXSN1w7tyqezaTMe51WVnAXmZChmjshwwhS7zosPceWsZUqMQWOHkAxhaBfakSWjyM5mzAzeMFCi6LtaIAK5BnqPJna67r123fdp1qdiYHeVVHGeIK4WrbHa6zvnHLNNUa2FIk19t3h2776X66+++sX92wd//v0ZNpXL/GDca2rfNm1soVXNbMGkwi0kZVWDYAEsZb1eL+/nIY+tdJpSKlxe7OVZVZaVOSjXhLvj3sn8mVd8+uwBatN1syxnRJqcr64d3EHpPzt8+NKdl957//v8S29/NjTr0gJLZ0kJwPvu8NlTRyF0dbtu2lqXawjCa++DqnW5QjIWMgfOgjNoDaJDZBEJAAGgA/UAMUmMHUpQUmGV1PnkRZVV2CIrE1l2jhlc6/un8/5/+pPzb37/7KWb2fUttUkZ+otVQ1nLhp2psjzbHIq11hIRMbDmxihn80TP5qt7hpvr27cqHvumg6C5zZwxBACSLKFFcCDWIueElaF+xoMiZtxmcapzrpzpVf29g5c+/blf/s2/9+mv/Fyxv/3x8ZPeePTeh+9+5y+/9fjxB0+f3H329IFPzWrVGuqjFpmrYgzrelY3C5Oz5swGvEqQ6JMkBer1KsPRK0ahxartvA1t8NQl6doOiNl7IVSJKgbEkioisWUyQAxsOe/aUNfg1w5imzFWGRoiYPQhJYkCnTqLZEgZJTe0//TJ6uHDOhs4a52hYEBC9Jm1KEYFmS2CgpIxBlSIQFW1sEmEEvYdFH4VmrtG2zf2t3fKFz/8+OnxdN5lRRRIMTCowVSYvpYEI5v69nBx/mT2DMBEH7IBqS3c1t7utU9du/nqzmfe3Nu9ub08/PYH3/+jP/mj/rB88uQBgaboM2Omi2VVjRFhXS8OD58dXN9ZLI/3dq+bAQeMnXYro0E1tl13OpkXZVGLtF67BBEwpgikBjvBGAPUK+0adYYIEQQJAFiz3DqWQZUXWelMj6iihJbL3EVfP1wtDstCyWqigKrASYUwkCKQxATBx/rllwafenP/9l7uMCC0YFpUoMSIRpngojaNaVN6Qeq5AUmsfRaTGehoxfgR0N0bO18f9LZ+/JE+OemiOsPA6DNrEbd1wHUVOufrJqYCQtcJJCJbixdLr3zmzZde/Ew52O6MEXI723t/+ZffPrg2cibNp7PhYNw0IXjCnql6+YMH99umQ246333pS7/Mv/XzL7eLs7CaUupS6Oq6Wayb2XypIgk0JZEEBJg5da6zzhDmoZOu0WbNixnNpjyZ8PQcJyeR08jImOMu683YHYT2AHR/PLwGkpazEzYJrSYGQURCIYvEpBG1UxPGN4a37vQ+dU2HGHIEJQ/OM6uDgimLmkJIAMxoLyqQlCghJzJKlpEokUmCXcTYycQUsn3wwqI268ZYV2V5lhXVRPsfnZ0sKDaceqOhBYNNoiQJfGFyI27c23n9U2+V+VAiGpKTw4cff/RevZ6m0DjrknCRD9iUg/6g6Zaz+bEPKwXd37txcjQ14NeOdN21Bi0RcZb3hlyfnYNxMSYRMIYgRcMSk6y8OW/LGPO6iXWdUuQUOAZwpAfbfeSdxUxXE9necs7kme0tOr+YHJHOEMgnlIjILIoS0BKgCqGE1BqHLsPdvq1iR976hGBlU6rHYJKSKhpymz1uEAQAIOBoUb1yA6YBjMjq8qF65VgfHt0T5P2DF09ny7OFBy66BKddHbJ85HKCloJcG+1OGjo5P4JE2qW5P//2n3wTAv3s13+5aVPXzj54/wcqsa1rJK16bm9vdzJZBh8PD49efe3OfH7WtqvRqIeoR0cnplNmW1Z7vfVykUKn4onT3k5fvAcVNq7p1seT6fb2FtLOo1X+QX1dwCRlz9L6FjGhkdsj4S13tljZEEGzJh4WdGRT21K1bB72BqcHB5LYSsqkgcbXtrCVCSpJ2JIdgeTYik2RKBPWKAmidVympFEDsiXMmElBVFNKSVUQUUiIlciBOsLkTBRNmAnhmMJyOf1o9xp87rPX/vNfrj4+G3u8UdoGzNq3dQ8bGxvuablfps5Q4tZH0xPPq7949/dn/qmqRr9+dPTO2fxZStA03aoJUYQZ26Yt8vGzh5Pz464abCGCQPj1v/0r/Ju/9vOCdjFfHj1+NHTYQ0/NzHSLDD2pdBEnDde8HXt35nzQu/E509+fr9pV44EsIMeYFPHlEY/iAtYTSF0d4qztFm17tphO60N1s/GObm9XTK5pYLnwbSvIkY0CqQIhZgC8qbGSYACcMQVTpmBTIgBDxEioCsawMUxEIfiu61L0cLEVDMREBERkiNngcGjHY2OddyXsX7+2Xvtm1UTNA0STU9NOQVZ5xehgd28nea+SyiIHFd91h0+fnp2eHB09PT46DDGKaFmWbVt3vk7Jv3Tn1d3d6zFoXa+RIaaQF9XLd17j3/6Vr5FEbVfazkroqF1ksc1Rg0oTeRayuY6Hd746vPM1Hb9WbN9++ZVXv/qzbw/GO6fns3XduMyFGHdN7FPU1HaxW8c0adtpvVz5NReLnf1se7dn2FneMrhjaHu9koQLlxmTGeRMMVM0gEJkCMqQRBSRDZJNoofHUzZoGDe1wsbw5bkrSSGlqBflpc8LURGRxFlhWiPNUpru7oxfufPS0eOnk7pKzJxldT0BXLJplKOxNBoMYuxUNfhQ16vgQ4zRGOq61rAxxqpKiJ113KsK56pnT06Pj856/Wowqu7cuV3X/v79R/y7Xz4w3TzTdWmihFpTAjCrAMcxOwvZArdw+JLbernDcX/8wtb2ftesz86nb37msz/z5S9ba06ODgEEksaga982EpYxLH3T+LVKl+VSlIbAWNrK6DrEnV55w3uu/dOiV5g8J9czWR/QBAkpBRFQVGBU1CBeSJb1qigsoaYkABc1ZUTIzLw56xKjaNqgSEigRMQEajla43On4rue613fu/bjh50XBlcEqdfrp/0BKkYfQr+qmCh4v14tUxBJEkOo1+uu84P+0Dm3qahyjpH07HQmiXxIorHxq9def0UVy6LHv/ulYWqnCl2EEI2bR554c9jyvdqeh2rNW73dl4OWvksU48mzx0VmRqPR8eFhVWRvffq1V19+cXJ6eHI2DyJIcbzd62IHqL2MOQYJgIkGxd6wvOXoIIWqaeX0/Fz0dLg1yvsDV47I9hFNjEEkXBwGwiQQk0aB2OsXmTMXxw0kiaSUYowRES0D40Uha4xJFRBIBAAtAYMqk4Am34bUxcKVg73X333/fh0MsIR44nKfNPoukoph07XdYr6cz1bNuolBmroNIaUEy+UqRSGmPHdN20wn88VirQKIYnM8PHq8t7d/+/Yd/nu/8LoW1SylaYJ758u7p+uzWHw8aeeSe+prvrVs4f33P3p8/+PJ8dMbu1u3rh8UzubOnB4/yxmu7Q6/+Nbri+OHI9u9fmsQ61NLqV9WW/3BVlEOstHB1o0bu7cLsxW9my9Wx9Mn5/PH1jR5VVFecTbMyrExGaBsqk4UWQCDqAAqoAKhqtm8paK6OdBBMUYJ3cX5dUAFkCQiQEQRFIAADJJhw8RkLIfQ5vlugt7HT5d5L1+un6a0iAlVGcUzWQSOQUFoNls26y5GTYIpaowaYiRCIpCUiLHrPCLmpRVoo7Te+/v3H/BnvvbFR+v4cNm+f3L+eN6dee4d3PGYQ4yC7snR5N0PPj48Oj0/PTs/O3l478Pjxw8d860b1wa9/OjJAw01pvYaTfbhGOb39io42Nvd3bnWL8bj/va4GGVoQx0wmel0Nlufni7uz9aHRtWnpNZl/a2sGFrnDCkTauKUENGpMpIDtQCWVCzp5tyGMbw5cWqtYUgqQojEDIBJVEQBNLEHZFUDQOwIjUZtY2wPny4/9frXHx6HSLSsn4quM1cVWc+aNJvOU4JeNbSmECEEbtqY55XhLMZU182mTLWqyv6gQtjULWiUBin1+31jHLsberKePZueiXF5f+AjrDsPqM1qPp/rowczbWXk4LW93psH49f2t3dyTvVsef4sLk8Xh3eXT971Z/fWh+87DOOd3Yj5ybRtO4REoWnX9XK1Wq6WqxiiT/7Z9NmT2VF0qJJmtfeJ82zkXImbcwKgSZJPwYcAaEAYVIkSExCxbI5nMGyOvYTgESxRBmRFidltylkRjbHGmlzBJAUgdNZIbDG1ucHRIH/jta+8+/6U+8NFd2w0pKZRE4ltCBKjEhrfpfW62ZTBt21gyjZ1QDEFRLAZZIUFlJC8QBIF58q93T2++aaJyWfWQtTc5kVWet+6zJBxs3Mxvrqzs/vp672Xx3wj4z7EnBP4dT0/i82k1PXINiNckbGHs/Z7Hx794KPTo0nnbJHaZjU9m3crL6kLaVk3p8v50XyyjMEDI0RVatehXbeokVl96JIIGgES0WRNpsqEitQqiKIFwk0lHRIRGyYjWAgWig7QIlkgQ8ZalzkcMJVJWZRU0JLNkEmkKsTI2bXda5x/6uGZTtazbnlYZQCWQ9S2i23rF4t1jKnz3liOMQJg8OrbgIRFkaUUjE0AyWUmpshkDDtEw8bw7dcOIFlHlSZu6xgjsMmbNtS1LE+XN4bjW0PX545iF2LyMbXduo2hHA5effVToDo9O33w8YO79w+fHM0W69h0osBVWXWbAr2QIpgW+KxujmazJsYkoEFKldwSaYxhtV5NY1PH1icflTanAwkpJ87ZOiABUEYCVIVNvGmIc+LSZkN2ZVLqfAIySJbYscmCtyEaEWJyREyChh0CIyhhq7i+defls4mNcWu2OIs6t5xJxOglBokhqWqeZyEEEUE0vvNEaBxai2Uv61d56LzvYu4yQrTWdO26qRd8+/V9EAJBUkwxAaEPPi+qs5Mmi3K9tL20snEdU+widimk1Loi3792/cO7H334wYfn59PVum2i9ZLVAYKQT+JjEE1BklfbAR+vlk/msw6FjSld3rM5ShJVkxlRCSEuF3W7TikhWQBUIkOUERfALKCASqSb/58IyREXxBVxmShXdkAWyCoYBQoJuqComQLFJJvoclPRggiiC/CBYMHcvHT7Sx/dDZGz0+lhav1mVUkVRJKIMONwOGwbv1qtAdQ6QySICQmcYUjKRFVZ9vtVkdu6nhuj/OrnD5xlkIgamUEhel/7IOsZjwz2pTbdEnwICWpRn0KITePDk2eH55N5iClGCAmaaOqIUSkIBElt8AkxIrbJHs4W07bBwlSDcm97/MqNGzd2d6rxVjIZZFlk2wStO10uPZHJ8pRnhhgRHXOObJVQNaIoEiuyqBVwgrlQIWy9iABuTnyKomGHyJ1vkwaiFEMbQ4sIRISkQDOSkfiY/Elm8/H4taMptCH61Sx0Aopd57MsG40Gy9VyvW5CiAjqMksESTyiWsu5M8wsKSmk0aivEFXjcNQ3bbeo8sIYIUZDVkGTpnodyBvgEHTtYxJ1UbRLnWBESamJAqRKSVSSikCn4hViSlFSkphSXEePCF0wSnr7zotb46JgGRk+6PdytqGsbmW5Ik9ns7OTZ7OTZ127Ms4aAYjx/23rzXrsSpI8PzNz97PeNXYGt2SSSeZa1bV0dQtCtzQtjDQfQNCrHqRvJ2GeNJIag5YAlQbT0nSXqmvNzKokM5NJMtYbdzuLL2amhxMRZFZ3IMAIMICIe+y6u63++5OQsI8xY3Do0GiWFEUQQJWozMqgLiVjDSqhRRIVZSZjUMVlGZoU+040AUQVaRvfebFOjaEcxiSFNucqv5hi+a9/9jNjup9/93sfg8lQUeo6Wy63omQIR/Ox9z6EKJyyzJBBFo4plGXmkKLEk7OTalSQxcDe3P2gIkVDdnm5SkFjBFGj0bYnobTRQiDMFEsGwxhYUkrEAsLKIkk0iUbRHjQIJ0lRUhJOAEEhKgbKZzuzjz94tFuZQppJJuMKi1KhYONclo+tq4usyEwsTLc3tbuTrC4RKZIxCsQqSGrIEmSAVoDI5EoZuYLBBG4RmQjtwMAQBhXQpAQDWkOi+J6DNyG64Iu2K7aRo3BsU2r70HfleL6zf/dXv/vtarUmQ4m57VtWyfJyqHSqSl0XZIElzmfTqqqck7LKiroAgnWzjhxN5nrfm/tPdzJbZlQ064Caq+Srle82YrYym1hCJlMjjIAMYCvKLE4VRFVAeVjWCgE4QkqaWDipKBlGgy431fi99+6/dzDP/LqGflxInjPZYGybZ5kkt7zcxHZzNLd39804D7klIi/ggQjJKCI5JDUIOVnLooLIgIpW0XDaqgbhgMAWASRx6DiGKKhKqefQsqYcYGzMzNoDgHvengVYGz+WDTbNYtWv9u8+8jD+3e9+O5BmgFAU+hBFEqIiKqAOrCsyhEhlTeQgJI+WXO463wGiAJhHn5QxSGLnsrLv29JlFKm73M5LW5WZCqoiK7MkUUhKSTGpepUg6hW8qldNgizXELEbJoOzJk9m9Pjh/d06lbios7YowFgraByAdi5tUgX+3h4fzWSaGyOw2p7G2EkKBGIJUdSCFQC2EBE7hiRO1HFQjcoqKSknBvVAnWDc9io4pTbrrtabxXnsPZg6YN2A2zL66AKTcAlQZlWp2Ks/S371/qc/++ObV6frxvcJu8SeIzgAKDNLziZgcmQcSeqLnBT8ZDwp8zFqXrhRiiLKxqB5+NEkL8YpYZJkDBQ29xvZXLUH4woUYki+D4k5cQpJEksSSSJRJKom1aTKCgiGhvtuiGQtmczYoizHU1f98P17h85n/fkEQsmaS1ZAjmS7rexM5vfuTAiW/XZBkl2cty/fXDRd6vokyoObdhbQgACoIGEBkmuwqdXUSGy71AabFEJL0iFL4WahzZqFNtt1168YNGGu2diT60QZkgJygsSMxiQv7artG/A6+/jHf/GL337ZbvtR5kbjnAq0hjbrjRAUVWEcuYzyzIAmBHWu4EghQPDsvU/JA4q582SHTMGqVWVVYwywXUnqaJoBJ0mJQ4ohpSgcmANzEmHRJMqiAiBDoQWUUJEQjSGXu2Jk8yok3ZrNw2cHYlZkW6HYg0SbQV5Kx7uznXt39zit1pvzk5Pzly+Xf3y+OL2UbaM+YmRNksgIERtCYIJktCdpLfYZ+XyS7ddA3cXaXzUmBIrBqVXv/EYTzoLELq6CBnAFFhMPORtrSgAz3LOH9VW/XkroqxRGsaPD4wcP3n/69TcvCdW4WJSprOqUEIkSRyLJHNVV5hxV1RjB9T2LUF6UbdsioXWZ2X9YZblDKwKddQBqlpcB2NUoLBJiEsQoklAjKA+lgqGCgKhAgAbROARrjM0LW9bkisbzdts3bf/oqHj/cDSSboZSstgAFJCimU1393en2/XJ6emLk5NXJyfr84t+3WiXXBvEJ+28+J6ZJXRJExi2FDO/Ar/CnKclzmfVkWPu1+3qch26ru87YzKESrW67LSNK88LoSDWBnAdC+a5yadonO/Ddt0J26LYy6vDSTU3oX118urZx58w2NcnF6ypba+8l5gwBl8WWZEZgGQNzGYT1KzvEqgdj2eLq2Xbd6o6Gk3Mgw9HSADARJxSyEzZbsVvfY0Yk0QVBhREBmBA1qE6ZQRQFBWIyFjrnCGX566seoGzq1XXhxBSkWX/5gfvHzszV5kDlR6w0RrLnXIWjNlsz1fLN1eXp82m7zsUdWiMyYkMJaGUjO9RfOa32G1j7BLGItNpJiMHo9JOJJnLy1MFGk935vv7y2YTyUE+23ha9ivGJskaSRWzPoKtiqyoiO5byrebzdnZKZEdz/ejKawzmWldCSH4px/96PM/vFqt29CH4DnLMkmRlMd1WReZNVgVZeZGeVYa4169PskyNxqNnHPT2dyyj8tFW48m40ldZQ45zxxcxc0WrIiKioACoiiKAqARBIEBmkYG6ToItkYJz5fNYttEgcxaQ7I/n+7fOTAYYsKLnony8mCKebVm3TYrSVcSNpBQfZYbayoogIOkpEUXbAzm/YeP7h0eOE3ffPO7k80mP3bFKB+N5wR502xW61dgw2g8Mrm1BWTj9aJbwLQK5JKeYuo1uW4LUWS0k1sB9h1Z57nXpOPxWAG3zODy88Vyv3LT2lpqCt789X/2F//T/7Lwsa0LVU3W2srYeTYqi8wVRgNLplmWb7ZX43GRFUWWZ72n6WRqC1Nt+r7nyvFsm3zq+9VFHzxsNAyUDhUFvcZ4KKEQGjLWOgQkIAAkMraowbp22SZ0QCIie5PR00f35XQTkzcWLWaZzbWDbdt1oZciIXAKHHs0XGaA1nWCoYJq643a4tkHn86nu4WBaeVYZHl1lbhermJuI1J6+eYla7p/936Z1Zxks+6aLfqUJ67AVCiMCdO2zM2d472H2bjqdNX7PoYLazxKa41Ukz02k8+fL754/uZwXv71R7v3snT16otnj35UlLDy0VgsyJWjsspdCRY6RURBkzQhxcOj/d73Xd8D8Hw+JUPm0XvHfZP5pl5f0WoRmlVEdsGnyK0iiiqLqCoBEiIaY7PMugyRVJFFOOl4PN49ujPa2ds7OhY0Xdcix4I0NOuri9Pvzi/frFchc6HIVpC6jLhyDpPENrQtBIdSIIIrg8uhXZu2kSdPf4iU++BTbFbLk75PZKYGMgKz3W6/e/PNxfJk72hWYFHZelSOQ/SL5cIVxXR25OyoW38jATCMHB/U2d3xaE+Re79VEklXBC2AghmpO/iP//D1b59vNN99sFvslZJlLpi8xXSxfZ0bmBZVYUxGJvZeRUNIITI4YOW6LhU1RD+bzVi46zpTlB/EUKQA3vcpMSAqYtAYuA8igdkLJ1BxBJllcmKKqNRG3vS+jamezeeHh+P5LAlXZf7k0cPjo4MQwmK1XXbh27Y/4/xcRm8al433qzLPZFtDW7ReNo3pe8u9gd7lRKZ+cW7+03l1cHj3cFJrv223q81q0berhMyaXGJVebVdfv7m1eHh3V03iWpZDPey2bYvXr+o5uXOtCLfXi2vfGs5jMp8F4iUfNcvY0xQ7vi+qQokTAAGqLpaxTdvNrUrP3xsJvV5pm3lJmV954tvL4q8zG0GmG+3qWnDum26uBWMWGR5WYponmXGoErq2k0KrZlM7rFISkmEByzhADA1CHfuHD9+/GQ0GiNSjElVkZyCYRZAtM7tHxwcHh3Vo1GW5wAQQzBEZVkeHh5Z55q2q0cjcrmoFcbNejWt891Z1Tdr06xD3/U+ii1TMVvi5Devt19e8gbL+bjKDXgfNm2/WK1m43FIsfcRozRt/+LkDRXF44cPCzCMqhqV27PFi0Xz6vDuzJGcvny53XBoyOh4XO2lkHrfhtRZZ6iwRNFmgMaArRSr+ezg6ZP3P/xg986edsvLi5NwvqDdew+fv/mcMGlgTZoSJ+FNuxbL1ayKKnmRt21rrUGCptn6vo8xmNn8bkoxpcSciMhaowqqEmMcT2ZPnjwd1ZOyqDJXZHmZZUWW53me13W9u7t7eHhYFIUxhsgQGeY00FCYeWdn/tFHH/3gh5/GkM4vrlLitm1PT19vu1bJ6HbjxQRbX6T8qxX8+tR/66sFVL0k5YCoTZ/OrjZ5UdVlqQIhsDXFxdVq1TYffvyhIwxdmySqdswXp4s/zu+UDx7defGHL1en5ymMHYzVO4els5mx4GMjGqztXUb5qMKyRlemhJR0VPC4Wku/uDpv/umfTradPXiw3/NJ7NsUwPsQQkSDidLund0mdSwMiMYSEjInVY0xppgsD/0hAGttlmUAEkJIzC6rr5abzabPnM2L0XzuAJQ5sfBw8zrLsuH+9XDj0FpbFCURlWVZVXVR5FmWEcmf/+Snm2148fxbVA5RNl+dfJXDgUnGuD7yNqrHqqOy0SwCWkznnefT4NB0Tf8gq6YRSQhteeX9m+XV/tFBbm3fNRg8YU6Ftv2ZK+OjJw/OzhZnrxc5WyDOS8ycXa0uXE9uJFftaTHWqQWHIzspopDLihpM5zurIP1GYleV2f6dsRquczya7i3O1x0l1SSaWKEYleV0tF6sJ+Mqy21ZFsN1wSzLsyxbLldmMr0DoNaaPM+IKAQfY1AVZk3MxtpRPVIFa60x1jprrcnzwUZvWSjGuDwvRqPxfL4zm82rqsrz3BjLzDHyfGf3/OJi0zRKxEBe7SWXC87XkndURMoCK8uA3QFQDiku27BqI7MUzhqkoHC6Xq377v33HtXWEEeFROoMpvXmzcMPHs0PHv39//vl6qK3YMgViRMQGAe2hGV3frF5Q7lY7BlR0ARWIjfKS0dkmDBYC96a7XRGQnG2e7Rt7GKzafoti4aUAsfJ7tRVrpqUubPX9HK8Rt92XW+MMbt7D2/RO977GMM1P5wIAUIM9+7dM5ZuAB44lEWHO9fD9fW6rmez+Wy2M5tOq6qyxpK5BgOkFFXVWXd0dHh2dtL1PZBNYHtbJ8oT2aTIwsoRJaCqknGkkXnjI5MVYfFtSmEVwnm7VWvv7u3XABkqkRDgdn26u189fPrx//e7k5///VfCOKpzU2Rt8Mv1po2+VX++uWikx4wMSNN1iNA1LYrWxTjPS+fGVor1+SuTVvMR3r13p5gcrn3diO952/rehxgl2cxWk0JRheMAcIsxeh/63jMrAJmH731snVOVlIbsWQbomxKICqd4fHzn7t07AGIMZs4OK7EoitFotLOzs7e3N5/PJ+NZnhWIhEiqIEOBKDEAxpSYY5G7g/29N29eJxZEImADgiqqQ7v0hvtFFiQ1XcvGibFFZkoHfdctum6ZAhmzX4/GIjZFgdR1lzZrnnz4YOP13/3dr6LWO3vTyRQZ8yjUJ+lYtiEumjZZJ8Y50hQj9w3GHlgQc7W1zepJkRcARUiZgnF5Nj/wefXt4tXWr2LiJEMqzGQASUUic2JmZokxtW2fuTyEYCazO4DDCJJzzllnjbXGWiKjqgMI9r33HpZFWZbF7t7ewf7h/v7B3t7e3t7eeDwuy8paq4AAyCwifIstHMAehoYRUK3rejKdnJ6cCbOD1iKDMqiIggIpGSSLKsF3oqJE1thx6QrUlGIr4kG899p0WWICXrebvr94+vRgfnj4v/2fv3zxqrNZPZvYOgudp6aLSW1Cu018ud2yta4oSJImj6kX30lIbQ9BCmOclX5k64mdHO8cF+UIRvVF8mfbRRdaazNQSJz64EPoyRCnSMYgYPBRWIMPImqMMdX0KMnwMNeZH5BFdE7zzOZFPgIwuzsH9+7d39s7rKpxVU6KojYmUyDR6ybe0GNQAEACpOuaKJJBZ8g5m2dZaW0+m86cdSenb3oDrECAkJIRxqHNZrALMTE7MhXIjsORAUkhqAZAZVChTYiXKV5xOm/7R3fds08++8039O///qXYYpLzHOJMsy7FXmSjujV2kfoOIkMUZkuFxoghusQmCvYOWucCGiUdH2fze7FN2PeJ6Kur1VXfEQGQoGXW2PYdJ7JYYTQaMXpGQGesHZ6tKk01PtCBso1orbHGkCFLZK/hJ5xizHP30Ucf3tCUhklmTWmYbEqqLArvsqG+B7MgGpg1eZ5ZZ3f3dlTl/OKMBJQ5xaRwo3KCGPreADjE+WQ0KnNSkRQFQBHkGsGrMYam21aj6ic//QEWu//2b/+fyzYFZDHBY+K8SFS2YqKtPv7Jzx5/9MlivWl7nwRjzyBglJQhz6dZOVWT9cGjM9PDoxDjanG63i5XpN/0veYWlJ0z3ntVRTB951WRY0zMhDYx+z4Q2b7rirI05WgPVFRFhlNNEjNzihyTKqsyc/K+Pz6+W9e1qvi+izGI3LRnJAEMRAB6lz5zg9oiM6BuzTCliMypKovQd1eXlyqKADJ8IQohWNVxVUzrsi5z5agpgg6aMINABw7TAIrwo5/+6OknP/x3/8fff3u6sVVNpcEyn9591NlZSFTtHP/5f/Gv/7v//n/8y7/6m09/9BObV+um61qOgbqGESoWR1luCqsOtj4EwmJSj6fjYja+At0WRT4q+2bjQ39NIzOGyDTbJkWW4bhCWxSVtS4vyul0bjkFvgbVwjusRjV6w8MDXSwWv//97yeTCaEODj3L3LtCL8PY4UBXwBsY2jtUC1EFZvah977zvn/83qO+ab/++mtRJSJBKIviwePHHz58CKqf//43/XbLA+scERUMgiAO+jyCuLu798Enn6wjn12tRuPRdL5/vlpCXh0//s9/+uf/1V7hDw4Pdu8cu6pOpA8/+LP/4dlni4vT//V//rf/19/+ey/r86a96vyFv6zblc1douybZlO9fH7v4Oj4+Bjme+g3i8sTFgkhDkNFmZOyzOMohSYpmvWyIWNH4xqtTqcjADTVaI5D20p4WJUirMJDR3xwVoiwXK6qqppNp/gW5zMwCNEYg2TfRevdBJWGAK6nyIBTil3XxBhjCIZwNp9fXF42bWOsfXDv/k/+7EcPj4/bi/Nvn38Vu1Y4EOiAk3srdUAIiET08ccfffLJx8364vlXzyeT3devz88u1qx105az6Qf33jvKRlN0hZAZyn1oXFGNP3z2ydVq8/K713ldjXamnGE+rSeHd/buPrj3+MHxe/fmd+6krLwKvuM+hc53XeI4KOGkxMYYUZEkQyg0XDADEDR6dnFqymoy7Ot3P0EFYPheByhKSmmxuJqOp9PJzJA1xiKQAiASoTXk/gSrck33GQZlEVKK3ndd18aYkNA6lxdFNao3282nH3/y8dNne5NZs1i8evFl12wJNEWPw2YY4LvXEylkiEZl9a/++q/3prNX33yz2fRtb16eLbchBtYQMAaeHUxnu3tkrDVGRIL3KUZOEkN88N594yBoPzuaf/rTH//sr/7L/fuPdu/edyWphYahE9Mm32wvQt/WVZk4Mseh7BBiRCRlDT4pELMaMjt707392Ww+MtVo+o5MwlvhH0AZrqwgDlwuCD6lyMd37lVlNZQdQRGQDFm6UaYakmu9kUQaqO6q0veDEaOIGENqyeWZsebDDz+8f3w3A+qW62++/DK1K9AknK5X+zUwVhAGJS5DSPs7u3/zV39VGPfixUk9u/fNaduSW3HfhiXrFnWrtrh//36RuyKznMJ2veraJvS9D/3V8tTkcedo/OTjD3aOjm05awJ6jkn6xm+Lyexs2Xjfzmvqu23TdolDjAEQUkohROZkkMjYGFNK2vvOx242q1xBph7twM1oNdzI1eCtjgW+PTdFpdk2eZ7v7x8AABkahEiQ8BbQBW8Ro8PvEgBl5r5vvffDSDKQJubVdsOiVV6sLi/PX7168/WL0G5S8sIiN7JZN8fvUEUmi5Qbe7C//5d/8bOr5TLh+G/+zX/7/M3l2XrbcR/iVrlV3vpYjcaTw8O9UV0iCMeACNbg1dXr129eIEU0kldF04XOJ+NcSE1KzbbZAJmYUvDb0mpRZFfLK+akKikl7/1AWjZAqpCYffSqKS9MUdqYelNW82u5oLeSKAPiG29kVN6uUxG5Wq7Kqtg/2FNUGEaLVIVF5e1jEwEN4hAIqjoo+Aw5ogKHGLbbddu0ZVacn5z+8fPP+/UlhK2kPgqI3ryQa8ETBQVCdKA5oTP06P33P/j4k5cXF08++8v7Tz4aTWd//MNX3ablECVFlpikFtGHD+7vH+whalFkWWaulmddf1KUdm9vr2v7qhxJ4qrIhBtD3XK19L3PnWk35yk0F4vLtm/ywjbNlogGOJcIAyhHIUMKSTTVo/zBw2PrKC9y47LRLXYL/qWPP1FM8D5stuudnZ3RaDRUyVQBVPBad+lWCQyGtRlj7Lq27/shVEopdV13ubgU5sXF5e9/+1sHmhNoCMJJAAe3dkt4vn5jEAxg5mxdjT/48OOj+++dX62Lemcy2T08uvPtd9+dnL7xfSscJAVBG1M8vnP86NH7IEKGLxevTs++ySwl5qqqUorGmM1mjagp9ZvtYnG1IIKua9u2GY9rEe76ViSFEPQdojIzow47D4wxVV3v7u50XVtUhXHZ6F3/8C466nZ9ff979L5v2+7g4MA5d6ugYYiISOEtrVVVmdPgXlKKCjJo0223m4vLy7PTs5dff105uzedSPCaIoLyrWO5foMUbgIei1i4rKyqnYM7u3fub7xuttG4bDydh8hffPF5225UIoBEZTLm6QcfffTRJ0R6tTy5vPp2NDKS0FpblLkxNoQwJBHMIctpu91kmQ3B933LzIgaYtf3HSIOaNZbMmj0oQ8eFIuyLIvSWAvX18veUZa4dq5vWdd/YsThg2MM33338pe//GXbtJwU9C20/hYByczMnFIMwacURTmlGGPo+65ptn3n2+3WqMzqSnwPzHQtvnJjRIRbpSe8npqH3JpxNRrVM8Xy+MGzpu02m/UXn39urauqUeZyIktorcWicEWRGUMx+nqUZzmMxjmiUcUUBRHadps4ijJL8r6fzSYiEqInwhh977sh0Bnwbre4wYE/DyAxhcHzrFbrFHm7bekW9PbPtvO7/3n7ZKogSJBS/OKLL377u9/3fVBFfcd2N185xsGIaViJKUXv+7bdtm1LaCxR4UzpDEmiYfoPAECv2T83K3HocFjCwtm6KHZm8/Pzq5//h3/AbLqzdxBjXC6XXdcRWURL5KzJDZW7O/sh9Jvmcrk+6/tNUeQpSdf21joFWK3WbdvMZhMR3mzXFxdnq9VyPK6n00mMwViazSa359K7xx0RlVUxGtWZs8wCAE3TbrZNlhU2hDAIX75rOPw+hP3trxqwUaCqmlL61a9+jWA+++wHRW4ARVVFeSj5DG46pogExlAIoiq3sRgZE7zfrUtIHjmqDAJMMAwvg15bExFIEVQJNHd2Wtfzyey7dX+2XLx8c3W8dyDJ+9hfnF2klEQAhKzNR5Pj+fxoNKoAO6Teh4DgirycTjMiFJa+77dNc3z38IZUKTH6k9PWOUKEzWa93a6dcyIcQrhNc621xhiQhEQApm3jZrMpqipzNkU2qs7cJsBw6yi/J4Xyzroczi/E4YkFLy8WIrC7O0PQAbk3nMfDhUqia4GLYVOnlACEDK2XTbtZ74xqq4zMytf6U4J8k8AMfwsQlQAyg9O6Oto7mMz2/unzF9FNzHjvwfEuqqCx//CPv2y7fnl1qRJn0+nh0UfHx3d/+uef1iPMciWEvkuWylE9yvO87VpEIcKyzM8vzrxvjRFV2WzWfd+JclFkfd8N3arbx79FhBJeu1UfUtf5xEJESGQBYgyNszWoITQqer0S3kEHv8UIKwDS8IgIyuxD0t/+7pd5Ac+ePh1GqVkkCSMqWTKYi7CIDsVNAHDO2hhFLgZ+vCEc7q8KqCiyqIIaREJUFQRANEBEmauKejwaMfJ3F2/KbH61XKqSim43m+dffTmeToEwq8ezg8N797P/+r/58dNnD7q+AQ4MvnLSbVZQ1yF4IgghTCbjpmnyPO89Li4XSLizO92sV7FLMQKAsrDEREgKjIRECENdixRQjIOqzlLirgucGAQsGY4xhYB5XijcytGhvuNh3omKBvlTAAAFQUKR4EP89W9+XdX1vXvHPgQiAAQkctYQKKhV0ZSiKiD2Inbw7ypCgBwHLVlRVFEUGGq+AKCoSggGgQwUBuosyzN7cnW59VvpVtytCI0rR7/++X9QTSn1RDiaTOe7e59+elAVXdcux5Pdvu1RCEwcVcW62VpnkcD7PsSEJDH2KYWub0TEB1sUWcY2BJ9lmffd8O4aM/iZ6+BBQMiARRKRqs4IkYhSSNZaChy974kGmUqDiHoTVeNb3/3Pzkp4i1Dfbje/+MU/xPjp3bt3icA6S4TGWEsIOuxZHZxdSklEU0rXG1mY8FowEK73DA8nsAGxhJawMnFmeVY5JPv1m+88SxHbXFtrwRbFH55/1fs2ph417s3HP/7BR3f2jJHYrhcqOJvtBovBaAxdWVLTbhC5LDM09PrNN+fnr/f354N76PpGlbMs7/seQI0xSNdU/uHV3jwzicpw3Wk0KvJMYuAQ4kButilJCB5zMjSsRwX8nobzuwTc7x2YODSs09XV4h//8R/X6/WTDx475xANGZs5I8wiyszODZU033W9DwEIk7A1BCxwK1irqqAiYlAQ1SJmRKXRUeHUmNMm/OF06W1RjKrp2K3Xlz//2//47cvnVZGnGO4e7eWUxgWGzToV+cH+cRv7zrcKQFkxqqr14hIBXWb7q3a5OnVOI7chFjFGIhqPxpvtmjkNXpQMiTAADIoJ33fCgIhgUASMxRgFUI3LrBnu57EAIBk7JIP6jo7ere+++RfehbfCMEiqkjhdXS058Xy+k+dFkRf2WtHi5mwFUNWu6198/Q0IV5l1dC2DJ6jXgY8KgRCqNeiscc66PCvquZZ7X7xZv2oS1OMPP/rw4yfv//q3//R3f/e/lxnuzUefffjkL376w2+++mJa5TujrO+9Ik3nO0k1xISGEA2ptO2W2YuG1eoycpfYl2URQwSAPM9iDCnFIZcdkAO3ccs70YvetvPgRkeHCIx1g1TktcLhrSLp7Xp8u6T/pTDz5mPoMqKCLJery8vLqqrns3meOUMU06BYDQBAZNbr9fNvvibl0ho7VC4QFUFAQQetxiHqNWQt2UzysZS7y1aev7kc7e/92U9/+IOPnjQXJ7/4T/937Ffv37/zwaPjzz7+YDoq69z+7je/+uDxe2hsUijq2liTOG23m7osQfj07LXLTEx+yCZYuGmaGIK1xjozbOEYww2oWt51Dzf7EgBA5NaKSoTGkLGO4DobMddiMkTXBbN3dvQ/t9z397gMphxCpq7tTk/PEuv+7q411lhDZK5TI4XFYvHV8+conBt0Q0B6LSsLBGwMIRkgiy5T48RmnE9adleXy8fv3X325N7RbpE2p0VqpyOqMuF+o7FPvptPRqNR+eXnn1f1eHdvv49hPJ0QUYrBAPiuJdRts/V9Zwy2bTvItPR9nznq+x4QBv3Rsiy977+nm/uOEW6rWUOFf/geEU2Wu+vnR0IYus8yXF95N9H+l8PJt15nmHgeUnocdEMvLs5fv/quLIq6Hr0jLqAxxudfv+DgkZMBMQMkAUEVDDIgsEIUCQxeKIH1mHWe7+5OP7i3269eYVxAe2n9JnNAELtmk0K/3ayvrhbT8aSuqi/+8PWTZx+Sc4HjneOjZrMBkfGojjHEGNfrZT2ql8urmFKWFZv1KqZWVY3BpmlEuCwLREwc/0U73kqTDEfQkDUoqLFZhmhvjAVkQCEJR0IAFBqulwMYIkQFvU4CAQdRaL2JLJMOplAgGqquAIBtm759+Xq52hRlWdaVoiqydabvtmdnpwnUK7QCjULDsElmEYtNkD6Ksivy8XwyfXBv79mDnaeH9d6YJGzKnApDmhiBysw4hMI5BOi7drXZrDfbJ88e//qLX01H7x3s3DX2ajTC6exRkDxA78i9ev3t3v50s10gcozBkK2rarNdMMcYO5YIIL73eZ6P6on3gZAUZKj0CwOCYR4o6SqihHRtRlBjjMXrGgEg4hDDD42Za66/6M2PaDhibz4HC7+tb8BQjBwW93Ut2MSUzi/Pv/vuOx/66WwKSHmR3znYZ5Hlau2HaoEiKwgZJlOWZndWPrh755OnTz569mA2twVFiiHPTAiemTOXgWJiropsMh4zCwvYLFssV5EZAFydf/ti+eT9p2Q3AlyWh1kxVgiXZ2dFkb1+/e10Wq/WSxERhd43PqwS96IpJT/Q+hHNdDqLMYqKSBp8jiqpwpBW31Z2hrxSVQ2+o6t1u4UHyw5XeMkQ3AD/B+XKGzsO43pDKGqJzBBgAw4LngFUVABYlGPwFxeXr9+cBJ/qelzk9ujozsOH700m07qu87wYjUa7u3vPnj74wScP7x9O7szrnVHRb881XTlCVNt13Ww2CyG0bZvnOREZ0hijcTYrqkE0ICUG0FXfvfz24u7de+NpETmNR/uIxjkk0ucv/rC7O3vz5pXLHCKmFBK32/ZMgRGZaKi2qDB434fgh6qj6qCdTSJ/4hVgaF6JiNF39v9teeNG1/l2hd52FwyAvc6/yRgyCAbREF7bd0hDVUWvLxKBarp9/7yPJyfnJ2/OrKPxZJoX5d7+wd7e4dHR8dNnH3726Wc//vSZdFfN4tRJohRDszYQOHJRjL33zjlrbVmWbds655pmY41RxPF0utk2RVkO5aXz5aprY/Dp8ePH1jpVLYv85M1rIBaO5xdnh4f7y9USUVnS5eIkpTVzZIl1XVmbqYAqDm9JljtjUK57HXhjqrcF1ptighpjjb6jL3Fbx0VCGgYn3jltAQ2ARUQY5u/hWnvrdoaPaBADu/47LCw6CKtYY50xVhU3m+b09E3b9WVRuawoyjrPi9lsd282LyS9evGlSX5zsSht4UzmnBuNJ72PdV0PujfGmBhj0zTz2TSkAEjeB2tdURTCyTmrZLu+WS7Xh4f3y1HF2lRVpoLfvfl6ULJdXF3u7My7rul90/stYCQiYU4p7e8dGOOG4WMACNEDCHPS6zEEHB4ZbuQFb7tSxmXuT3b0Wzc9lCNuDH892ABDInc9naJ6XSUcVvRQN0KkYeJAdchVyBjrrBu8dmIOMaxXm5OTc+9DWdZ1PalH43FRtiff9tuLnNi3XZmPY9TlZluPxkNBc3j10+l0s9mklKyjsqq6tu36/urqajKZ5JkjgL7vhbveR5Fq52DHy0XbbyaTPZfBd9+9tNbu7u6cnLwGSFluvO+McQCY5XkIsW3bqqpjjMxirUWAYWBERFWuI+shMrm142BxY51716O/E9zcNO30bYCjN5iXwbHozTE8TLDojSINkR2cPKAOa9Ra62w26CqrCsuA2eTNZvvm5PT8/GK5XGloYfnSd2eZC0eH+5ttu+l8NiqvlovM2uVyqapFUQzLgZkVZIAUOed837fNFgDqqsyNTbyJjBeX6eDeQS+vL65Og6eyylS06zoRGU9GF5cnPrQH+weSzO7O/nq9FmYF7fqODJGhGCJzwqF4oqCAhuywBN+147WfMdekq+/pqOMwLgFv21bDTxRAFZCADCKhMUg0+KzEzKIsoiKAYIzJDFkANWQJjbVukGkyZhC0o8FHiWpKKcS4Wq0p9Tv2inC7t1ft7u8E1i7GVbcVjiiCiCGE28nVPM+z3G02azMIvIsyc11Vvu8za7JSGLKmL7302WQrmEb14enJa2PNqB6fn5/H2D99+ni5PN+smzuH711cnDtnN5uVKCOiMZRnRZa5GGNKkQhVgfBa9/Jd8+lNp/7/B3FGrgwKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iagoyMjcxMgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNDUgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIxMDgyMDE4MzU0M1opCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjIuMikgPj4KZW5kb2JqCnhyZWYKMCA0NgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAzMzY4MSAwMDAwMCBuIAowMDAwMDEwNTEzIDAwMDAwIG4gCjAwMDAwMTA1NDUgMDAwMDAgbiAKMDAwMDAxMDY0NCAwMDAwMCBuIAowMDAwMDEwNjY1IDAwMDAwIG4gCjAwMDAwMTA2ODYgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwNDAzIDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMTQwMyAwMDAwMCBuIAowMDAwMDEwNzE4IDAwMDAwIG4gCjAwMDAwMDkxNDggMDAwMDAgbiAKMDAwMDAwODk0OCAwMDAwMCBuIAowMDAwMDA4NTE0IDAwMDAwIG4gCjAwMDAwMTAyMDEgMDAwMDAgbiAKMDAwMDAwMTQyMyAwMDAwMCBuIAowMDAwMDAxNzI4IDAwMDAwIG4gCjAwMDAwMDE5NjYgMDAwMDAgbiAKMDAwMDAwMjM0MyAwMDAwMCBuIAowMDAwMDAyNjUzIDAwMDAwIG4gCjAwMDAwMDI5NTYgMDAwMDAgbiAKMDAwMDAwMzI1NiAwMDAwMCBuIAowMDAwMDAzNTc0IDAwMDAwIG4gCjAwMDAwMDQwMzkgMDAwMDAgbiAKMDAwMDAwNDI0NSAwMDAwMCBuIAowMDAwMDA0NDA3IDAwMDAwIG4gCjAwMDAwMDQ4MTggMDAwMDAgbiAKMDAwMDAwNTA1NCAwMDAwMCBuIAowMDAwMDA1MTk0IDAwMDAwIG4gCjAwMDAwMDUzNDcgMDAwMDAgbiAKMDAwMDAwNTQ2NCAwMDAwMCBuIAowMDAwMDA1Njk4IDAwMDAwIG4gCjAwMDAwMDU5ODUgMDAwMDAgbiAKMDAwMDAwNjEzNyAwMDAwMCBuIAowMDAwMDA2MzY3IDAwMDAwIG4gCjAwMDAwMDY3NzIgMDAwMDAgbiAKMDAwMDAwNzE2MiAwMDAwMCBuIAowMDAwMDA3MjUxIDAwMDAwIG4gCjAwMDAwMDc0NTUgMDAwMDAgbiAKMDAwMDAwNzc3NiAwMDAwMCBuIAowMDAwMDA4MDIwIDAwMDAwIG4gCjAwMDAwMDgyMzEgMDAwMDAgbiAKMDAwMDAzMzY1OSAwMDAwMCBuIAowMDAwMDMzNzQxIDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gNDUgMCBSIC9Sb290IDEgMCBSIC9TaXplIDQ2ID4+CnN0YXJ0eHJlZgozMzg4OQolJUVPRgo=\n",
+ "image/svg+xml": [
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "exmp_batch, label_batch = next(iter(data_loader))\n",
+ "with torch.no_grad():\n",
+ " preds = pretrained_model(exmp_batch.to(device))\n",
+ "for i in range(1,17,5):\n",
+ " show_prediction(exmp_batch[i], label_batch[i], preds[i])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "fx1eYZPetrGN"
+ },
+ "source": [
+ "The bar plot on the right shows the top-5 predictions of the model with their class probabilities. \n",
+ "\n",
+ "We denote the class probabilities with **confidence** as it somewhat resembles how confident the network is that the image is of one specific class. \n",
+ "\n",
+ "Some of the images have a highly peaked probability distribution, and we would expect the model to be rather robust against noise for those. However, we will see below that this is not always the case. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "qVcl6B3QtrGN"
+ },
+ "source": [
+ "### Fast Gradient Sign Method (FGSM)\n",
+ "\n",
+ "One of the first attack strategies proposed is Fast Gradient Sign Method (FGSM), developed by [Ian Goodfellow et al.](https://arxiv.org/pdf/1412.6572.pdf) in 2014.\n",
+ "\n",
+ "**The idea is simple**:\n",
+ "\n",
+ ">rather than working to minimize the loss by adjusting the weights based on the\n",
+ "backpropagated gradients, the attack **adjusts the input data to maximize\n",
+ "the loss** based on the same backpropagated gradients. \n",
+ "\n",
+ "Given an image, we create an adversarial example by the following expression:\n",
+ "\n",
+ "$$\\tilde{x} = x + \\epsilon \\cdot \\text{sign}(\\nabla_x J(\\theta,x,y))$$\n",
+ "\n",
+ "- The term $J(\\theta,x,y)$ represents the loss of the network for classifying input image $x$ as label $y$; \n",
+ "- $\\epsilon$ is the intensity of the noise; \n",
+ "- $\\tilde{x}$ the final adversarial example. \n",
+ "\n",
+ "The equation resembles `SGD` and is actually nothing else than that. \n",
+ "\n",
+ "We change the input image $x$ in the direction of *maximizing* the loss $J(\\theta,x,y)$. \n",
+ "\n",
+ "This is exactly the **other way round** as during training, where we try to minimize the loss. \n",
+ "\n",
+ "The sign function and $\\epsilon$ can be seen as gradient clipping and learning rate specifically. \n",
+ "\n",
+ "We only allow our attack to change each pixel value by $\\epsilon$. You can also see that the attack can be performed very fast, as it only requires a single forward and backward pass. \n",
+ "\n",
+ "Let's implement it below:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "id": "K1Pq16vdtrGN"
+ },
+ "outputs": [],
+ "source": [
+ "def fast_gradient_sign_method(model, imgs, labels, epsilon=0.02):\n",
+ " \"\"\"Fasdt Gradient Sign Attack\"\"\"\n",
+ " \n",
+ " # Determine prediction of the model\n",
+ " inp_imgs = imgs.clone().requires_grad_()\n",
+ " preds = model(inp_imgs.to(device))\n",
+ " preds = F.log_softmax(preds, dim=-1)\n",
+ " # Calculate loss by NLL\n",
+ " loss = -torch.gather(preds, 1, labels.to(device).unsqueeze(dim=-1))\n",
+ " loss.sum().backward()\n",
+ " # Update image to adversarial example as written above\n",
+ " noise_grad = torch.sign(inp_imgs.grad.to(imgs.device))\n",
+ " fake_imgs = imgs + epsilon * noise_grad\n",
+ " fake_imgs.detach_()\n",
+ " return fake_imgs, noise_grad"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "pLsaCGgdtrGO"
+ },
+ "source": [
+ "The default value of $\\epsilon=0.02$ corresponds to changing a pixel value by about `1` in the range of `0` to `255`, e.g. changing `127` to `128`. \n",
+ "\n",
+ "This difference is marginal and can often not be recognized by humans. Let's try it below on our example images:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 961
+ },
+ "id": "lyUzO6ZvtrGO",
+ "outputId": "9c9f3e37-76b2-4479-e63a-08ede1ffe7fe"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDY4NCAxNzQuMDEwNjI1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSIC9UeXBlIC9QYWdlCj4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nNVYTXPbNhC941fg2F4g7GIXH0e7aTzpoZO0mumh04MrUbFcSpxIStz++y5IiQIl25OmHHl8kEg8EYt9j4vdhUDfq8kV6I9bLV/a6nv5POjf9R9ynQt2k3FlZbRSPpJc6/YKgYwF65EFsMPhnVIL9UkHg5qSQUQIPiCBTt6g9TF5Zggno02lf9NrPbnCzpl7+bSOqOyIFUcmb6ovy1n1y821nm3Ffgo6+yWX85VmKz15B/pNoz+oD/rTwaw1wEKzsN7SbOGb/a/qeqonb0ED6ulCuWgcW4cOAycNDIYw2dANp3P13a5az+6+19N7/eO0XQrQG+pIZU++UQF15uOzCjy7aCsGjiAGkDURbHKBH5Piav6l2mxvN8vbuhQEiU1IDqwjiu5Cgjy7aCuIG0EQDBJ6FAEIs91HNPm5WW6rgxr7nWZNEk8oWI7xbEDJQvI2RL0534/CWX31bKUoknHRow2a0IiqeX/KPg7exAKp90h238c9VMwd4O3mzqL1D+T35QtzkNAQuL36Gmw0Ac/290+dzmqYbIYv9An/n3JN/frNbxPy26Qo4X1khGy6jJbfoy0j+gLUmUgi1tkUB9QLeFTq7EJnNwRv3ZA6Xpq7t1JMOKWYhmF7hMflnkJnV1jJJh5wp4tz986I8RhOuB/hUbmL/b1dyrYH3H3PfZDzmGQK2wSccmZNJrRP/9CsF8u5FMPqwoqV2UCqNdtA5PosV0AjJAgvaHQ2QssGnKwsJYDZC9KqUC12L0gfgpQDz2Kwp3+ERqDvpLyFlLhjA+BMcNIMek62q3Yfm3q+WG7vXk4D2csOB3XuiPx/BZw0KCS97l6B5AwQt+1QZj9rVqtmrdfVwwsGgXAOjgL4XoAjMkYIRMkQdAiBgIaZLUaSfNBqcPt3Uze7+uX4S0ID8VLuDvyPyAj8bTLe9wEgqTh5AhAGEVv+m2b2l/6zuv28+2csDaTjwxStSwgs/a2hrt1DxzLwh4aPcr+YWUDr+hMz1MmMQY8IktlDr50Pxrs8LPF6gDtZJ4jLJ+1iAUu3eP2KBJBTFDBG6a6k1cJoZLpHKPF6gOdoiBbCiQAF/MoEsGzYQ26xRAArjwJLa1jidYnHZGxM6GEoQAm/LgHkLrWhK6eMJLOcc4mOaF2iPsqROzrGIfkSfl3kfb7LYZuPWN4wQp7eo3WJkvQVh7aqPKYVcE9+n20xp3IjnB9GOeqdnmJXj51i5bmvPgQPny3MPGXZCqH//p8Bi0Y+AErRzP2ziHkwmuvH+001X852y2a97euH+hcLBTERCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKOTY3CmVuZG9iagoxOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDg4ID4+CnN0cmVhbQp4nDWMuw3AMAhEe6a4Efg4gPeJUpH92xBbLrh70hPnOcDIPg9H6MQtZEPhpnhJOaE+UTRabzq2SHO/vGQzFxX9M9x9he3mgGQ0SeQh0eVy5Vkpej6X2ht+CmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzIgPj4Kc3RyZWFtCnicNVE7cgUxCOt9Cl0gM+Zvn2czr0ru30awk2ZhAQkJ5z3YiMSXGNId5YpvWZ1mGX4ni7z4WSmcvBdRgVRFWCHt4FnOaobBcyNT4HImPsvMJ9NixwKqiTjOjpxmMAgxjetoOR1mmgc9IdcHI27sNMtVDGm9W6rX91r+U0X5yLqb5dYpm1qpW/SMPYnLzuupLe0Lo47ipiDS4WOH9yBfxJzFRSfSzX4z5bCSNASnBfAjMZTq2eE1wsTPjARP2dPpfZSG1z5our53L+jIzYRM5RbKSMWTlcaYMVS/Ec0k9f0/0LM+f5owVEcKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc1ID4+CnN0cmVhbQp4nDWNsRHAMAgDe6ZgBMsBE/bJpcL7twn4aKQXHMjk5sGesnSwTecH9OekTfNCUZCqMNB0Zn1xaOQOVg4XXmhKr4roz0HvB5nqF5oKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2NSA+PgpzdHJlYW0KeJxFjzsSAyEMQ3tOoSOAf8B5NpOKvX8byztJGiyMJT+iKzr2ysNjY8rGa7SxJ8IW7lI6DaepjK+Kp2ddoMthMlNvXM1cYKqwyG5OsfoYfKHy7OaEr1WeGMKXTAkNMJU7uYf1+lGclnwkuwuC6pSNysIwR9L3QExNm6eFgfyPL3lqQVCZ5o1rlpVHaxVTNGeYKlsLgvWBoDql+gPT/0ynvT/c9D2ACmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMDQgPj4Kc3RyZWFtCnicPZI7ksMwDEN7nYIXyIz4k+TzZCeV9/7tPjLJVoBJiQAoL3WZsqY8IGkmCf/R4eFiO+V32J7NzMC1RC8TyynPoSvE3EX5spmNurI6xarDMJ1b9Kici4ZNk5rnKksZtwuew7WJ55Z9xA83NKgHdY1Lwg3d1WhZCs1wdf87vUfZdzU8F5tU6tQXjxdRFeb5IU+ih+lK4nw8KCFcezBGFhLkU9FAjrNcrfJeQvYOtxqywkFqSeezJzzYdXpPLm4XzRAPZLlU+E5R7O3QM77sSgk9ErbhWO59O5qx6RqbOOx+70bWyoyuaCF+yFcn6yVg3FMmRRJkTrZYbovVnu6hKKZzhnMZIOrZioZS5mJXq38MO28sL9ksyJTMCzJGp02eOHjIfo2a9HmV53j9AWzzczsKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzNyA+PgpzdHJlYW0KeJxFUUlyBCEMu/cr9IGpwivwnk7NqfP/aywzSU4WYGsxaYGBLXiJIdbAzIEvuXxN6DR8NzLb8DrZHnBPuC7cl8uCZ8KWwFdUl3e9L13ZSH13h6p+ZmR7s0jNkJWVOvVCNCbYIRE9IzLJVixzg6QprVLlvihbgC7qlbZOO42SoCMU4W+UI+HpFUp2TWwaq9Q6oKEIy7YuiDqZJKJ2YXFq8ZYhIp91YzXH+ItOInbH4/6sMOtRJJLSZwfdcSajTZZdAzm5eaqwVio5iD5e0caE6nSqgWO817b0E2ngufZf4Qc+ff+PGPq53j/G7lwiCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzAgPj4Kc3RyZWFtCnicNVFJbsMwDLzrFfOBAOIuv8dBT+3/rx3SCWBgaEuczREbGxF4icHPQeTGW9aMmvibyV3xuzwVHgm3gidRBF6Ge9kJLm8Yl/04zHzwXlo5kxpPMiAX2fTwRMhgl0DowOwa1GGbaSf6hoTPjkg1G1lOX0vQS6sQKE/ZfqcLSrSt6s/tsy607WtPONntqSeVTyCeW7ICl41XTBZjGfRE5S7F9EGqs4WehPKifA6y+aghEl2inIEnBgejQDuw57afiVeFoHV1n7aNoRopHU//NjQ1SSLkEyWc2dK4W/j+nnv9/AOmVFOfCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicNU87sgMhDOs5hS6QGYxtYM+zmVQv92+fZLINEv5I8vRERyZe5sgIrNnxthYZiBn4FlPxrz3tw4TqPbiHCOXiQphhJJw167ibp+PFv13lM9bBuw2+YpYXBLYwk/WVxZnLdsFYGidxTrIbY9dEbGNd6+kU1hFMKAMhne0wJcgcFSl9sqOMOTpO5InnYqrFLr/vYX3BpjGiwhxXBU/QZFCWPe8moB0X9N/Vjd9JNIteAjKRYGGdJObOWU741WtHx1GLIjEnpBnkMhHSnK5iCqEJxTo7CioVBZfqc8rdPv9oXVtNCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDUgPj4Kc3RyZWFtCnicRVC7jUMxDOs9BRcIYP0se553SJXbvz1KRnCFIVo/kloSmIjASwyxlG/iR0ZBPQu/F4XiM8TPF4VBzoSkQJz1GRCZeIbaRm7odnDOvMMzjDkCF8VacKbTmfZc2OScBycQzm2U8YxCuklUFXFUn3FM8aqyz43XgaW1bLPTkewhjYRLSSUml35TKv+0KVsq6NpFE7BI5IGTTTThLD9DkmLMoJRR9zC1jvRxspFHddDJ2Zw5LZnZ7qftTHwPWCaZUeUpnecyPiep81xOfe6zHdHkoqVV+5z93pGW8iK126HV6VclUZmN1aeQuDz/jJ/x/gOOoFk+CmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzMgPj4Kc3RyZWFtCnicTY9BEsMwCAPvfoWegLEB8550ekr+fy2QNu4F7YyAkYYwCDxiDOswJbx6++FVpEtwNo75JRlFPAhqC9wXVAVHY4qd+Njdoeyl4ukUTYvrEXPTtKR0N1Eqbb2dyPjAfZ/eH1W2JJ2CHlvqhC7RJPJFAnPYVDDP6sZLS4+n7dneH2Y+M9cKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJxFUktyxTAI2+cUXCAz5mfj87xOV+n9t5VwOt089AwICTI9ZUim3DaWZITkHPKlV2SI1ZCfRo5ExBDfKaHArvK5vJbEXMhuiUrxoR0/l6U3Ms2u0Kq3R6c2i0Y1KyPnIEOEelbozO5R22TD63Yh6TpTFodwLP9DBbKUdcoplARtQd/YI+hvFjwR3Aaz5nKzuUxu9b/uWwue1zpbsW0HQAmWc95gBgDEwwnaAMTc2t4WKSgfVbqKScKt8lwnO1C20Kp0vDeAGQcYOWDDkq0O12hvAMM+D/SiRsX2FaCoLCD+ztlmwd4xyUiwJ+YGTj1xOsWRcEk4xgJAiq3iFLrxHdjiLxeuiJrwCXU6ZU28wp7a4sdCkwjvUnEC8CIbbl0dRbVsT+cJtD8qkjNipB7E0QmR1JLOERSXBvXQGvu4iRmvjcTmnr7dP8I5n+v7Fxa4g+AKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MyA+PgpzdHJlYW0KeJxFkLl1BDEMQ3NVgRJ4gDrqGT9Hs/2nC2m83kD6eIR4iD0Jw3JdxYXRDT/etsw0vI4y3I31Zcb4qLFATtAHGCITV6NJ9e2KM1Tp4dVirqOiXC86IhLMkuOrQCN8OrLHQ1vbmX46r3/sIe8T/yoq525hAS6q7kD5Uh/x1I/ZUeqaoY8qK2seatq/CLsilLZ9XE5lnLp7B7TCZytX+30DqOc6gAplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIW0I0QZSCWBClZiZmEEk4AyKXBgDJtBXlCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MSA+PgpzdHJlYW0KeJw9zLsVgDAIBdA+U7wRQnyA7OOx0v1bwUQbuHzVAx0hGdQNbh2HtKxLd5N96nq1iaTIgNJTalwaToyoaX2pfWrguxvmS9WJP83P5wOHxxlrCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0NSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKeBgCffQy1CmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTUgPj4Kc3RyZWFtCnicRZFLkgMgCET3noIjgPzkPJmaVXL/7TSYTDZ2l6j9hEojphIs5xR5MP3I8s1ktum1HKudjQKKIhTM5Cr0WIHVnSnizLVEtfWxMnLc6R2D4g3nrpxUsrhRxjqqOhU4pufK+qru/Lgsyr4jhzIFbNY5DjZw5bZhjBOjzVZ3h/tEkKeTqaPidpBs+IOTxr7K1RW4Tjb76iUYB4J+oQlM8k2gdYZA4+YpenIJ9vFxu/NAsLe8CaRsCOTIEIwOQbtOrn9x6/ze/zrDnefaDFeOd/E7TGu74y8xyYq5gEXuFNTzPRet6wwd78mZY3LTfUPnXLDL3UGmz/wf6/cPUIpmiAplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYxID4+CnN0cmVhbQp4nEWQSxLDIAxD95xCR/BHBnyedLpK77+tIU2zgKexQAZ3JwSptQUT0QUvbUu6Cz5bCc7GeOg2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlHcPVf9Uex7pzNxMBk5Q6EZvUp7nybHVFd3WR/0mNu1mt/FfaqsLSspeWE285dM6AE7qkc7f0FqXM6hAplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE0ID4+CnN0cmVhbQp4nD1QuxFDMQjrPQUL5M587TfPy6XL/m0knKRCNkISlJpMyZSHOsqSrClPHT5LYoe8h+VuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rXL3UtzvPRxvooiUdPCu+eX0y88tvE49jkS6vfmKa3GmOgpEcEZq8op0YcWyyEOk1QQ1PQNrtQCu3nr5N2hHdBmA7BOJ4zSlHEP/1rjH6wOHilL0CmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNTcgPj4Kc3RyZWFtCnicRZC5EUMxCERzVUEJErAI6rHH0Xf/qRf5SrRvAC2HryVTqh8nIqbc12j0MHkOn00lVizYJraTGnIbFkFKMZh4TjGro7ehmYfU67ioqrh1ZpXTacvKxX/zaFczkz3CNeon8E3o+J88tKnoW6CvC5R9QLU4nUlQMX2vYoGjnHZ/IpwY4D4ZR5kpI3Fibgrs9xkAZr5XuMbjBd0BN3kKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzMiA+PgpzdHJlYW0KeJwtUjmOJDEMy/0KfmAA6/Lxnh5M1Pv/dElVBQWqbMs85HLDRCV+LJDbUWvi10ZmoMLwr6vMhe9I28g6iGvIRVzJlsJnRCzkMcQ8xILv2/gZHvmszMmzB8Yv2fcZVuypCctCxosztMMqjsMqyLFg6yKqe3hTpMOpJNjji/8+xXMXgha+I2jAL/nnqyN4vqRF2j1m27RbD5ZpR5UUloPtac7L5EvrLFfH4/kg2d4VO0JqV4CiMHfGeS6OMm1lRGthZ4OkxsX25tiPpQRd6MZlpDgC+ZkqwgNKmsxsoiD+yOkhpzIQpq7pSie3URV36slcs7m8nUkyW/dFis0UzuvCmfV3mDKrzTt5lhOlTkX4GXu2BA2d4+rZa5mFRrc5wSslfDZ2enLyvZpZD8mpSEgV07oKTqPIFEvYlviaiprS1Mvw35f3GX//ATPifAEKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxNyA+PgpzdHJlYW0KeJw1UktyQzEI279TcIHOmL99nnSyau6/rYQnK7AtQEIuL1nSS37UJdulw+RXH/clsUI+j+2azFLF9xazFM8tr0fPEbctCgRREz34MicVItTP1Og6eGGXPgOvEE4pFngHkwAGr+FfeJROg8A7GzLeEZORGhAkwZpLi01IlD1J/Cvl9aSVNHR+Jitz+XtyqRRqo8kIFSBYudgHpCspHiQTPYlIsnK9N1aI3pBXksdnJSYZEN0msU20wOPclbSEmZhCBeZYgNV0s7r6HExY47CE8SphFtWDTZ41qYRmtI5jZMN498JMiYWGwxJQm32VCaqXj9PcCSOmR0127cKyWzbvIUSj+TMslMHHKCQBh05jJArSsIARgTm9sIq95gs5FsCIZZ2aLAxtaCW7eo6FwNCcs6Vhxtee1/P+B0Vbe6MKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3ID4+CnN0cmVhbQp4nDM2tFAwgMMUQy4AGpQC7AplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxID4+CnN0cmVhbQp4nEWPyw0EIQxD71ThEvIZPqmH1Z7Y/q/rMJpBQvhBIjvxMAis8/I20MXw0aLDN/421atjlSwfunpSVg/pkIe88hVQaTBRxIVZTB1DYc6YysiWMrcb4bZNg6xslVStg3Y8Bg+2p2WrCH6pbWHqLPEMwlVeuMcNP5BLrXe9Vb5/QlMwlwplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcxID4+CnN0cmVhbQp4nE2QTQ5CIRCD95yiFzCh8wOP82hc6f23dvD54oL0SyFDp8MDHUfiRkeGzuh4sMkxDrwLMiZejfOfjOskjgnqFW3BurQ77s0sMScsEyNga5Tcm0cU+OGYC0GC7PLDFxhEpGuYbzWfdZN+frvTXdSldffTIwqcyI5QDBtwBdjTPQ7cEs7vmia/VCkZmziUD1QXkbLZCYWopWKXU1VojOJWPe+LXu35AcH2O/sKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyID4+CnN0cmVhbQp4nDWMsRHAMAgDe6bQCDZYYO+TS0X2b0N8TgMvHQ+XosFaDbqCI3B1qfzRI125KUWXY86C4XGqX0gxRj2oI+Pex0+5X3AWEn0KZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDg4ID4+CnN0cmVhbQp4nDWMuxHAMAhDe0/BCAaLj/fJpUr2b4Pt0ICkd/eCgzpB8rgbKZwubtlXehuPk54mALH0TEPt32BF1YtaFC1fbmPQYiq+P/okIJZ18l449JAS3h/FFx17CmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4NyA+PgpzdHJlYW0KeJw1TbkRwDAI65mCEcyj2OyTS+Xs3wbsuEE6fSCUG2vkAYLhnW8h+KYvGYR1CE8quyU6bKGGswqSieFXNnhVror2tZKJ7GymMdigZfrRzrdJzwel3huYCmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzggPj4Kc3RyZWFtCnicPY9BDgMxCAPveYU/ECl2Qljes1VP2/9fS5rdXtAIjDEWQkNvqGoOm4INx4ulS6jW8CmKiUoOyJlgDqWk0h1nkXpiOBjcHrQbzuKx6foRu5JWfdDmRrolaIJH7FNp3JZxE8QDNQXqKepco7wQuZ+pV9g0kt20spJrOKbfveep6//TVd5fX98ujAplbmRzdHJlYW0KZW5kb2JqCjQ5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAxOCAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0OCAvemVybyA1MCAvdHdvIDUyIC9mb3VyIDU0IC9zaXggNjUgL0EgNjcgL0MgNzggL04gODAgL1AgOTcKL2EgL2IgL2MgL2QgL2UgL2YgL2cgL2ggL2kgMTA3IC9rIC9sIC9tIC9uIC9vIDExNCAvciAvcyAvdCAvdSAvdiAvdyAveCAveSBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMTYgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTUgMCBSID4+CmVuZG9iagoxNiAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE1IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE4IDAgb2JqCjw8IC9BIDE5IDAgUiAvQyAyMCAwIFIgL04gMjEgMCBSIC9QIDIyIDAgUiAvYSAyMyAwIFIgL2IgMjQgMCBSIC9jIDI1IDAgUgovZCAyNiAwIFIgL2UgMjcgMCBSIC9mIDI4IDAgUiAvZm91ciAyOSAwIFIgL2cgMzAgMCBSIC9oIDMxIDAgUiAvaSAzMiAwIFIKL2sgMzMgMCBSIC9sIDM0IDAgUiAvbSAzNSAwIFIgL24gMzYgMCBSIC9vIDM3IDAgUiAvciAzOCAwIFIgL3MgMzkgMCBSCi9zaXggNDAgMCBSIC9zcGFjZSA0MSAwIFIgL3QgNDIgMCBSIC90d28gNDMgMCBSIC91IDQ0IDAgUiAvdiA0NSAwIFIKL3cgNDYgMCBSIC94IDQ3IDAgUiAveSA0OCAwIFIgL3plcm8gNDkgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNyAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0kxIDEyIDAgUiAvSTIgMTMgMCBSIC9JMyAxNCAwIFIgPj4KZW5kb2JqCjEyIDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDggL0NvbG9yU3BhY2UgL0RldmljZVJHQgovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAzIC9Db2x1bW5zIDk3IC9QcmVkaWN0b3IgMTAgPj4gL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0hlaWdodCA5NyAvTGVuZ3RoIDUwIDAgUiAvU3VidHlwZSAvSW1hZ2UgL1R5cGUgL1hPYmplY3QgL1dpZHRoIDk3ID4+CnN0cmVhbQp4nHy86ZNl2XEflplnudvba+vqvae7Z8WAAAYLsREUSdCkGBZB2qKCYTFCCoX91f7oP8RfFGEq/MlSMCRaVoRFhi3KpkhQGGwDYGYwg5np6Znurr3eftezZPrDq65pAA6fqqi479Z5L07+zi8zf3nuOQ//9ntvE5GIMLNSChEBABGJCABEBJ+2zf3NxbPXz/aJMTZNA8DWmuns+D/8x//j9e/+P6haUtz6oCjVKsvzHhGyOFLULybf/I1/8KXPfWNruEPACJ4Bo1gQjUCAgBQQIyMKECIhAiKIRIFIjCAIQIiAQACEiKQAUYiQCJAAEYgAERBgM1gABmQQEDASIURhABZkAUAAAZCNdRdvAAC9QYeIngUCAGKMm5sicgnKBhH4+fbsHaVUkiRVVYXQbk32vvlbv1vXy5+9/5OmWyapjQFc1zKDMSpNjdF2NB7dvHmjP+gJbMZIAAzoACOIAhSAKMAICEAIhAAgiCD486MQEAQRAWEBQhFhQXUxvE+6XVgt+BQJQEKUy04b+5/puTHqT/7JPxPhDRaIwByfYQn+MiK/fPPy5YZQAIhACASIg35/78re6dnpyclx3aw4cvBRmAEkz7O8yF3njUru3LqXmhQBUFBQBBgAAAVEAAQBAYCe/oIACSHqyxE9vSBEFPjEWtpAKrBh38/BtJkPAcQNtUQEAIHw2XbxRvWHf/THaZqIsFIkwiIbtn0C46Xf/bKXPdvnk2tArbVSJvggAEXR6/cHBwcHq/UihJBnmVagNCSJUQp9cI8+fjQZb13Zu2KUQQBBQtQiiEiESlgBGhSNQhf2CSEoBAUgm2GKACJuDAR4Ok8XRj5lxoXBnzgKXhAGBC7MBhAEetaaC4z+yT/775S6YOUzn0sXU0P0c5/7zN9fINEn9xEQBQlBxDkfYih6vcFgMDs/b5sGII4nfa1YG0gyYxPNMRwfHbq2vffcXaU1IjIwADN7H4LWRpgACTUdnx7YlIBi4AC0MeoCoAvyXoAISPjMNF+Y9QzvLu24YMSGa4CAQj833wgIoL7yjW9cubIXY8CNc17QUl0ySEQ2TvTLfvfLPNo4KGAgRCRijmW5BpDJeNIvBov5rKrmIk3RM51b+9gJcq+fu65FkRfuP5/YpGwWT47e++m7P3jrne8fHX20szuxiTqbn9ge/efv/9Ubb/1NG2fffv3/qt3i2v4NYIVIzLyx/BkuE+CFN2zAuyTOMyMVgE1gQ0REumTIz/MIQP3q17+8vb1lrRW5iFwIiKie4iwicpnjNtS5HM0nRH4WQRTE8NRlUSRWVWW03Zrs7F3ZabtqPj9JEsozXdVlFBFh7/xyudoa79y8fuv9D9/+3//9v/zBD7/94ze/9+TgQZrr8/PDhwcfLOvTn7733Y8O3nrzne98+PE7jw4+gJjeun4XAQnVRdTCixx7CZeAXHgFIuAnIxQARL4I3ZfUQKRfnHsABPWlX7/+1k9/uLe3j2IQLCmFFy4GIryJ4ptroktPlE12+QUSXfAIkJiAQVhQRGvNQbquy4f9nZ2bL9z5jKvk8NGjPAGjFIsGhSozZ9OZMdkL91/58Ztvvf69763Xrm78Yrk4nT564yd/8+Dxj3744789PTtIkuLw4Nw5nM/K6Xz20ssv9LKBihbFMMZAHnDjNgSAEVi0sGJH5BEEWCT44DxzRHA+8CYBMF/KGGJAYQQBFFS0Yae6ee86ByMxydJhvz9CEJYA8knc2fDoEoj/H4+7nDsQfvZGkiSkSVudJUW/GDx35858dnZ0fFD08kiBNGhNRdE7P52tV3VZrd/66Zsffvixd2Fv70qW5cyyrssQvda2a70xNrHZrVt3VuWMMVy/diNJcgFiIEEiIBJCQBBQSBiZmJHBldXZk8Pv/93f/W9/9q9f//brD9978O//8i9/8uM327Yb9AdaGyIiQOEL64ieBm8E/Bf/6k/rKhCkg8HW1atXkRhBiOyzMlIpdRmVfl5GoQg8K6MuWBbjL+Q+VCBKNKUkhBLK9fG/+fP/ZVkfdDJz0bngY9CGhluj66tl/fY77ywX662tnc9+9rNb2+MnTz7qb5kHH7/LUaqqGQxGikyvN+h4aa39yud/6+//5h/1sivACYBCCIi4iacEAuyPDx9/5zuvf/tv/tPR449cWzdN6yLbNLNFSoq00nfv3f3CF77w2muvXbt2rS5X3//+D177wud3dveMNQwACHp27m9cv9nrDbMsV4pENvJEEOkSFGb+/6TPBqunsuiSZULP6O8NgqQRNCIrAPLep8Xk9/7LP/7zf/svlrMTaxVLAOSuW51OHx8dTQVjklpt7J07d+/eu9u2LSUuS/uPHz1GVFXZiLTGJJTKbHn8/Tf/dv/qtS999jctDRVkLD6gABlB9G3713/1V//6X/2vHz144LtGokOOaV5EoKYK1rUiDCLTs7Pv/ufv7F+5sre3d3R84Jz75m//9q9+5ctf/NKXtNEson7vH/zDohj0eoVSaqPiRYCjAMAGmsvs9qwW/zmgEDedL2BivtQnm6aUeqrpFAj64Mu6TPP82tWrBx8/Oj0+zZJEEQVhF71JkvW6bNpmPBkX/Xxnd/KDN7734cMP1mXlfSyK/npdZVkGAFmelGVZVeuDw0euKcV1wzyrZie+WS4WZ2W1/NM//ef/8z//n5589EF0dfQNiQ+ujRxc9Czi2rZrGhAJ3ndNc3Z2+uGDB+fnp4QwX8zLcn3//r1+v6eI1Lf+q39krUoSiwQIQkQc+UJRiWzQAYBLd7sMSU/B+oRBF41ZOG6Q/SSQ4YXyFhRS2HTV8ekhod4dXzk9OgWONjVB2EOsuy7L8rIufejKevnx4w9Ozp8cHB6EIEXRz7L8+rVri/kSBCSoYX/UtFVdzY4PHh589D74qvzgwV//u3/3wdtv/fmf/cu//j//gtoqiW6g9ZVh/+pkVGilmVNlUqV97EAiQCRgRG7rMvgWibIsY47T6fT4+PhTn/pUvz9Q3/qHfxQ5KIVZlkZmYdHaXpQzABszZROV6BcyI+DmZxMhQTa8U0RaKXrankFzkyaElGhD0+nZ8eHR8nzR1TUH53yrrPEQtTFEhChaI7Mv64Xz1WJeuk6IMLGmrqv9K/sAUK2qwaAfoO31NLomjTEsV6dvvNOezQ+fPHnzR2/cubr/2efv3d/bvb27e3tvZ2/QtxwzbYZ5D3xYNWVVV853SAgozJEQEZXWGgSqulouFrdu37l7965WCuu6Xi4XR0dH/X4/y/KiKNI02cgqARYgRGSW4HjjOJdyFoABIgJeFMYX0UdE1M+54oVc6EAQBVDQgr4y2T99/ODJ4x9Oj09D6wJG6CMrbjwnNtvdH5wcnbWNjgIO/HC4VS8dMZBE5tjLk/3dneXxey080SOoa3cdejfafPCwdp1edt267l565ZXrV3YHwkMQJIzAMUYzzJoiC6hThFm9WoVYRp53wVqbG51oMklqjCGWGGK9WJ88OUAQHULY2dmx1jrn0jRN03STpIhosx4QYxQRQroU35/4GsJT97pYV9m8IlSXketpZxEB3BSpIiLS6/X6/eFsvjo9m1ardQCfTJJit++azruwNcqs0lXXMmlQog3v7g0G/aEII9KHH77X62fGr4N0NfudbDiW1DhYTJfLxunx4Op4v5ZICiWiICmlEFih2hlvRdQBjbW9Ocd5VbXiXYhtbMEhGx2FSDA6nybJ1vZW57qu7dT9l152zmmtN65hjKGnPvVshSECihQ8jVOfhB54Gqo/EQdEqD6h20WTjczdQLbxyiJP16vFB+89qOpqVS49e2ONIIpwntrEJE3t27bd2h5ORsVzt29uTXY4Qr9XOLci1YboIhB5HPvsdrpnnNZJrotcjD48P33vg/dSa61SofN50cvzXCMl2qZJamwugky0Lsum64LIRmEH5zrvXduB8Gg0unr92u7e3kuvvKw/97nPEZHWWkS891VV9fv9Tb4nIqVUCEFrDSIcmYhCCBv7Y4wirPRlyoeL9PcMg56N+puaeUM6AIgxJknxmc98+aMPH3/88L0tPXGx6ZkiHQ9Mz2jyq9l62OtNJtv9cZJluLMz6Bdb3rV1sx5PitX6uOIAYKEJ+Xiws3W1xqphxs4ZYAphf3urWq8WgF1Vz6v6hTt3cpMqZiStten3ip3Q7Y9G0+Wqi9wxI+JGwhBRnhdKqa5tQ/B5nqtf/63fzrIsTdM8z4nIObdJYZvEpJRi5hCCUnpTE1/avPnvZRGEzy6hCF4qo6eCUwRY5FkKMgDmeX97Z2c6PQWIL9y7T4IMQgYGRWq1VWiLomctEYmEUNcrrYNSPoS662oPEgUSSvtU7OQTCdxGTy4qFgQeDnpt587mc5UWh6enRDQoehrQGitKiyKrFRHNlqtlVfNTjYJERuvE2s2gd3b3vvZrX6fRaAQAVVVVVeW9z/M8xsjMl6pHa42IMYQNFhsW/LIOuExkvySgPvHNzSfD5fIuaBazs3f1y1/9mk2Scl2NipEEcV27Xi6jc3mSSghd27SVq6uGuWrdcd0cTqeHXRPSiIVgz9pBv1+v1tV0xotV4jnx0hNKAg/ybF3VZ2UZjPnhO++cL5cusmdmEFCUG70zGu5OxnpTlIbALJvaTSvtva/rejweW2spTbM8L4aDUfBBmEGYCIRZmGOMICIsihQRxRhEWIQBhIW9d967n9dKm+VS2ADFzMwcY2SOLDFKDMwsGIKEEJmDsEeJSuk7zz3/6c98cbZcv/Oz9/LUindKgABBYtfW3nXOx6ZxztUsTeNXIXpkgiqq0t8Y7maRyunMrdbUNDZwhpSh0oIaqD8YnJ6ftZHLtnv4+HHju6ZrfPTMAZkNyNagP8hTQ6QURRYiVeRFZAaiKDIcjZq2pRBjjFLXndZJlqYIgcApJAKEyK7tgnMoohCROLITiCF2MXYsPrLfRK5LmBARCQSiQACMkT1LjBxddB34xsW6pq7T3qNjF3iNUgEQ2fHLn/na869+rkV/fPThtdHQih0UYwFOEsUhNK7TifZ18C2AynSSKGDi9Nbk/rAydlanIqxiJV3TltF1iEqRTXWy0+9fHfWli+PRdhdD7dvWN9G3miP6SN4XFCcZpuQViFImz1OTJGhSMGkx3tq6ciXvF/qNH/7d3u7VwWAyGW95F2xiEWEjeeCZcmRjfwgBICqltNaboP5ssXaRAUEQOAQgUoTa+4igVuvmzXfePXxyEoOEyCIxze14a3xl/8rV/X1rMU/zX33ts9gcn52dTM86wSBq3euncR1NzPJeanWkmpMkaVyntGUj1iWJGFe1ORpjaVE2s2rVQjrMB9loYLVioG3VUyBny7qXZfdvXrVWxxiCay0gIBCpNElG/cG07oITVkYrLQL9fl8AvA/WWkLSb/zw29uTK9/8rd9DAEQDbDaa8bIEuSzrN0HnkjUb3bQRDZsYvFkhiDEoBQAUIwvz4cHZ3/3d6z99+4OqjDoxbWh9CEmSG5VGeJT03hv0s5dfvnv35vb2eP+1r3zr9W//3+Xj99OeiVwvF6ejyS4ZAouZRl+BKwOKQWA0OMxH2LCKooy44EpX6yLVlEYFAUOe5/ViaUT6RE5RqnBnMqnLpe+6TSRRaAE50Xrc6w9WVROb8LQ6yLMMldre3cmLnDmqz3zmufV6ndh8Z2dfKQuklTIA4bLQf3YxRGt9GXGVUk8XwmGjBi5rEQBgBo7oOn748NFf/Ye/Xs3b6Iwgtc57HyEC++irhttmenLy6OGjVeUPz2tI9nZ39trqbDo/DlJ5qaO40dYAFSsQjWbV+JXnug2uclfTnV40hcJUYWA/Xa3S4XB3e6c/6GtjtNa9LE9NMhkMr127ppQ6Ojs9nk3PZrMQojGaBWKMIQZAnC5Wq7ozaVb0C6WM1tYkyf0Xnv/9b/1+lqfqd37n65oMR9ra3kvTPLIotaELP7taJE8fwxFR13Ubtfls5toohg2qIhQDeC/BM4K6efOWMJ8cH/sYBVCit+hGWby7l3/zV1/89S+8cGsvz5SbnRy/+9ZPo6tGw6Lrgo9QN92yWra+tEY7xw5tfuVGb+/6uLd1s7+TtZgIDPOksMZYe7ZYHxzPru5dsVqfnp6FLoyH40Ex6KVFRDmezX7w07dP1+X5cr0uy35/sHkgYrQCJNS26lwQBEVJmsbAiPjSyy+/+OLzw+FAffVLv0JorckAdJoVpEhQFMovBOPNxQY4pdRlFr9M/5eNI0SvAJQIMYMPod/v/cqnX57PTk/OphxRSXj57vY3vnj761+4fmsn7BXL/Wz23Ki9O3RF8+jjh48PpqjVVtclq7XrvAPyTbV2XnC4fe1XPj+8cmMvn8TH57Ku8kSPizTVCkE1LdcNYIy9LG+qzndh2B8N+yMO8tHJ4TsfP6xJrZiDUrPZwlq7PehxCAoVIHnGWVmBsY3vsrzXOX9lf/8rX/tq0cuLXq4+/9K12NQJcKEUOtezNiVCAkISVEEwAjFqUErIa6sFgVFAISgSAsAoyILMEgUFEAV0ZBMEXAxd6NrQpv2sN9CvvnJ/NN7b2d6+smP/4Hdf2xtErh5neMLVo6Ga5/4w7Z7c7Dc7k/zxYfzwER3N15Fp2B8J4XKxKl3XJiZo1c6q1XtP7KLT3vWKJE+1cHRdIMp8h0TctnXbtqvVumk7AWyce3RyiGkCadIKA1GSmHJdXt3eKrLMB9/6WLruZLlqQiCb2CQLIf7jf/wnn/vc55il3x+o//4PX3pujLf7bgfOR/HMlk9o+ZjXR3F9rHxJobbgNNcUWpDcQAKskK2ClCAJHRhRxIQsSpQ4Jc4SJxi1RGSGtouCRqe5Jhpkxd7kzqdfunHjynlcfseWJ7ZZ2bCwwL4tmVuB1ofFbnZwrbc+OCs+OKkX7bmrVWzGabIFqRXV7EHcOa5G8wAhUgyTXk8p8DE0rdOSSMtRxVm5IKPn68XJ/DwQU2Y0YWKNAobYNevVaDgIMYzy/mR7p3LtrKkO5vPzqipdUDodTyY3b9184aUXXv/ed3uDASLpQpRRAqG0SRRceA6xjmbWgbIRbWDEJJUQgWyb34x5QUqxQOCNNOQVIIsPsRNha1OjMxEizIwtkPKEE4tp0dvSRbE2eUL9JJz3qkfd4p2ea6IznUpbDplVztVdvU4TXeHVfu/4dz/9Xbe8+6bbDqlr1zaph71JLuVx3mFPoEfqPC5BGBgUKGvT2ter1WLQH87OFr6D6Nq8N+RyVZXrhdU7/TFqrZSOkUPrY+uGeYEQQ3BV2x6cnp2tmzZCF6FI9I2bV5+7d6esZ6TddPFk/8ZQa550TQkcIYl1M1NGALmJPnQdACkgHY2VGH1D1Y9bkMgRCJBAW51oxQDaIJGwBCWEDlk8KR8rVTcQY+qDrVRB2dAlu1u9a5Qaf/KWWp3Xy0bbYhXPYowuSY0iZHAhVO40Ufqqmn7j5XeS46/88JyjxK4DPKleuD7ebWWSJEzShQ48+C4kilJrMpvO21MS6uWDZdms2mp7dzzZ3pbomrqkpN9PCp0qdkGN8Oj8PCFtjVqVq0VZPT45W3jhtNcbT156+dNf+NJXxpPhdHYqyG++/eP9azu6Vh9RgQKxFvbCXgICtulV1wVkAOfWi7pvtHTaJhOTaKVEG9BWkQZEJm4IQKHSBgWCSFQmIdUycw4B0GuNSKsYTwTejMuinloMEEKIRF117mIlAq5VKGh1QkAYI5t0haPru/XvX38I37753WVY2fcmmZrkxTA1pKUB7IS6us5oTVyYjIosH4760/mC7DjPspPpKZ+H69evBB80kmvaDrTNs63+UCcpKHUyn4I2q9YdL1bTqgsm6ff7L7/66n/zx/90sVgao8+nHxb9kZ8u/vbb39NpWlRNB5Qxi9IDdh0K5+LIOQSQ0OUWoF2LdN4KJhqJKcVoIWJUig20zBCAyFpEDqENYqAZedcmWU8gJIlhDikmSYSgPdsYkLpe9BxsJ9ClMXCMAkDCURFi60LgEhKoGlW+/8LV7kEcHZXNYFwkaYeJtGSaQMhUVe2pXyggDSpPbTHM16F0bT0cZpO2f3B6nBV6mKUKyXlXY2MJo6LAcd3Ws3I1abYWZf3g8LRDPZpsff3rX/n9b33r9q3b7733/nA89G/62aLtXLh//0WtmuFAqTZE5tiUM4quyPVyeVpX9XiyFZVnCIJdUSQdixGjlWgChREIlUKr0xgI0XoXlSbCEKWlZMnQOlGIEDklAlBpUH2gTtiRELEzOqaJgqhFIIosF03Tuslk4EIoVL4DaVPjmke3bhZ/ePflv359nkOZCAKSA+Hgcu/OvJv72M+KwtrI3pPXhSEUIbj93H42thwCKQLmtauD4CDPUCthNEXu5/jBk6PZsmST/vo3vvrc8/d+7/f+i7fe/NHx6cdVXT88CKfTh6Px+MatnfnyWDfSYOQQmtSC6lWJlhgbPRhnxq7rZWJsVdc2JWXASiQQiVEC8GZ/GCmOmsUIJ4vVandrqFQkSkBVxqTBBYnMnrRWqNnbMkZESAzbvh742AHWaGth6wCGe6bPZEE0pEovdNWkWeGzVZLv3096r9558SdvH/jZARBI8OQDBQbhdd0eyTS0YdBPkh4KsU4UIKHgtZ2dyNE1dbleQ0yZJQUhDkpiKmFA4CFcv3b1v/0f/sev/uZvt6F7443XD4+OPnj0k7RI7967F3ihbT6dPvn4UaUfh2Sca3AeQsiTcUQdNUBcFNj5ttFNiwFcG0tqtaJEaY7OgKKoCDW1klkmY1Bned+6EHRoCZ1JUwheiRJwSkJsSyAHGDyMjc6QO0IPyD62KQuxAo2svSHIPGaMonMcR+nOrBNZL8rZG5C/8KXPfbZe33n4/ro5L32IbaIkx7aqj5axZRxxr/BI2iMl7DvovAQvyA59g4FSWwx6UalQN9X0pFvM7mRJPVC3X3nllRdfSdMhCl+7df+NN7/f+rpbVQ8+YI7h8ccfiUCMUe9dv0NuTYrj+pxZEGOMnFviEEWZ4CCwrjs3XyyzNB8MDBEQNkaL0UoRdEZM0iWps9YieuYmxgYcrVdLEkiNYUSFmkSF6IP4qKZCPmqq2ZzX/TQZD2iaK6d9yoisvNK4rlyakzFWJJChaJDlZ/HskMKd52++srW19+P3Fl1gyMn0dVO1J9VpGduiK4y2rBqJQQUxIgZJqWRcjNUwy1LjvZ8tZ87FZLhT9HqTu5M7n3p57ctRrI7Ojjo3c92Cpdse71s9TK3+8OEHt29fnc2P9bqqDbseojZGJCJCU60SanxV+saH1ladtKSrGiKQUChyTC0SRq1AKWSKzi9Z6hiUItYkwTnTKWIh9q5rvegkybVNLCZRMStHgGWtZl3/P75R1/7oW1+zBrvUbrcRA80AQalks66cJIpQi6B0Evws8Nls+eNs8MLnP/Pcuz9T4oEG2FhXNz74ru4oY1KaAWPUwAohMTorKOs1SVXDqt/va9ze6W3fu/dSXgzenb9fQjhaPPnRX77pfMOhnE4fE8H5+Twz5tbN5we9FTOE6HX0bUZRgSAKBx9Y2qaxaWSG1nG5bhqng2Jm9qF1QZnAWoti0BGQlBCisEIhEE2J63xdaegMic8NGgQg6brI0WmMnBmtLbLWavvgSfjJ2yfDXa30wOoWAnMk0giIaZIhRYSIigGAWTBNVaKTZDbJ6677kfKzz9+6e7138+33aVZWdcI+RI5sqUvQ6qwnQyUDO2uqx+VU2gVjV+R5sr29d//mvTuvfuHzvzYYbhVv/qd/82//7GQ9f/udt7JER98Ch/liuX9li1C///77o3G/LGdpUuiRDhQaDCVFF6OfzlfKWBe4ddJF6EIMUQSdgs772FQYOmkMEiABIbJKMTOqnydZkhvdQ0hjCxZz9kdl9STPO2UkoDMSrWbwyKyUKAZYrqub17LPfnZ/lIECI8opQmQFQaFSAHSx4YlAafHkmIORoQGVxBDCgabDmzuvjPt7b753djwNEbTCaHXQOMYi60a8St3Cn5W29R0TRCRTU7z1yovPv/RZPRn7pNjZv15V9bvv/iTP8PzkcZH3uzZ4R84HkOXZdOrCsG7K3/iNb6j/+uvPufV5KGdKfNs0i1U5XayDjyzMUWJErTCx3iaRMPddbGou1zif0vRcTc/p7DjEtmfihMKu4pu+ve67a0VxM0/y9fwUsQUjrJAJAJUoTYgYG9F+dG14915xfw/7EgxFNi2ZYCHTmDoOITCCJjQiBELEqBi1KKOQVATtAnZOZip12/u3F5VuXJIkRZomIdt+MFtOsas190dDFZFqDtImyhhJBvnk1Zdf6+UTDkjcvf2T758cf+S7tSIiTLJsxGK3d7bmi6PV+tSHZm/36nxaa3GVQqmdVzqLyhbDYR3nqI0PAQCUEpGggFunH5ZjH6BuQl3HGCg4RJYrQ7OttucLWc3i9pZKFCpSD89PtHqi0FNK0QMpFb0EQauZFHgJGrvMLgdWZSHGqDqJoIGAkBQzipAiBQDMCABEm0DnQTVgHGtvTEJcgPdPDh61He5fee58WT9Zpg5GZZCG8h5hBp0N4frW7kHFbV1SoHK5/MmPvgcRf+3XvlnW3fT04fHpx13XuLIpit7W9mC5bLq2np6ejwdb52cnaWaS1CxmK91RbrKeVflyPVMSIbbbfSW+jchB2UXXVG0cDHcPyvDT9VUXkdF4LZ1riHiQyb1tWFfrxnmQtHRgOSjhklubPrlxk8UkLoBf+o59PoDCeCE0qgDOoGNkZjSgMArqmIZ4sYPWqAwJAZg5xBiZnSLRCggNstEqbgQzYDrp22lzNBhn5rX9v/hOezDPiXpkGtetbVVT2lIfetd69XHjQ7QFsm5/+uC75+tHRDSfHi2r41W1ilHqdu6CN0YbnVidnB2tkTNC5VzzO3//t9Xv/86v+8Dnx4fr06OJjalb6XZlpI1RFg0uZKT3fgV3Pzu5/9V7n/pi1htPF+u2YyTtvB9m+pYusZ6zb9bOndfNvKmm1VnQp7tXzXiSWV20jSlX0HRBmaANAhGABdJIgmgkWBGjdA5gBLTzgEQALMLGaGO0iHRdF3zHMSACEZIiIlRKa415DqMhCM514u/dv7eaL+dLcaDAYNPOhJc2jTbX25NJ1zZGKxBpmno6na4Wi8Viul6tADDP8q5rIrsk1bdvPe87KavGpsYmGpC0StU/+tqLlttMmoEJ0K5VcBpwJWrp7RInPHq+d/MLobiDxXWFcOPWc7/6lV+zWX56ekYEEPxQAXOofbuOYdpUi3opqhlt42iUG5VbupKaG/3i5mpdC62TLCGboSkAbZQoACI6CgsCKMUAHz0+VAqsUTFGANk8p9NaA8cYXAxBLnYqXqyPGg2aamtLQ82gyJ+/detnH64dFJhkXahCOLOpi+DSJOn3Cue6tmnqqg4+eO8QxHs/Go299wJRKTFWrZbt9GzFUYDip159SRv78OET9SefH0J9TlxHcU6wZnvW4IM2OfW9Uu+lW/dYDZUq2MdhLw2B67r59KuvvvrKC8v52WI+rzpZt6XJdeW7CNGAF+8RQIntJ9cydSN0I5FiOjtPsjYbDJL+WCdDVIkPLsYOgIEYiAO7CL7XT/MskRiZmYVFOISIiEYhATNL5MiRFSkQFNSERBg1BUTflm0/yQZb93/20emqIVax7Q6zIvgYOMQ0sd755WJZlY13oWtdVVVEJgYAACIsisy59uxk1rY+xIAUm241nkxee+0L6g++fCMoXHNcMD6YNo9L/HDJR51dywB6e5U3H7z/sJydD1M17hdFlnD0y9nZjf2t137lJSXu7PCjF29vZapF8Zm1W728p0zPjq7v3N4a3KQ4KqtwdPZktnyS55AOBiYf2XxLm0w4AjIRCqLnyCBRBJVSIAQCKCGEzUEW3qyQ42ZLBXDkGBmBGBBAI2hSShEhIkeXpCPS4589nJsibbpD5ioEDF1rlDLKtI1vazefLrsmdC54F10XutZtNo81beOda1tnEmMTqZqFD+7w8Ei99rUvHnTwYFm9fTJ/MKtluB/TSVN3EZOPj+Zv/vT9x48PHn/88OH7767PTwZFfufWdYjd9PhxpmW3oFt0mLePBqrc393a27026e9uDbZ3ii1ipdjO5+vp+vhk8UHZnpFwIGWKUdrbskmulGjEGIlFixhAI6ABDApbJUoprRXixRMXAhYOhEhKiUAILAKRvCAKa0SlLIEKjN358Wx798Vp1asjz5YfkXJEvWEvqeu6qbs8GyS28E5iAOckS3ssVJUVM5PCwaA3GBbOBVLE4CK0eZEjoNLX4HA9P5zPTTFAk60bJwpcvV4s+PGHc3Lhal+/dGX40u54y2K7PC+nh1JPpx+/2Zy8Wx+9g/XJaDQElc1W3nsFAVzblOVquVi4xrnonkyfPFmesIG286s6aNPP8iFpAmIBCCG64EIUAgOMiqIiIFIMQgpQAYAE70EUUiKoBbTWdnNqSCltTApgooDSSithXxmM/VS9+sqX33nQxDSt3KkOPnJDhkIAH4TQOBfrplNaOReECdGIQAgeSdKcbKIjhyg+hJCm+fb2rrr+khWIVhlkzJKCEBEFtZmfxh4OX7m2++KuvdOjCUlKAVzdrqc6VgPdDrG0sTwt+UfvHf34wfnJ3CUm7crlYnFesfNRlk17upwfL+dlCEFQIbuWq1UdXKuVeO+iRNIixIQKwRIiUisQBQ0oJIWIQKQVGaBcMBe0QAaVQWWMTQ31FRYMmkEJY6qsFkw1WJxtjXr98acfnsLp4gzasyTTgaFtfdv61ap0PsQYkYBZJFLXeAHJ80QgaBOJBIkFUCsLoIhI3Xz+CntlKQ8dtK0XUZ3jupZmVt0eD/cytrHy3ndBnK8ch50rVybbW/PZ9OGHHz748Mmj4/WqiY0TFrTWdF1TNW3H1KI6Kauj5aKNURjIxQwhtSTcVut5vV6GxkfHojbH84xShTKpEACKIhRgFgHUilJlCm0HKimCUOcjkgE0SDaGxAcTAxEaAkJRmoxIJOxEZtdvXK2a7aoaTMsjkY7ARo/exRiZEG1iACD46JwHEJsopSEvbD9P67K22qaJtVZH367XC3X/1WsoBCLBOWt13VRJls7PYx9gR/u0W4Fvuwh15BAq1BpI//Sddw8Pjto2dIEaThuPHWMXQuudIARQrZij9fqoXAaNWZbu9Ifjou9DcCJolGcu1125CgxkLCiFpIwyBZBlBAFGEAEC1EApqh5SEVUW0QAZ0gmSYSEXJAQEwcjBh45jMFoBKaAVeMZYSTy/feMzj56YlcfZ+SF7Adk8ZBetKURnTbparWPkNLXMjoi12SyQcZLYXi8bjXp1vcxyo26/MkytAvaJJZMo59u6adwy7aMvQqlcwx4axoZ9CO26ac5n86Z1PkLnpQ1YReqiOGYXufGu5Vh5Plk2HcrkymR3Z3R7f+fF2zf29nYmN24Od/epGNYByyasy67IbS/HNNVIKGiUTkATcBQBQBVBRzFCeQAL2npm2ByTBUAkYxIRH2JDFKNvhF2MLKgFlygDcQm7UwVxsvViCzvz6VG5XHnPdd0UvcJY03atdz6xVikCYkUAEBHFaLLWtG2lNKISFp/3UnXtfqYIFYBrXQisTSKs6hNOodXcIevIiQP23HoPzscQ2DP7yC5KG6Vm7qJ3HDz7LsbKx9KLQ3P37s3nb++PE5lkOC5U1lNmlA239/rj/SwfAUSN7bWd3qinklSURgGKLIJMSCCKQQsaUQnZPIiOEkFFpQiBUSICo7CyKBgkBonBtbFupKqlbqDqDEPim4abdWS4euNTR2fnH3zwweahfBRpuk5ra41JsxSJjVXMvj8oNruKe4NcJ3pdrau2TjLbtK26fn+YmByinp2VivJyHbsWw5kb5KgUE/UAc6Ag0IZoeXNEUcCLeAEv0oEPEgIHz8yoAilI8mKy9ekXnhuSy2M5TGOWsratSYNRaVtDsyq3erg3joPE9TNNqgOMSFoQSQOhUZii0nGz3R01KONCJdKCBI2ikCE4js4zIxoJ4mqO3oIMtN4ieK7iuoU5NImb+6qaUkLbNz71/R/8yHnPIj4GQPSRRSJzQJS8SJlDklhjTJIDYxQUsqpqKkHyHNXtl3vOCWEmQihAUVfndV9hv0iAkUGxAEtkEC8UBRyzE3ECHYsTCQzMEYQFgMgAWlDpZOfq7f1BDxd9XeapkCZBNgK+RGm6rcLd2IHdvlESynoaQwsSCGETTgCRFXnENkAUEwOyExEOMQTvABqkrvO+bhWFvF3U69m5bz3QwEFRsW1c4QUDC3CRJJlz89AcTPafdyZ57/FB5yJ0wXWhY2UUZGkakIHEJDqGLrGoDI+GI8LE2gJRe++0Jo2INsubxlOm0MWEE1ct9gaZROk64dg83UaMEQKzOGYvEgGiCAuSKERmAiICslZlSTK4mub7qdXrrofBeFScgrVdIO3jrWvbLKfVeoqQnZ35k3mZZtDrq8GYi0FUGFFlITJDQpix09GJcwHAA7jcsktqTJxNRoy99YzadWi7WhnSFCQ1NSDL0rDGMIrSggUfs3a5XLg3/t4Xv/LwZPGDH75ZGJXk1BrhEKazZTHKlbVEIUkssOOgfBtjNF3H0VN0DCDaeU2KyMTEUMe+XPsIKTD4EEKMG34+3UUrAhhFwuY0PSACKoxCRKRRW9RZFL3oVnVvsLAmLwRZQRe04pSUDnTzzhWQZrpYHBydzc/90XFbe8hyGU7iuK23g7D4XIaoAZg4GPGWgu2ng0Q109MH624tfUf9aPsxNm2ME696DRAEl4pHEA+KchIl4rTvzNFZJXUBoa+9bz9+8k+/9QfNsj0/OyRdj3rR+7xqWteG1rRZTlmRaLJWpd5B532W9tuuRbRaKbV7O9dWKRMZa03UVlCv4oAgRu5CiIheJAAEgMgiiAwkF9/aoIgo0cokqckKJ2pVtVXdpShfe2FvLO2WhL4X20jSKQvpzt5edKuz0w8PDh6dnqymc1+1qo269dw4qWp2XeyqwE4oKuySdg5YZxlujdI99LFd103Z+a5t2kbbXuR83sLaLds4Y/JR6YYpaqXSLWV6XdPNpkvCLO/t2Xxvkuqz08dZr7j53Avvf3jQdu16OXNeeR+0wsQqq4AwjkdDEOs7TtLeuqzruhaR/mCobj5feB9EoiIkUMjp4mydCroQvUgEZMQgEAE2X6sQAQUUoNLaGGONsWjTedWdL0sXojC/ePvqF+7uFSg9UuRBIhXZKMn683KxWh6t5ifVunWdArLKok0BlYmSBG97yS6GYn5WNmuX4qhvdlIaWsyDk+l8itqMtvZGO9unqyXmww6LWbVgXItUHCVKEoGSItHmJnLR1tV8di6I6XDbq4ygHY1tjM3VG3enSz4+XQYXkJBAILh+ancm49Raa2xi+1lWnJ1PBWSyNdFaj8ZjHZu4WvvhaDft99jHrg7OxSVFutg3enGMHoDi5ngbbVYkFCCSNpQkB2fnq85FllTrQtNz165ixyHgOqKGPB9tecRZXUapxdXsEV2aoFJZyND7QC3nXcju3Hrh6u7uMNWPPn63XM+bKslJ9wZpWa2OTk8Go2KYD0KE6KByGbY26Q8F5+Ccr010adHbTtM++OhDDYrZt8NBoZOiZHV4VjbLxQvXihs73J1/9LXPv/qDt34CWo96BjlYnU96/UwSo3VoQ0wjKdzeGfvgSUHfFqPRWD3//PV6ZbtqsDiT6UlTzr1rJMSaEViEI0sUBCQktEYbq7VBUgBIqIejyWDnSjoYrdvOhwDB3d7f6ZG4k/O6bDkiartqujpGVgDUhW7tyoA+B1EmbRML7JIY7HP3Pp2kPYk+uFLAKDUCtsFx1ZQfHXwA1k+Go54dWJM2bb0s11lvkua7bX0mXStNPjB3ru1+ejjcbtvSBUfYcJjH2Jl80sHWX/zHtx5MdT/Pbk0sRqcHo49nx8vuNCfsZ+koyxULRA6BOaKnaBI1HA3atlaK0jTzwasiv9m1aVtJWwffRUDtY+hC5ZhdiAFEFCprQGswmZBpQ6xa1wUuRqPt/X2bZ4PB4N69u0WaVFU5my8enZ39bLF6sI4HTtF4h3ILqk7ImablslSd0xK0Bm3t46X52Zm+c+POILH1almVi+X8uAtOUKVCXYwPTg/P16vr23skBsSqaGbz+dnqbHtvq2eTtlxUKy9+qGGCZBFj066CTiJ7ja0xApi0oXj73cOTc7p9tbi+s+6Z1po+JeNH54teajOdBQ9N5cu6bnztuaPMktZaK6UoSY33XV2vVH9wOzLGGGL0eFH1MyJv7+zu7l1RRnfeu+AFiFH7yFGAtN7Z29vZ28t7PaWUc53Vemdn+8qV/XVVe0GVF6yL1pv1qp4MskmuuJxTWbq6iQxss8YO3jt1b51wbYa7o75iX9X12fk0TU3k2LWduDBdLn92ePDcvXvjtAcAgUNw64OT9xuZ71+bLE+P1stmvWDFg16x3bVd60rmTmcZUNRWUCGoVOn+3t71u7evPn8n03G6PC9XSzPau/7g6IEBhIjOcefCql633KSDBIwmpZz3yf9b15n1WJbciJlkLGe5e+5Za1dVl3qTWsu4ZasleQTP2PDMu58NP/rBP8yw4UcDhl4MDUYtY0bLeODukTRd1bXmnnm3s0UEST+cm1nVPfbFQSITuHlwDy/JIBnkF5lv6qqu1ikFM5nejjHEGEXEOYOICpIi7+zsvv/+R+PxtMhLnxU+K7KsyLJsOBzu7e3t7e3leU5ExlgREemnRuj27Tsff/ydW4eHr16fhJCqqjo9Oeo4KnOqq46yuRbPavt3J+mP6+wCijYF0hQTny/qKDgZjUQ0BEGwL46Pp7vbBwd73DYxBdU2xuOzxZePPrwl3D37/R9DZa1MIGYZDa01SFy3K58FY2I5GWJRgis5QGnN7izktKjn69/95vXFAg8fHqyap9xp14TQBgFg4snepOZWQADAOZNS6ofVYoi27yImIu+dtdS2bYzJ2Pz8fFmtO0I/HM3KcqwqIQbnrHPOe993r4sIkWZZbowpy8FgUGZZ5pzZ2dluO/3FX/1KmLsQ51+8mmQ6NSpAVZAWsoYGlWYRNIP07Gp5uaLY8rQstgI6ILTuaLFcxfhgfz+2TQwNiiHExfpo53A429767d9+HtfRYihK8M7MF2euA8mqZXtC3jn1iYuIzmc5MYS4NilyXDoDuwejVkLp4WC8u7w4QmTWmFSzQV7ORu26KwZFkWdExCzeu9FovFyuzHhyCAjee+dsCCGETpRFNKXofV4UZT/HZq21lrIs6wXUb05Y6/K8nEymW1vbk8mkKErnPACGEMpyYKw9OjoGMhGohvxchgvNa8gDuiCiHBSEQVF53cXLOrSBHakhqplfXJ4PxuNb29teGSGBkHKXZPH+x999eRJ/+9unxOTzIqSYOJFTyPh4/rLipXecOApSm9gaNy4H3lgbC4zRwHx7C4uRK4Y767q4qC7b0ESWOrT5uMxGWTHKnMGU4s14UFU1xhhbliVLijG0bRdjt5lcI1SRs4uzR48eCMcUI4AIb3rYiSjPc+/9eDzO86FzjrCHJ6iIMAsLgOqH7z3u2vrzL75Am0clJmdQURJyAI4gidSRdVGhDpHJoeirq6uqMsmYRQxDZzlEiwwGmEJVnT761p0I5c//6nf1OhtuW3bUxXixODO1xzVeNoti6rI6ZTF2cmKyDNtU7hfOj4vRQJp1uwyjsWzvbbtpcVzl2aQ0Yc1NixZC7FBLFWWOiNg0DbOkyN7nRGSzzCu4a94KEJECJ5Ukqa6rJGl3d7terwjRO4uIWZYVRZFlmbUWkVT6nv/NaKOIMCuiAYgi6Xsff9S19dOnLzwyalBFFmBVAQJ0BEQibddGBbAWnMFMVm294tQQn87nV9bnmQWfVs35wYHbPRz//LPfns3jbLLlprEB6dhG8m2iuutWEWOZ+zaVsYvteZ5b7Vi1GO2WW1nc399P2pW2Uyyi4XyL0knEzJSjMrKE0F2cn5eTHCAaY2NMRLZpu37y1eSjfVYhY9AYY52x3hjvKbPkvcsRzDv3H2zv7O7uHuzuHGxt7Q4G4ywvrXNIpke9ifQkEwRAAUAkQ85a56x31u/t7i8Wi+V6AVZABZlRBEHJEhhqQ2Bmi1AAz3JrNAXhFlAU6rpbNE0FetHU3jTf+fjdl/PBf//FEyA3senAWw5p2YYKsDLmvK1r6RjF2wxSMqmjrsM2hjVBKFxKYIfl7J1xseUFMMv/cHm+aNeAaiwwxKapYxCDGUQgNSlEVBRO1lqfeVOO91RUAZCIyPSXI2vIEJkY48NHDw8PDw0ZQ0TGAEJK/TY8q4rINW/kxoiRDBlrrXM+y/LBoNze3jq7PF23DYpqYmUBVAFFwq7tDGrp7c5oWBiQ2LEq9+AbxI7jvF61nD769oODu4//28///tW8E6fWRjQIrqgYKnQ79x/ScLhqmzaGFECTGgGM7G1JZhADxq4Z7uxDPlpeXbb1cgnyVdsKqfeWJYkmEa3r1qCTwCyggomTtS7FVBSFKYc7qgLXl6roZrg0iaQQurzIb926hYgxtDEGEWaJzFGkn7B9g0u8efUxgbW9VNE6UxbFxelJbDtO3DPiwFAKwaoO8mw2HGSGNAUQ6dFSG8ASqYDeunf7hz/+yS/+5ovPn55CnmuGOBrKeHfVkRvufPjJT/79f/xPP/s3fznZ2V+sm3UVQodtJYgFmYEfDE1hIkiLkI0GxSBjS8cpVIOSDLRNnVJUVUMG0KzXVexSn64b463xRGYynZmsnApzSjHFkFKMKaQYVKIoCzNLWi6Xd+/e9d7H0IYQiLCf1AJQIoOwGeV/Q/hBMET921hS29ZVVSmn0WBwfHySUlIAJCzL8oN33/30T36wMxk3qwVwVEk9UwFRFVARgcDn/tOffrq1u/PL//Ub6wazre2gNNl//LO/+A//4id//qf/+t9++md/Odw+8MPp+x99/JOf/fntOw//8IfnTYN1o6umW4VqFdfztjtZLV9dnNQc/XQGW7O5puX8IoY2hJaI+j0GZgEmZlivWyKrCs77wWhoysEUVFS5r10KJ5GkshkUVtUQwnq93t/bc9YZYxBJQUEBiQxZfAsJsZn3IwJQY0iUU4pVVYXQpRgH5cB6d3RyTITv3Lv/yfd/cLi1df7y+fnxa4kdSOpFf41JQyRCxL293Z/8+NPQrp98+WVZTJ88fbWsOKahwsG7738w2d02+UDJsCIA+ry8d/fhaLL1xy+foHPDrYkZ5tODve27D289vH/rwe3J/kHwxVVoV+0KUmjbRoRF+k1zUtUUuG1DYiByxhrn8HJ+bopyDCoqvZhkc/VVRlFmVoXFYslJbh3c9j4zZBFIoYdB2D6YvAFsXKMiABCYY9vWTVMzJzLGeTfd2orM7z1+/OHj96bF8Pzli7NXz/odA1UGlWvOpwIiknHG/vD7P/jg3ccnL1+vVuFsHk+XzbLruphiG1zhD+/etdZZa1IMTVPHLrRdN54MpztD9HL48M73P/3Re9/9Z4Pt/XIyCNpG45ZBmxRCc8UxEGFKQUGQIIQAACoQI6sisxSD7ODW7mxrZMrh9C2+2s18qF6PiZKqqsC6qmbT7Z3tPVBAMgBAaAwZAGXmm+lkEenZhyIcY1iv1ylFADCWhDCK3L5z+2B3T9t49vzVybOnGhvhCJvO0M2QIKAikEHjjf3TH//4YGvn+fPTW+98/OXJeqG6iIsuXqguuiiHt+/NpuMyd6lrqtUyhhBDd3T8LMhyOPN3Ht6xxThAUUdhbdf13JSD80UTu3paateFqq5CaBUkdCElZmZHTgRCkKbtqmo1HHmbgRkMtq85T6gbrOuG+dZ/ZCICkJjCcrXe3d3Ny5wsKWwwgMKs0tNWBFHx2tumlOq6CiH0pBFOYVWt6rpxZI5evHj99B9XZ684NpGZe3gsIKj2vEYDZEFzQ4Mi/+GPfhQI7PjwZ3/x706vVq+PT7u2TbGVVEX2Ivadd+7OZhNCMQads4vly9X6JC+sqvqsqKrKWkJYMzeLxcIZAmma6iqETjHV9QpAU0wxRhEFUGBFwsSdQNjdmwxGmWgyPhv19qKqG5bRhiJ4w5rcKFdV11W1vn3n1s3ksQqr9C0v0nfxICKCikjXdU1T9+tg4lg39cXFee6zr548ff7lPxoOxIFTZN3c/xqi1PsisIC589PZ1j//8U/Pl6vtg3d29u/uHR5+8cU/rJbzFFqObWSKrHdu3b577w4hWKunZ8/r5lIlTmfTEGKRF3VVjUeD9fpsvV4sFnMEnV+de28WizlzANAY4/W0MItIH3OwinP23v27IqkcFMb54duT199wwDcC6sdmq6pS1YODgw3/SQE3inbNCwZV0BhCXVcbj6jcde18MT8/P3v98vXr5893pmOPym0LvWhB+8407U0elAAcYZHl0+n2vcfv12wW65Dno/3DWy9fHb18+Tx0NUhKwCz64J1H7z3+gEjOL54tqyNnCZHyIrPWpJSWy7kxuFieI0jixBybtrYWkXC9XqSUQgg3z8vMsYuRmciORuO8yHqAKfUYkI1NXYeCsOHRfYNTxyG0X3zx+e9///sQIqeeSkM3Ke4mF0kcQhdCx5ISxxi7pqnXq9VquT4/PZmUuQOREKgHoYK8QRBf26kBdQi5s7PpVmSzf/tx3abz87MnT57MZrPhYOSsN+SR1DjNMue8SxwA42TmjUEA5CTWurpeIwGSkMFyUCJCSgFAmrZpmqq3BLgmqFyHL5pSYI4AulysUuR11dAN7uHt8eqvq9IGc6oqgNq2za//9tfPvnohoj1Ooq+u9GiRlFIXuhgDC4tISrFt26paNU1jjbUI4zIzHEm4R9sBKKIiAuLG2RsER1h4Nx2OymL4y1/+pg52a+cwxO709DRGNsYReWO8NeV0ss0SV+vzxfIsy2xKKSVFNKq4WCyathmPh4vFfLVanJ2dZLmbTMcpJUIYjQZ4TVG9MSBjzGBQFGVGRIm5bdvlcm3IUezXvH8ioG/aHQLSBoJV1dWvfvWrJ0++6teClFJKiTn1kkopiiRj+uZhZo6q6rxLkT2RJ4QUgJP2ifDG98tGWISIYAjKzG9Pppbc8enVH58eDSezoihU4ez0VBWFwZAflbt7O/cGgwJNK1p1oXVmOJvtepcBYNt2dV2XZdGFFgC6rr24OF+tVoCyrpZXV1fe+w2XcVPnsd57n7vBoMzzrG0aZnHOp8TEzP3yrP2y8haH5vrn17xSz6ZbrdafffarJ0++CiHEGPsvpBcWADrvnHPGUG9KWe6KIm/bJvOOVFD6KKz/Ejc0JL323ETorB0Oyq3Z9PLycrGsnr88jkmNMQD6/MVLRAOA4/H0zu3H9+6++8GH74s2w7EHwBQsgh2NxgBQFMVsNkspphQR1XurKvPFXITzPI+x67rOGOOc6zXo2mmgMWSdUdC6bpu24yQWoAldsmZIxoES9IsbwTeUCxQ2rXcAqCzQVfXl3/z6r/Pyp1tbWwZQVRiYDHrnUSyhCSE4lwDQSyZckYIlA0mUWYUFNCkKKyA4MqqCoNT38Hk/Hozzwh8/fXm6StPVXBjE4POvvlouzlnVl4PhzvbdB9m/+rOH9+9vpyShqUtHbZg36yWrOE9NXRUDv65WzrnFcrVaXpbDMsvLxaKLsSOimDoiUlBAMWQUgJnBCIpkBY04E2k0sUSxxkCMXdfZPEcEC0Dwlmu6sbXrrbZeqRRBmOXq6vLXv/7NJ5/8yXg8AtQN0c0aAu1hd4jQtpRSsqZjFiBkZuzpddAD0AFVVRlVLKpB8iZOLI4yyyInlxd1ixoWBDyabn/+D1+opLZryjI72N/5wXffs9hdnr3e3rntR5OmgqwYRObUtV3XAmrdrK6uTkUTorDwfH5VlrkxJqVgrVXgHnWsSnptQKpgDAFgXmSIjhOIMBlrkCCELobQZy43ULD/f0zwhkBydPTys88+e/36dYyxT/idy7zPnPNZnud5WRRllmWikDipgoACbeKwDUJRRSWRRAucGR6buJVrlvkXF8uTVccAA88gzee///zp86er9byrl6PcfPtb70wya2I3yMzi6gIJXV744dRnZUqJDDlPMTZttzw7f9HXDouiaJq2D+5ExFwjv77ui6kn8GaZLwe5zwygGOedMUZYVJWM7RHSCt8Qyjd903UNBJlT2zZnZ+dlUU5nU+d85jN7vSPQ13ZV4fLy6vXRUWawcMaAAqpA39SnoGxADKq36C0VmR2Mpslv/e755UmE6f7B9z74IKb2v/zX/xya5Wxcfvjew73tUbW4PNwZcup8Vowm0yZGUTDWFVlWrVeicbW+urg6UugUYp75pmm89ymFtq03hvEWQ69/nBvuDCKBKkBPXFHjvCFCBOyXGdrgkOmNif0/ooEbH6WAAgiJ4/n5Rdd2W7Pt4WDoremDgc3/Eh4dH5+cnGSGMoMWFRD7YhWoYJ8qIhrrjPeQj7DcPV6mV4t6++7dTz753uFs+Nf/83+cHH316N7hxx+++71vv3e4t/V//vdv7t8+sNYl1XwwcN6t1ivnLIIs5peJAxJ3oVbg9XoVQ2DmoiyI8GaNQlR9i2B/rQE3mrXpjDEWjXUEAEgGAVNKPRpTr0m938CtfUNwoArA/Z/MOp8vzs7OppPpaDjsq90373/x8uXR8ZFH9QYMKGwEowaFiJAInVfjxfjkJ6tkq9X6g/cfvvtgd2sAujwdeS68WO0kVKPSDwdFU63Ozy/u3L3fxjDZmsYUrTHVcpE5W9fr1WphDHVdyyzWuJRCjAGwPxCk7//tbuj2N49zQ7pShX4YA0GJ0PRduL3uIPSOlmBz2sk3be3rOUd/23Sjata6tg0vnj2r1uvxeNJjy3rXNl8uX71+KTEYZUOo0BeKFEEEIDJ0SYOSkIuUCeO7t3b3hhjXr1284sXpICMDoV7OOXYnx8ec4r279/7u7z+//+hxVpQM6eBgf355NRoMALTt2vV6lefZYj5XQEN+Pj9FAlHpupY5ZVlGhLzZI4KbyEYVtFfuzUv6eNBYlyGaTWmUEFESBwQgFEJFAENIiP0dNsLEG7C/KNwUDzfeXRTPzpbPX75ikeF4aLxhSKNRcXV+tlgta+ZKcC2wTjqP7iplTRJAV2bT2/sHD+7tfufhzsOdvHSRIJTeaWIEKjI3zJy3Vliqqrq4uhqMBpG6+QW+c/s9Y89Ho3wwetgqq8T1cokmJm4it5ySsR4wNu26C7VwUOUYY1EMBsNx23b9gyMiJwAwnPoSzwZV3BcDDJl/cmaPKrPe/A49LpMI0RD2hmEQ+5N1kAhhc6/+gIHNmR91s379+vXJ6UmWZVmWD4ryzu1DAOxCDJFZQRGN93np7t6aPriz+9G3Hr736FaetxBr6YJzJsWYUsqyPMaUeeudEwBWBGOWqyrGONmdff7583cfvk+2JmPLct9lvm1W8/llFyrmLqYQYlDVpr1ou6UCi8SUEpKxxiMic+ozKABCMCJv6Jc3pici5tpy3lr/iABQhBGJDCkAIZKxgK4XDZEhsoSGyNKmXNsLOqkyYg+QTKJSV83Ll6/Pz668z8aj4a1bd+7ff3BweGt3Z/fevQcfffj+v/z0B9tjGjkee7O6PEJe5N5Zk4tIWZYppa7rsizrd499ludFuVpXiRMzXyyXR8dXZTG8c+8gxDQZb4W285lZLC67rhLltq2zzDVNva6PY6pFove2L/uELjEn5uQz25f9AUnljd3BdSYlIgbfIvi+SfAIzaZb/FpwQACuP8YFFKmX1LVOEZExpD1xU7WvjgOQNQ7RrJbV8+cvQgij0STLy8FgPJ1u3bl779G9+wOjpy++TNVS226YFQTCSYzJemhgWZbGmLquvbNkUAGtdZnPAAFBmxDrpl0u1vfuP8pyT4YN0vOXXxkHTVMhgveuqlddqNfrMyJljsaYra0dYVXF/kiVXhQbwuP1ASQbb9Q3e6ga69zbue+baPFaOm8F3XbDVN+UnDdrICIYQ9eHmPSEaFEFIuOs6zcYQowXFxfHJ2ciOJnMysFoNJ7MysHy9XOIK2lrbjnPhut1s7u/33XBOScizrkY42q1yjIPoCGGq6s5AE7HY1AhpC6sl8v1YLBXjrNOzrOsyPL82fMnznljqWkqJOm6SpUBwFrXtp2IjkaTpm56R5E4IgKzCAOR6R/wRjobGTnv4Gtk56/VHvXNqy+oKSL0Rac+KBdN17sYhtD2CSciYL/t6zJrjYKycEocQry4uDo5OVksVzGkAlN1/IfYnu3MBmTcxXyt1s4XV86ay8tL51wP8+4JhaPRsE9+67pqm3Y8HjoyMa1ClIs57N2dLZqvTs/ns9kWEqxWq7zIEeXk9PV0NrSUj0dbMfZJd+q61jrL3Edwm8VLBXuA8Y0GvdEjYzcVMr12z3iziun1ATeAACDaj/xuLkAVScyRr3WV0BrjEQ0iEBnbUxqtNabfekMyFgBDiFVVn56embgs+HQyhr39icvyZdOuuybGQCJ9WcoY470viiLL/Gq17LPztu2cswQALOUAE7iLOWZjjHRqXBlaruv1ZDw9PT213ty6vffixdPZ5DBFUdD1etHzY4lwMBiqSNc1/cpESAAkwt+QEQD8X5yn55AKZW5kc3RyZWFtCmVuZG9iago1MCAwIG9iagoxODQwMgplbmRvYmoKMTMgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSAvRGV2aWNlUkdCCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDMgL0NvbHVtbnMgOTcgL1ByZWRpY3RvciAxMCA+PiAvRmlsdGVyIC9GbGF0ZURlY29kZQovSGVpZ2h0IDk3IC9MZW5ndGggNTEgMCBSIC9TdWJ0eXBlIC9JbWFnZSAvVHlwZSAvWE9iamVjdCAvV2lkdGggOTcgPj4Kc3RyZWFtCnicTLzps2zJcR+WmbWcrZfbd3/7Mm9m3sxghlgGxEaQoGkQomkTpGjassMMK+Tlq776H/EHOyxG+ItshilZcjhEOSwqSJGAQOyYBZjtzcxb79q317NVVWb6Q98HuiNuR3T3OaeqsjJ/+ftlVV38zg/fITIqKqqIRIQAAIjGECoIAKgSIiASApJBRBUFAERAIlBVAFAkAiQjwm3biLDP3MXs9N/8xf/9tz/4S6QOjfQxGcqtLctiYAyy9sbQoJp88ze//auf+42d8Z4BIYqsxGIRncqmtYTEDKhgCBEAkECVRdkAkaICqgIhAloCQFJERUIygIhEQAS46S0qACgwqAACghPGmEQBFYEFAAAUkBAUEEARNi/LoqpCmx8QVBQJESExGyJQBNXLa4lUVQFQBWDT4OaT4OaxqkTkva+bpmnC9vb+N//D36mbxfsf/qzrl1nmmaHvO2F11uSls9ZtbU1u3roxGg/gsnkEZCAFECSjqoAMIISoyggIgJsuGQDUy64hgqoSiAKCAiAiACgAgqqCIuDl8EFVERAJYHMnEKEoiG5mHRUAYfOnhKCKgGD++B/+t6qChKqKCKKMlw0RIqoqbp4OiLjpDVz249LMqpetw6WZgVAJgRBwOBweHB6cnZ6dnB437YqTcEwqAqBlURRlEUO0Jrt7617uCgJEQAW9HA6Agm5aQQDcjA6VFBCMQaeq+Hz+FBCANgZEwE33kBARVQEJNoMCvXQmRFQgUITLa1RBAJAI4bLJzQsQwPz9P/oHRV6oijEEKqKyMZACXnoNAREBbYyCqrDpw6YlkefD2HQCAACNtda6FJOqDgaD4Wj87NnT1WqeUiqK3Bq0FvLMkaEQwuOHj3YmO1f2D621IKpIgFYFAQmJVAjRqVhUAwCApEqIlpA2xhG4nD7YmAkUnw8TEIkANt/Cpafi5ew+v4VAQVlELyeDNuFM+NzVEMw//G/+e2sIERWUiAgAAUFJVAmBjIHnj9wYaANDtGlCQVUufQ70+WW6MaKqxhhYuKoGw+FwOj3vmhaBJ9tDY8RayHKX5U4kHT17Gvruhbt3rbWIJCCIwhKZk7UOhACILJ2cHvmc1ApLBFTd+C4+HxgQ/LKvdOn0l370ywEDICoiXoYUAgCIqG7iDwEusRcuvRkBUM1Xfv03Dw8PWCIAkLm0tAIBABERosIGo0F4E2ZKl3ErcgneSIgiCrqJQkVMhEBkVHW5XiLC9tb2sBzNZxdNMxNtq4Hv+jVLryTDQRn6DlRffvHlLMvW9ezp8Qfv/OKH7/7ix8+OHu7tTbw3Z7MTP8Dv/fAvfvLOv+t4+jff+3/buLh6eAPUoKI+jzh8/o4b57n8AjY+99y/NrhxaTsFBUIiJEQkNM8R5BKBEQDQfOXrX9nd2/HeK4CKXD6GzMZpVQX10i9VZTMBuIGlDUBcAheq6mauiBAggeom8kWlrlfOZtvbe1euHHRdfXFx7AsqS1O3taiISgxxuVjuTPZuXLv10cfv/l//6p/+8Mfffeutv33y7OOiNOfTo0+ffThvTn7+wfc/ffr2O7/43oOHv3j09CPi7Nb1ewBESBsnfm4XvARevMTK57bZzOEGv+D5AAE3cIXPbahKipfgjgAI5kvfuPbOuz85OLwC4gg9GYuohgxdgqaqCKiqirG04QaqsoHuy9BHUNXnKQYJkYDgEk/VWisJ+tBX4+H+7o0X73w2Nvrs4ePSgzfEYsCgLdzpxYXz5f17r7719jvf+8EPV6vYNnGxnJ+cP/rp23/94aOf/fhn3zk9e5Ll1bMn5ynSbLo6n03vv/LysBgSO1QvyEwBn2O2AgqqkIrlQJgQBAExBe6jKgOElFgB8TIvP7cOgAqiAigYBERFNbfuXUvsQbKiGA9HYwRVjaCXM6KAekl+EJ5PwHNAvDQ0bNiGKv4yKQirqF7CBWSZJ4PGmTyrRoPR3Tt3ZxenR8dPqyoXYrJgLJXVcHo6Xa+a1Xr17s/f+fjjT2NMBweHRVGo6KpZJY7G+tBFa7z3+e1bdxbrC4F47eqNPK9EEZAUiMCgIgKhIgGBCIkiQ1g350+e/uC73/3nf/p//O13vvfxBx//q3/952+99XbX9cPByBh7CSyiuBmxIUDcOCj+yf/+T5o6IeSj0c7Va9cMMqAQekIkYwBQVRAvueLGTQA2aZU2sLnxLlHdZEtVhRSR6JLuKCAiGBQSh7lRgxBXq+N/9n/+r4v1414veo6RU2LrcLS3dWOxWP/8vffms+X2zt7nP/e53d3J48efDnf9g4fviUBTN8PhljW+qoZBF865r37xt/+j3/qjYXagWqgSYiLcJDggANB0/PTR9773vb/5678+fvKwb+uubQOLz8usKpDQWHvv3r0vfvHNz3/+C9evXWvWyx/+6EdfePPNvYMD690G5+z0PN64fmswHBdZYREVUEWVVJFUN/C8IQEKAooABhAQRIGeBzdefgBQ3dBepE30ISGRIUI0CNaiGmUTYyyqnd/9j//BP/8Xf7KcntrMqiaEFPrl8fTR8bOpKGeFd97fvvvCvRdeaNuO8phnwyePnyAiYQPaWuupkIvlyQ/f+psrh1e//PnfcgQWcoGUQMA4VQxd9+/+4i/+7E//6ScPPkp9q5xAUlkOkmKzXuWhFVEAnZ2d/eC73z28cvXg4ODo6Gkfw2//9je//NWvfPFLX7LOqYr5T779n1XVcFANrCVCJUIFYAYEYBYBQULa2AMJEDbERAFBLh0H/n9cEgBUGFURkeh5ujDmOTkjBIwx1k2dF8W1a1efPHp4dnJaZN4YG1UjR5dl6/Wq7futyWQwrPYPJj/6yQ8+/uTBer1OIQ0Go+WqLooCQIsyW6/rdb16dvSw79YQ+nGZ17Pj2K1ms7N1vfgnf/I//y//0//49OGHHBqODWlMsWOOMQUBiF3Xd62qcohd152fnjx48NF0eoKos9nFul6/9OKLw+HAEJlv/+EfeWez3G6UDhmb0gaLUURoY7MNA91kBBW9RB29zJyXWU830K0iG0FEtDEQPafKhAACQBbbbn10dkRo9yZXTo9PUcRnNgEH5bbri6KsmzqksG7mjx5/dHL25MmzZ5y0qoZ5Xl67fn12MQcAZTsebLVd3TTz4ycfP/30Q4316sEnf/Uv/8VHP3/7n/3p//ZX/8+fU197DiNrD0ejaztblTFWJDM2NzakTpURBFAIpWvXMfVEVBSliJyfnx8dH73xmc8MhwPzB//pH4kmY6kossQiCs65DdyCPmell/qFRJ8LvQ36AP5dKlVlFlA1RETGGENERAhIv0x5CqAoZNR4ml6cHT19tjyf903DMcTYkndBxTqPZBDUWmIO6/UixHo+X4cOCNFnvmnrq4dXUKFeNqPRMEFXDSyGNmfm5eLkxz/vzubPnjx++2c/vXP1ymdfevHFg/3b+3u3D/b3RyMvXFi3VQ4kxFXX1E0dY4+EiiDChlDBOGMAtKmb+Xx+6/atF+6+YI3Bpmnmi8WzIz8YDMqyqKphnmUIimQAEsAmIaqyRQAki/BcuIEqRFRUBGAhUCJDqAJWRTZetAF4QAXtYaOcGDzaw+2rZ48/evL4x+fHZ6ntGRkGoEa6KC4r9q6OTp+dhdZExaA8Hu2282AEjSRVqcrscH9/dfxeB4/tFrZNuAbVja4YfdyEYJd9v2r6+6++duNwfyiyhTkaZBUWceO8rfIINkO4aFbLxGuRi8DO+cqRJ8ry3DmPDMqpXSxPnjwDUBuFd/f2fOZjTJn3eVESoqoYMsIMRIkZQRGJFNFcyo5LdY0KAqoqytbYDVFiFYNKYABRRYDoUqJuiCcIKSrAcFANBuOL2fL0bFovVywx286q/UHouhjT9lbhra37TskgiXMyOBiNRmNRQeSPP/5wMCh8XCboG4172XgHChtgdrFYtMFuja9OrjbCZBAAFYmMMSoGZW+ym9AwujwbXDDPmroLoY/cp5YiirWsBgUkpjzPtrOdvu9DCObe/ddijNaaTQ5y1pK5VPwbIaIbR1C0aFQ2akR1w8pFVGWD1c/F8IYemA0YPdcCCqCXmldVFEREVauyWC4uHnz4oK6bxXqRJDjvFFCUq9xl1ndNaLt+e3e8PSnv3Lmxvb0jAoOqjHGFpk3cC5DpcSvmt/MDG5z1pRuU4OzR+ekHDz7IvfPGphDLcjgoKoOUuazICudzVVRL63rddIE3XBshhhBijH0Ala3x+Nr16/sHB6+8+or9wuc/T0TGGgAIKWldj0ajTSAJEREJJwALCCxCRMzJECEBM4uIsc/DDi6LNvR35FtEAQlREQj0eXlnQ9M5pSwrP/f5rz765MmnH3+4u78duRn6Kp+MXOUsxUVajgaDrcnucDsrS9zbGw6r3Rj7tllNJsVytawlAmTYpsH2aG/3WjNdtyrY906UUryys10vV3Olbt3MVs3Ld+6WLjeqSNYYMxqUu7E/GI/PZ4tA2Isgol4qLajK0pDpuy6lVFUD841v/nZR5FmeV2VJiH0IzhpR3SQmY0hVmZnIoG5qjcSqAEpkjCGA5xJvE4UbIQDP3WhDvTflH5CNyIZfZkDFshzu7u5Np6cA/PJLLxpBViUPw0HubEaUVdXAZ2BJNKWmXjqbyEbmtu+aCMoCmcmGNNgrtjVKm6IJYkVBZTwadiGcXcxsWT07PSOiUTWwiN55MEaMzbwxxkyXy0XdyEZ3GotI3rrMeQRUxL2D/a99/eu0NRqDQlvXdd2EGMuyTMyispGqwkJkAJBT2lAgZqZNUUoEnmMMApAhMoY2xdxL+XYZa8yiAirCzCKKiJtqBJJjcXuHV7/ya1/zeb5a1uPBBFhC36/mCwmhyjLl2HddU8em7lTrvj9p26Pp+VHfcc5YAVY+Gw6H9XJZz2a6XGVBsqgDoCzxqChWTXO2WifvfvLez88X85A4CrMCGiyM3RuN97cmFhFEJLGwiIgiGGdjjG1Tb21te++pKIqyLEejcUqbCqEgoYiqaoppI12tMYYopSQgCiogCpJSiDFcCmii52hzSa8BUVREWFRURZQZObIAQEoSE6uyck/A1pg7d19+47NfnC+Wv3j//aLINfa0qfOphLaJfR+DdG0IfcPadP0ycQQhbMSs483xQcnUXMzCYolN41hyMCUYp2TRjIajs+lZF9Oq6z95/LiLXdu3gSNLQmWHujMejsrcGUQkETBEVVkxCxCK6NbWuOtaCpxYtGmDM77Kc1QmDQaRAFUk9CGGBCKGiIyIRsAkEliCQGIJl1C8gWvVTRELNAEkBWFJIszCgfseUhu5brDvbErYc59kDdookMkmr3z21+698fkWwvGzB1cn40z9qJqAis+NJG5jS97ENsUOwRYmy6wycnZz+96otu6i9aJquYGu79ccOkBrMMtNtjscXh2PIMj2eDdwamLfpZZTbzlBEkyhpLRdQIHRoJJ1VVn6LCOfgcvLye7u4WE5rOxPf/K9g73D8XB7e7ITQnLeEShuJAWicBIQFqvACMgpMoAx1hi7iccNA99UWDelJAVVlJiYyBLZGBjALFft27/4xdHTkxSVRUU4L/1kZ/vwysHVq4feUVmUX/7C56k5Pj07nZ72ignMcjDMeJVizMtR7g2bljPn29A56yQDn/IcfKi7Eq3zdrFuL+pFB/W4GJWTsbOmANwxQ4N6Pm+qonjxxlXvLTNL7A2CgqIxRZZvDUfTJsYgYpwxBKCD4RAEUgree0Rjf/yj7+xuH3zrm7+LiASW1CIQ4IZpq7HWEAIQiAIBEW1SPABwYmMUaVMhVRFRAeuMcEICAOKkovLsyel3//33f/Hzj9arZDPXpS4kzvLKU5bgUT4oRqPylft3793a3Z0cfv4rv//97/7V40cf5kOfpJnPT7e299ES5FRZ6tcUQodqAQQtjvIxNGKSGgcxdavYmKqwVCQDAeKgLJr5wqkOyQRLGcHezqRdLUPXK4swEzpU9c5sDYejVdtykzaISqbIC2Pszv5+OahE2fzKZ1+olyvvy/39K2Q8kiXjEdPl4sGGHhEpKCFZawFRVTZ0AclswNdsai8iokpEGygXhtDJp588/rf/5i8X8457q0hdSDEyCGjPsW6lbacnJ48+ebSq49PzDvLD/b39vjk7nx0lrZPUCcJkZ0xWSNWAW7ZpGaTpONT9tXx/wLYkLCyxpvPlshiP93Z3R6Oh9d5aOyzKwvnt4fjatevGmqPTs+PZ9PziIiX2zrIoC6cUAfFitlw2nSuKshoY45z1zmcvvfTS733721WZm7/3rV+zZIVxZ/sgL0pWNQYJhUUQEUHpsk6klxIXse97RHTeX9aDFQCUjNlQH0RUoRQhRY1RCO2Nm7eU5fToJCRWAJXoMEwKuXtYfPPL97/x5su394vcxouTo/fe+Tn3zda46PsUGeo+LNfzPtXemtCnhD4/uD48vL493Lk53C9azAFHZVZ557ybzlZPjqdXD684405OzlKfJuPJqBpVeZVATy6mP/z5u6er1elitazr4XCEoKDirCEkMK4OkRXRoM+LxIpIr7z6ysv3XxqPR+ZrX/ksofW+BLR5WSEh4OXa5nMzIfwdXxYANMYI8y8r7aoicrkQAACSNCUDYFRRBGKKw+Hgs7/y6sXs9PR8KgkNpFde2PuNX731629ev70XD6rFlfLizlZ3dxwG7eOHnzx6ekGWdro+Xyz6kIJibNerkADGu9d+5c2tKzcOih1+fK7rdZnbrTLLrSGgptO6VUw8yKu27mLgrcHWeLClrJ+ePHvv4ac1mZUoG3Mxmznn90aVpkRoADEpXqwbsK5JoSiqEMLB4ZWvfe3XBoOqHJTmi69e5bb1IgNrMXQDl2VEAJvCKyUgBqNglYyaaL1TAkFQIjCbRWJRVEUWYFVVRAEjkrFg4BS4b0JXjIpqaF9/7d7W5GBvd/dgN/uD3/nC4Yi1flzgCTePt+ysCM+K/smtUbe7XT56yp88ouP5UgS3hhMlWM4X69B1mU3OdtP14v3H2aK3KQxLX+YWVfouERYpkCHtQ9O1/WK5bPuggG0Ij06eYp5BnnUqYCjzbr1aXdvZrcoyxtgzr/pwOl+0zORzn5Ux8X/1x3/8uc+/KSqj0dD84z+4f3dCd4f9Lp6N+SxbPzGLR1wf6+qEwspw5yU4aTG1pKXVDMWiOAsZaZ56tWpQEUWJDUQDyaHklKwyCkPXs6KzWUWGxkW5v33njVdv3Lxynhb/Pluf+HZh08JDCm2t0il0kef72dPrg+XT8+rDo2bWT2NLqZnk2Q5kXm13AGn/pN6aRWCmFLergbEQEjdt8Oq1Vbbpop6TM7Pl/GQ2TSRUGkuYZdagonTNcrE1HnGSrcFwe3e3jt2srp/OFud1uw6RbDbZ3r5568ZLr9z//g/+djAcAhlbqbNGNK19JgrzpIlbcbNeKVNwUQiznFNS8t3gZl6URFYBEgsrJxFBEg3Mvap6l3lXCBNh4bMKscwk95iXgx07LJe2yGmUxfOqftjP3xvElnsTTNFxLDPbhrpv17l3a7w6Gh7/zhvfD4sX3g67IYu49lk7qiYVNEdlj5Vqaey0X6AqKBo03psmNqvlYjzcmp3NY4DUt9VgLKvVul75md0dbI2cNWQ5cipT6uK4LEliSqFuu6en52erpmPpFcrc3rh55e6Ld9fNlGw/XTw+vDm2xNuhWasyKjdNY7wAcMMh9b0KWTKGXaacYkPtWx0IMwMBEjjvMkOC4ByiUZFk1UCvCpFMTI1tWmTOYvK1qaAcR7+/M7hGmY2n79rlWbPorCuXcsZJYp47QgIIIdThJLP2qp3+xqu/yI6++pOpsHLfA56sX76+vd/Kdp4zQEgBEoQ+5oacc2WWz/pTVKzK4bxu6q7e2d/e2dvRFNtmZbPhIK9MbiSwGePx9Nwb65xdrlbzunl4crqIKkVVTbZffeX1L37pa1s7W9OLE0F4+923rlzbs535lCpU5BY45pyAAbDLrgVkSIoxrNbtyFmN1mUT66yxagz6jNACopLUBGQAjSNFVknW5UStWO0gIiVjEGjJfALwDs/Lhj1ESDExmWV7HnitAqGzBOhdhkqUWH22wMn1g/r3rn8C37n1g0Vaug8muZ2Ug3HhyEKr0Cv1dVPg2ojaAqu8GE+G5xcz4ydlUZxMT2TK164eskSLJjRdD9aX+e5wy2Y5WHt6MVXrln13slhcNF30xWgweuX11/+L//IfzWdL78z0fFUOx9OL2Xe+8wOb5WXTBjA5Mxg7ktAZ1VKDCUEVIfWlB+yXIn10gJlBq+iBcxBga9hhLwwJyHiHqCl1ok67cYwhywcKnGVOJBaUZwnZhuSZKwpDjpJsp1VfcNqsiZMKG0LsQkhSQw6r1sJH9692D3hyvO62tqs86zHTDm0XkYTqujuJcwPo0BSZL4dFFlehb8fjfLsbPTs9LkozLktD2MeAXesRkiPmtG6bab2cdDvzdfPg6WmPbmt7++u//tVv//63b9269eEHH40n4/hWms1mXR/ffOkVa7utgaGQEoM26wvDsSrscnG6XjeTnR0xkYEB+2qY9aJWnSOwRgkYiYyxzuRCBsCHwMYSYRJtMVsI9AEIARlyMgiQMw7A9CiBhICDtZKPUcSCAovO523Xx53tYZ9SReUe5l0Na9m6dbP8w3uv/eX3piXUHhCAIgiz5CFyCPPI46KsfJY4Jgq2dEgAiLfvXikmXmIiBBVdhSYBDoscDak1blDEOX305Gi6qMUV3/iNr77w0r3f/d1vvfP2T49PHjVd++nTeDr9ZGtrcv3WwXRxahuoUSRxl2UwrNaZFeHGjSalc+tmkbmsbmufG7KaKRsC5aQJBJEMEFlBI+BAs9liub87NpTIZ0C1cwXHJEmkJ+sMmBR8YEGAzKkfu3HgHrFG14j4ADA5dIkxAzWQG7twdYdlGYvlXnnlXlZ+5vbLb73zJM6eAYFypNSbJAiybtqjMwo9j4feV6RGXGYADCpe29sVkb5t16uVcq7KGagRQeVMeWg0abxx7cp/94//h1/7rW913P34J3/77OjZhw/fKqrihRfuscxtVk4vnjx8WNtHKZ8UFmOEyIXfEvLJgKZZWfTcNrbtKGqnoSboDWVsJfUOLLEhtIScezTOGVdUIxeYXeoNReszSInUoPZWI3drg0GBI4ydzUkDUa3ISfpMwAuBJaaYeywCFGrEFDRJ0p1lUWU1ry9+AuX9L7/52Xpx55OPVu35OkVuc6MFtHV3tOCWcZ0GZSQykYyXwNoHSFFQIqUWAhUjHQzEGm6aenraLaZ3Ct8OzZ3XXn3t/meyfKwwuHrr3k/e/mGXmrCqP3rAnOKjTz9RIOZkD6/fxX5hLaflVBVUWBKXGXESNT4FCGLbEGazZZGXozEaQqLWGM2cIYTeqsv6vAzee4Ko0obUKtJqsSCFwvsEYMkSGkkxQRS+UIzsTMN2Wg+yfDKi89JEy4WwiknGQF2HojTOZwoRPanDpO+ls2cm3n7p5ms72/s/+2DeR4bS2AF1TX/antXaF6Hyzit1zMkkcaqeDJl8UkzMVlHkPsZ4sbgIIeWj3Wow3Hlh+87rr63ScqL10elRCLMQ5qJhZ+vQu3GR2QcfP7h159rF/Miu6sZzHAAZZwEEAdtm5amJ7Tp2KfWu7rUjW7fAiLpOVYm5R0NiiY0hNinEuTZNisagOCMxJteTAUGJ/bpDtVlWWpd58glVTSTAujEX/egvftQ06ej3f8177Eu/1wpEmgGIIQ+KxmCeG1BSj3nQGM5Xenqx+FkxevnNz9557wOjUXGEbRbaLsbYQ0egxhgGYDaqlsC7sqwwr5q8bWAxGg4t7uwNd++98GpRDd+ffbjUdDR78tM/fyekjuNqev6YSM+m88K7WzdfHg2WIsApWQ4tERMqIHCMLKFpG5szs3aB16vURhtJRSSk3iV0Sa1RS5oQkYwiIgiBGgBLWdfHpgHsrZFQOHKYgKDvWTgYjFpkjhykwtDe40fprXePx/uW7NiZTlMSMWQBlPIsRxIERhQkEFHIcvImS/NJ0fTdT7N48ebNu9eHt9/54MnFum6zFJMIszddBpktBzoyOvQXXf14PdV+zthXVen39g5funnvzhtffPPrw9HO4O2/+rN/+Wen69m7v3g7945jS8IXs+WVq3sW3Efvf7A1GTbrWZ6VdstFih3ymrhnjtPZ0vosJOkj9IJ9jCmJ2mSwTyF2gKnXxpEBIDVEQhkW3ozKLM9KZ4cIubTqqdR4VNdPykLJS8LglJ1hiEbEWCFFWNXrm9eLz33uylYOBp1SJEyGDRKBMQBGhYxFRCUDyQRRsTByanKXWJ4aPLq5+8r28PDt90+OLpjVEnJmk8UJDsp+zMusX5yern0fe0YQIt8S33rt5Zfuf9Ztbyc/2L1yo1mv3/vFcZXj6enjqhj2HcdoUkhJF2fT85DGbbv+xn/wDfOHX78TVtNUz6zGpm0Xq3o6W3ISUeHEzOQMZj76TIiq2HNTQ72i2ZQuzs35GZ2dJO4Ghrcp7RPfSN312F+tyltlVi5nJ4g9OmUDQohk1ThDANyBDVvXt+6+WL20D0ONllRcb1zKoDCUJ2VmIbBETtWoohE0Ca2SM0SGwcQEXdQ55WHnyq3ZynYhy7IyzzMudj+6mE8h1FaGk7FhNK0k7bx1XrNRsf3Gq1+oyokkROneeetHZ8efxH5liAjzspio2t3dycXiZLk6iandP7h2cVFbDY0BafpoTK7GlcNhHedgbExRAckqpGRA2t58ut7qE7RdahrmSKkHFDjccrtmdzaH1Ux2t403aIz75PzEmicGo8mJI5CxHCUpZI4tQNRksc/dfOBtkZKoDZzUKFmDxiRBUTJkFZCFQMUYh8lZjWJacB3Z5JwnKSDykycPuwBXr9ydrpqnyyzoeJW0pWpgtMDgUrq6vX/USNvUJuJqsfjZT38ADL/+699cN+H87NPT00/7vuvXXTWodvZGi0Xbte352cVkvH1+dpSV3hVucbG00VTGDZwp5+uZBQbt90YWYscgidw8dE0rg9H+s5rfXV0JTIIuGen6Dom3SnhhB1frdReDQr7u1Qkb5Vpbnz+5cV3V+ZAwLmIvqRpadZ0gOipVK+iZhBVtQgRwVnIO2hEYAmdyJARlERbmPgRLaowacKjeUSJMxjBgtj125yfHo63cfu7qv/5+9+SiMjRA14R+ndWtyTs7gMHVQXPchsg+B3Hdzx/84Hz9mMjMzo/m9fGiXjFL04U+Juet9947f3a0Qi0JTQzN3/udb5nf+9Y3UtTz42er02eTTIp+4dqF045FZw3Ndcvuv4EHn5vc+9qLn/liPpxMF+s2MJKNKY0Ke9usoZlxrNchnDfdvF1dNGfJnO1fdZPt0puqa129wraLxrHzm/JdpmiRlMAKZ6DO2BLAKdgQEZEARFWdt85ZAO37PsVeOW4WqWizDZaMcVQWsDUGwJnN44v37i1ni9lCAhh11HYzkLnN2Zd2ZzIJfecNqkrXNhfn08V8Np+fLxdLRCyKou9b5pDl7u7tl/pO63XrM+sLD2icLcx//rX7mXQFtiOXsFuZFAzQSu0s+iVu6/jF4a1f5eoOVtcI9ebtu1/+6td9UZ6enSGCctqywBLb2K84Tdt63syVuvEubo1LZ0pnrmT2xrC6uVw1YJau8MbnaAdAnjUBooq93D9uSAAePj4yFjJPzAlANnu8jLUgzLFnYQTd7ITaLJE6K9Y0edZYaodV8dKt2+9/vOqhRF/2XDOf+jwwxDz3o2HV913XtU3TphhjDAAaY5xMdmIMCmwMeE/LRTc9XYgAkLz2+ivW+E8+fWL+68+PtJ2S1CwpqLbszzr8sM1O46B2B9nOPTZja0uJaTQoUpS2bd94/fXPvPryYn6+mM3qXtbtypW2jp0AW4iQEqBY9cP8em5vSNhSraYX51neleNRNpjYbIyUx9hz6gEYjQhpksAQB8O8KPymEKwqqpoSA6K3SMB6uZIqCAZ0c8rGkLKhSBj7uhtmxWj7xQ8+OV33pCRt96yoUmSWxEXmY4iL+bJeNTGkvgvruib0my3mZLCq8hjas5N530VmBpO6frW9vf2FL3zR/MFXrieDK+W54INp+3iNHy/kWe/XOILqsI7uow8/WV1Mt3IzGVaDIpMUFxdnNw53vvD6favh/Okn9+/sFKZFiLn321U5sH7gxlf37myPbxGPV3U6On8yWzwuS81HI1dOXLltXaHKiIyEipRUkoqAIiEBGgAAZU6bgyzMAhwsKJCBzeIvCyoJoqpBMESWLCGgcMzyLbKT9z+ZuSpv+2csdUyYus5bY43r2tg18WK6CG3qQ4pR+y72fdjsRG+6LsbY973zzuVQN/OQ+mfPnpnPff1LT4M+mNfvHl88uGhk6yoXO13TMeYPn83efvfDJ0+ePn74yccfvL8+Ox6Xxe1b14H7i+PHhdG9Ad0yR4Pu8dCur+ztHuxd2xnv7w73dqodEkPsFvPVxfL4eP5R3Z6RSiTjBlvFYMf70pIaQ5yI1alaJK9qFTwKZ0bJoDGEhCpiDRkQZSZENMQKzCKqQlERVR2gsZ7UJMX+7Ohid//+RV3ViS8WD8kEQ4PRMG/rdVP3ZTHyvkoBJEIfoCiGIlSvaxExhkbj4WhcxpiQUKBn6MqqQCRjrumz1ex4MXPVEH2x6nogDM16PpPHn1xQSFdH7tXD0f39yY6nfnG2Oj/Sdnr+8J3u5L3m6D1qjra2RmrK6TJxNBo1tO26WS3mi9CFPoWn0ydPFyfsoe/jsknWD4tiZCwBqYIm5sgxsRI6YDCGLQGR2WybRAIASTGCWKJM0ClaazMEQiRrjXM5gGOFjSdJrD2mYWFf+8zX3vu45Txf9yeeU+IWnU1JY1RDPkRpmt5YE3pWIcJN9TkhQVGS85YhsaTEMcurnd19c+3VTCV565CxyKrN6S40dnaWBjp67frB/T13u6RtoxlGSG27unC8HttuTCvPq7M1//jD47cenJ/MYmbyfr2Yzc9qCYFh1bSni9mz+XwtiRWJJPZSLxsOvSGNMYgKOlFkJCJ1REjUKbCiAwIyiJt1c7JAlZpSMUPyQBaNcz53OLRUCThRUqbcWAeQO/I03R0PhpM3Pj6F8/mZdudZaRJD38euS8vlOoTIIoTIIsrQ91FAiyoHZWsTGUUQADDWAxhDZG6+eKjJeqpiB22bAKiPqamlu2hub48PS/Fcp5i6qCE1gXnv8GBnd2d+Mf30owcfPXj86Hi9qFMXlQW99yF0ddf2Yjo0x+v10WLRMSsDBKkIcm+Uu3p10a6XqYsceHPgCsAYU1lfCKGC2s1JCgVAB6Y0tjJuSH6QFLuQwHggB+gk+Rh9EkPoCdAgEWaqbDCITK/dvNo0u3UzOl8diXQGPEdMgXlzg3cIkGKKMQGA88ZYrQbZoCrqZe1dluVZ5myK3Xo1N/dev7ZZzufQO2+bvs6KYnbOQ4A9k4p+rqHvkrasiWu0Fsi++/P3nz097rrUJ2ql6BL2CUKSLgZGSGhadcer1VG9igbLPN8bbE0Gwz5yUAVnkshqHdaLKIDOgzFIxhtbATlBAE2X+53JKuaAJZqBUMHklDxaT8aLQIiQEiogM8fQiURnLQACLSEpphr47PaNzz5+4pYRZ+fPJCoogcIGepiD9361XDKLz5xIJBJryBujonnmqkG5NR607SIvnbn9ma3cG5SYZdZnGGJXt02/yIcQq7QyfScJOsVWYkz9qunOp7O2i5G1C9oxNExBIIoG5ib2vcg66umi7VB3DrYP9se3ruy/fOv6lYP97es3xoeHttqqI67qtF73ZZkNS8wLi4QAzjgPBjfbmxQdq2WwSgWDB+eDihIRmc0uaOczBU6pJYrCvaQ+JlE0SkuUoYZM+jODPNm+38PedHq8Xi5T4KZuq0Flve/6rg8xyzNDCKRkADQhgTPkvev6xhgkq6KxqApz9V5uAAghdIGjOJeBmOZYcu2ddCCWIY8gQbqYIEROLMwSWAJrL1qL9Bx7DkFTz7yOqU4S0N29e/PF21cnmWwXOBmYvDJ+qxjvHAwnV4pyTMCWuqt7g8nAZB6sBQViBSAhJFAjSopOKTO+SmqiMppkDaIqKJMKiFgHgKycJKXQS9tK3WDTQt1bgTy2jTSrJHDlxuvHZ2cPPvposyTPom3onHPeuSzLgMRnVjgNhlVe5GWBg3HpvF0067prsiJr+85cuzfOfYVsL85Whsr1KoUO41kYVURGiYaApUJUaBN7YVAAVkiqSTQo9JAYUpIUVRiJyWpWDba237h/d4tCyatxzmUuJutczs4WXaPtcr1dwcEWj/M4LC2ZDjAhOUVAA4SOMEfjkiCQEbRgfEiNaqeSDIoBBQ7CMYkgGEkQGpHoAUbW7ZC+0EjTwIU2eZzHpp5SjnvXP/ODH/80xMgAkaMiBhZQFk5EWg5KlpjlmXPOlyrKYoAcNc1aiGJic+fVKvSAkKsSKhKb+rwZGRqWGQAJGFEQTaoalEQhiPSqEbQXjapRQJhBBDbb29GBzXf2r945HFc4G9p1mSk5QhIrmNagTb9bxZu7sD9ypHG1vmDuUNPmsLlFo4BCFBG7BKxWEkpSBUkpcowKPVHfhdj2hlLZLdrVxXloI5pRD1UjvguDIJgESIvMFyHMQ/t0+8qLwfgPnjwJgaVPsUtByBsoyjyBqAGfGeY+c2icTLa2EHzmKiIbY7CWLBLlRdG10eSEiTMpY72oxl5YQy+cGnO5qRpZI6smgaiaUJKiKpAYRVEDQAbJoSmKfHglKw9zZ5d9BSmLQJABZCGSjXzz+i7oab08R6jOTuPpfJUVMBia0USrYTDIhEUiVs0JC46Wg2AUgAQai0yirzGLuR8DDNYzalep72rjraWopW+EWOdWLYUxSws5Bs67xXIZfvqbX/rqJyfzH//k7YHNfGmC05T4fLqoxmXuHFIqMg8SJJnYsSTXB+ZIHFVRbYgWCclL5qhbp3qVEmTAkDTFyJGjbP4/wuXJBxSAdHlqdHPMgZVIyVrnyeVJ7Kxb7VWruXPFQJFNG6I16sE4oTu3DwHa6Wz+9Pj84uzo6LhrE+QljCe83dfbiQVSoSMKAxESdho9cjHIBzm156cPVnGtg54GDCPmtk8ySXbQgtHU55AQNCJRSWqAg9U+e3a61qZCHpgU+0dP/tEf/P1u1Z2fPgPXFlWKsaxbCH20DRSlKarckmQmiwH6EPNi0IUe1TljzP6dwnpjnAh0xlC7hnYpQ0QR7hMzQFRNAGlTsEBkBVZSIEQiJOfI5YUrB0lpUfd13eUoX3v5cFv7PY3DJK5V35kcir39A47Ls9NPnj15eHK6ms5i3ZteTBu1DVo3EjvumyQBiC32WT8DbMsSJuPsAKN0q7Zb97Hr2q61ropSLDpdhUXLF2yCGNcKsjUm33Fu2LX9xXROWJSDQ1cc7mTm7PRpVhW37r7y4cdP2r5bLS9CMikmayjzxhsgSNuTsWoWg2R5tVo1dd2IwnC4Za6/XKWUVMUYJCGUfH62ygFDSkmUAQUxArBszhiTICoYJGOsd945n5HP5+vufLEOkUHk/q1rb97br1ArMhhUmapyy+eD+XqxmD9bzE/qVR96A+hNhi4nMFY145gN8n1K1cXpuqlDgVtDv5fD2Jsq9TqdTdG4yc7B1v7uyXKB5ainwUWzEFiL1irKkiU12TCz9iZq2Tf1fHauRPloJ7oCoRtNvEp35foL06Uen81TH4mIVDCFQe73JpPCO+8z74d5Xp2fnwPozs62dXYymVhueb0Kw/F+MRxKlNCkPsqSe4MqcnmGXgEBSQgVkciaTaULCY2lLDs6ny67kEQza0tLd25cxR6YccXooSy2diPgrFmz1hpajYghy9GYggsKkalLRZ/KO7fuX93fH+fm0cP3V/VFW2cF2cEoXzWr49Pj8bgcFePEmDpoQkFt5odjgQsNfWyshKwY7g6KIQSOqVaTc+hHo8r5qgbz9GzVzBf3r5c3d7mffvq1N1//4ds/Q+tHlUX1mYHtalhi5pxNbUpFstbt7E5iYrI09MPxeGJefvlas/B9M5qd6vSkXc9iaCWmRhBFgVmVlRAJCZy1zlu7OV9mAM14a3u8e5gNt1ZdH1MCjrcP94eo8eS8WfXCCMYv267lpAaB+tSv4jphLFCNybvcgwYfObt77408H6rEGNYA1pgxaJZ6aZr1p08/BB+3x1uDbOxt1vbNfL0uBlt5ddDVZxg67cqBuXN97/XR/1fVnfVYlhyHAY6IXM52l7q1V+/LDGc4FBdRFGCOKMogBAH0s98Nv/nJ/8s24FfBCwxbtkgKlkakbM5oSM7Sa+1VdzlrZkaEH86tptzdQNdDoW7dvOdEZsTJ+HK23/V1TMFAB2mZ0mCLvUH3/vK//Z8vr+20KB4vMuBgp4uvb05X/XlpcJpnO0VpRJUlJWGmSGyd3VnM+qE1hrI845RMWT4a+qJvoW9TDKxgmbmPTVTpU0qgask4B9aAL4Fcl6TuhyHxZDbfv3eSFeV0NnvvvffKIm/q+vr29uXl5ee36y9qfjsgLQ5N5cH2HgfXdlrXJgwWkrHgvHu1sp9f2iePnk6dbzfLul6ub89C6hVtphSYv7h8e71ZPzg4QrGo3oi7ub293lztHe1PfdbXt806aJg7WhBlQNz1a7FZkmiwsxaAsiFVv/7Ht+eX+PhB9eCgnrjeuwlmi1dXy0nmC5enCF0b6q7rQht5wNKTsc5bYzDPXEpD067MZPpEFFOMwml0MgSZiPcOjo6OT4xzQ4xDCoLI4AMrixprDw6PDo6PJpOpsSaEwVl7sL93cnKyabuoastKTNknV6/bvWm5KI1sbk29GdqOQcUVrZt/fhF/faGtnR7Mp0ZS3XRXN9dFZpNy6HoIfL1e/+btm6fvPd/xEwBkSSls3lz8ttWbk/uL9fnZZtnUt2p0Nin3+2HoY606mDxHo9YpOVLMjJscHT149uTeB09LI1fLy8167RbHD754+4UFBKYYtA+8bje99Pk8R2fJ2Bhjlvuubdpmk2Iw88X9FIeYoqoaY4hARVJKB3uH3/zwW9PpvPCFz6ssK7M8z7O8mkwODw4Pjo7yLB93fLOIjAgO0oMH97/7nW/fOzp+c3o5hNQ0zfn5aeConFLTDCZfSvF14351nn5X+2vNuxgMcmS5WjWRYT6bKmsYGNG+OD2f7++eHB/y0IUYVPsQzy6WXzz/1n3m/uXnv42NMzqD4DNTWTKIqes3zgeyqZxVmJfkihSgsvZgMeRm1S3rX/796c0ST54drfuvJEjowzAEAWXDs4NZxx2DIqi1JsWooCGEEKIVTqKCaLw31ph+6GJMxhRXN+u6DohZNd8tqjmIRB6M3aY5RAQwdrSZIi/QUFlWk6ryWead2d/b7wL+j//1C03ch3j72ZuFlx2rAlQH7cB3VLaSBYSM+MXt+nbdDH1aFOXuQB5IXfFmta7j8Oz4KPZdHDoSYxDb5vTgZLLYXfzyb38d62Aw5CU4Z5era5erZO2qPz903qtPsyKi9XlRsoZQG47cry3BwdGk51B4PJ4drK9PAZglJgVf5NViNtRDWeVlkRuDIpJlbjafr9YbM5vfAwTvnXcmxqEfBlER0ZBilmVFWRKgIWOdNdZk3meZN2b7aMJZmxflbLazu7u3s7OT57l1XgGGIZZlZY05PT0DNAmwhfxKq6XmHeYD2CiqHBVVVAhk3Q03XRwCO1Ii6phf31xPZrOT3V0vgpBAjaY+6erD73731Xn45d9/jYlcVoQUE0e0ChmfL1/XvMlsYo5MNES2xs3KiTfWhAJjIFjt7UI1tXm1XzfFdXPdhy4Jt8NQzMps6otp5ghTSlukB7BpOzLWlmXJElOMfT+EEFRkSzyoXFxdPn/+lFPgmBREGFUZEY0xeZY556fznSKvnHNIZmwdFVFJoqoI+q0P3wtD++tPPyOTRTVsnAUBTsARNKEkAkbrA0sbUyJPKm+Xt01LydAqhsrZFGMJYg0w9k1z8ewb94OU//WvftXWebVn2FOI6WZ1ZZzHlm67VT6zt23KOA16QZmHgYujwmazHMu6r3kzVFPZO9j3u+VZm2c7ExPr2A1gNcQeoEDVxBERu65llpjE+4yIrM+8oo0DbU0aIkVmZY7aNE3keHCw39Y1EWTWImCW+bws8zw3xgCQqmFmYNFxjFhZVNEqJOX4ve98NHTtFy9eOUqZDgCYFJKqKBJZBCLmfhgiADgLzoCXemjWKXXEl6vl0vrCW/CpHq6Pjtzhyfy//PyXl7dxsbOws9irDGwjZX3Cth82CSdF7oMUqQ/dZZ5bHVi0mB1UezkfHx8lGErbC5XBpGLPxPMBMlvMyigSwnBzcVXt5ArRGhtjIrJ9143toCafHo1aHRprrDPWGeMc5dZ47zIC+/jx0/2Dw/39o4P9k93dg2oyz/LKWkvGiOJYERNVBRqJNEQy5K111mXOZoeHh+vVcrVZglMQQWESBlU0CIZCjCxiQAtIi8wYTYG5BxSFth1WTdeiXvedM+23v/3eq1X1l3/1BRo/t+nIOQlpPQyNQkv2MnQND4KSmQxSMhxo6LGPsSYYCh8j2EmxeDotFhkr5tnn11fLvgFUY0Egtn2XohBkEAHVpBAJIKVkjcu9N8Xs6K6xE8kYsobIOLSEZMiGEJ89f37v5JiMJSRjCBBSisxJhEVBBO7gCLyTvIjQbJebWVZV5e7u7tXNVd13JCCJRQRQFZWI+r43qJW3+9NJYUDiEEUFAQQVYOB429Y9pz/49pOTR+/9x//8q7erKFaMjUiELq8ZWnR7T56ZSVUPbR9iDKBJrSpF8aYgM0kRUt9V+8dQTNe3t123Wam86Hsl9ZlRTSxJRNumJ3ASmFlVkaM46zmkoixNOTlQEVEFEBBRVeGkzKJJmGMcsiy/f/8+IoQ4pBREEnMUTSI8tusTEdy1ZI0ttERkrTWWjEFj0DpTlOXV+UXsB04MCAIKSCEEozrJs51JmVmUGEB5S1SM/ASCgNx/dP8Hf/Kn//N/f/bZlxeaZZohTic6PdgEYyf73/zjH/2rf/Nv/+wvfrpzcLjcdE0bQw9DK4QlmImvJqYwAaRH9JOyqHJxeBZCN6nIaN83IUVVsGQBsG3a0CcFQrTGOkOOyMx3dkxeLkSicIwxpLT9p2OPJyfmVNfrhw8fOpfF0IVh2DZZi4x1ZUBLxmyvHkQFIIIRqkFQ5tT3bds1wmlWTs7OzlNKY0tcWRYfvf/ex3/0/f35pKvXGgNoGnu9RgdMEIHA5+7jH3+8ONj/2d/8nXXVYrEXFOdH7//4p//6hz/68z/7i5/+8Cc/ne2fZJP5B9/63o/++Z/ff/D0N7991bXYdLDuhs1Q16Fe9sNFvXpzdd6l6HYWsLu71LS+vQqhj2EgGtkj5MTAxApN3Ru0AuC8m0wqU1U7CCJjYqZj63RSSaKswqoyDKFumqODQ28dGYNA4705kgkIBmArLo7+piVSBWOJhVli0zQxBo6xKCvv3On5GSA9efzoj//wD+/t7V6/fnl5fsrDMOpVKoIkW8CECBEPDw//5E8+jv3miy++KPP5l1+9Xjcc0hTh+PmHH84O9mxWCRkWVCWflw8fPZvOFr/93Zfk3GR37qb57Pho/+HTe08f3Xt6f358FHx5G4ZNv0KOQ9+KsAiLyOiBxpD6IXICImussZ5uVtcmK+agv28uV2ERhnGiYkmJQWG5XEvSe8f3vcsMOURSHaOXM8Yo3DmEqqp6h30Cp9i3Xde1KSU0xnq32FtETh984/1vfuODRTG9ev3y4u3LNPTKAZRhrNypjMU8RMqs/aM//P5H73/j/PXbzSZeLNPFpl/3Q4gx9NEV2cmDB9Y7a23i0LdNGGIIYTqrdvanlMnJswff++EPP/juD6q943JeBR2SsaugPQ+xu00hGKKUgoIgURgGJADFEFgFmaWospN7+zt7U1NW89G60N9DZrA1ExANmbEJsqnb3cXe/t7hliEFRDSGzNhJu230E+FxHwaoCMc41G2TUlQAsqgESeTBw4dH+4fQhatXb85evNDUAicYcYQtgSOIimQInTf2zz7++Gh3/+WLy5NH3/nyvF6KruO6jzcgqxDk+MGj3fmszF0c+nazijGGoT87e5l0Uy38/acPbTkNmreJk/Z1d2uq6nrZpdDtFNoPQ900MfQAEsIQk4iwRccCMUk3DHW7nsy882rKahfu5DHcUisEW0iUxl59AEkprDf13v5+UeZkzciM6J3nA4AqjKhkRmABUkpt24QwACihcIp1WzdtZ9Cevnp9+tXv1pdvOHZJEstIoSLJlpkygFa0NFgW+Q8//mcDoJmd/ORf/Mvz283p6Xno+hQG4SYkL+yePHm0s5gaEmPAWrPavN7UF3lhRTTL87ZujCXARqVdrVbWGJSuqW9i7BG5bdYKGlMKMY5U2BiYovQiYf9wNplmLMlk+YyM2SJP285QfIcsbntEARS0adq2bR48uGesGVuxWWTkBbcRlrYOpTIPYejaJqbAnCLHvmuvr6+8z77+4quXX/zOcCQeJAUeqVe9e83Rv0M1hLnzO4vdP/7Rjy/X9d7xk/2jh4fH9/7xs39cr5cpdCkOgSmx3Du5/+jRQyK1Vi+uXrXdrUpYLBYxDEVeNE0zm1ZNfbmp16vVikCXy8vM29vVKnEAxBDD+N7HwAQ87uNn5/2jxw9YuZgUxrrqDhS+A6G2nbHj1bG1QUazrm0bET0+OiIaTVIiVWMMvBti1JEXbdpm6HtRFuFhGJar5eX11ds3b9++eHGwM/coPPSqo86pW0cWYfyCQB1Rmefzxd6j97/ZJbOqQ15Mjk7uvX57+urVyxBakMTKrPr06Xvvf+MDQrm6frmuT50jBCryzBnDiTebFRlcba4BhFNMKXR9aywZxLpZxxhTiu/6gkUkDDExE5rpdJYXBY6P/EYPBHDciIiKoz4HeufQ6FZABAXp++6zzz79/De/iSEyIwKSJbLjLhgV3v6JMcQwMKfEKcbQdW1dbzar+ur8bF7mDoRDGA2B0bBBhK3yBoAqBtSDFs4u5ouY6OjBe20fry4vv/zyy8XOYjqdWuuN8UhinWbeOOcTR8Aw2/EGiQAlsrWubWsiGKnoalKQgSQRQPu+a/tmfOl3G+a2sCVq4sCSFGC92qTE9aYnUbnjwPTOmL67v1RpVBIJkVCViWAYur/7u09evHjJLAokoikxizBrShxj6oe+Dz1LEuAUQ993db1u284a6wDnVW4kGmUQhjvIEwlAFUAQxRh0hkrv5tW0Kqc///knXbC7B8dDDBeXl4nZGGfIGXLOFDvzPZG02VytN5c+d4mZE49hdLVed303nU1X62W9WV1cXPgsm83n4z6j6XRCIy6t8u7WIaKqLMoiQ0Rm7rputdxYshTCgKAivFXnYMuwwd07wDvIFM3o1GjT1D//+d989dXXKSRmTimmlMZVhqpwiqDJWNpSLBIB1TnHIXlDngDiABzHpb2C3D29U0QdYTyDUOTZ7nxuyZ6d3/zm67fT+aIoCgU9P79QRRU0xlXV0cH+o6Iq0HSizTAM3la7uwfOZwrU9UPbtUWRD0MPoEPor64v63oDoHWzub25Nt6P0WU0B51zWZZluauqqijyMfX3WR6TkCSOKeJ2zt9S0wh3gtFo8m2zsZGfVRHZbOqf/ewXX371VQghhYCjZyMppQQA3nvnnDVmFLeyzJdl3vV95i2q4PahptwthUYceHSmlAi9M5Oy2Fvs3F7frNfNy5dnMaozCKqvXr0mJAWcz3cePnjv4cPnH33rQ4BuMnGgkAYLYCfTuQKWRbmzs8spphQRwTurysvlUoTzLAsphDgYa53PENFYY80I7aEhtM4CaNv1XdcnZgs4xMDOTMlYVKOCiCQoKmMZCGBL4yqA+b3gB0PT3PztJ3+dFX+6v7cnrAIsykiQuQzEIdpgg3MJgEQy4ZYUHFpMoswjkMgK49iMFWICQkC0xng/K2dFkZ1+9fp8zfN6JYxi8OXXX61X16zsq0m5t/vgif/Jnz978mQvJh26tvS2j8u23rBK5k3bNEWZ1c3aOb/erNfr22pS5nm5Wg0xBIOY4jDuBQdUa4wCqLKQopG8wBlnIp0m1qBkDMQ4hNBvb5btmvCdZb7lgPEdnQmKoKjCEm5ubz/55JPb5TLEwJxG2tRa553PnC/LqqomWZZnLnfWijACSGIdDwkAHYsqAAIqCGJAMuSK4sykWe5Y9Pz6pus3OqyIeLrY+/Szz0BDPzRl6Y+P97//vQ8d9teXb50xs8ncWZ8VpXVOVfu+B5Ku39zcXrJ0Y1l5uVz2fWsMiYix1lhrDDprnXN38xMoKFkyhnye7SxmRZEJC1lLCDD0fYxBJKmKwjb5pnHJ8/+R0rhN7hEUUETevn39i1/87O2bt2GIqgbReO8zn3mX5VmR50VVlT7PRTSlKCDyTxde488RQY1GkyP2Vmc27ubqvX11vTqvB0atPCt3v/78069efb3eLEO7muT07Q+e7GSGwlB6s769AgM2L7PJTl5UnJgsWW9CbLphdXH9Co0aojzPuq6z1oxkjMHt5z8a49tEg0gVyJgs92WRu8yiEeMyR0TCLKLGGKQ7ghveadx38Xv79Wj7ICEQIQt3XXd5dVmW1e5i4ZzPfGYMbaOMbPGb65ub07enmaXckgVVBB5rRCqiTKAW1TvyzuTeVpOdlO3+/YubiwCLo+PvfvRhSt2//w//LnTr3Z3ymx88O9ybtqvrk4OJxuCzoprPuyEKADlXZHlb1wJxs7m+ujlTGERDlvm27XzmUop93wHo+Mnglhncls/GdArRIpKK4ngCBIixzhASAfI/ucUUthnJiI7p9qPXbYS6u7J0q2grp3R5ddX3w95it6oq76yML6iqqobw9Ozs/Pw8N5gZMIRAoASyPWkACAEIyVpjHWYTqA7O1vxm1e4/fPiDH3zvaDH56//+n85Ov3r++Pg7Hz3/7h98cHK4+3//4ZNH946tsSxaVBPn/breOGMRZLW6iSkgSRhaQK7rdUwxcaqqyhCmlEYijcYxugMa7/xx3AYCBBBFAmvQWGcAkAwhUkoJiBBwzN7HRdLvp7a71Tfc/a+gqmkslQjLcrm6vLzeme9Mq4m1drzoEEAVXr5+fXp+ZhFywrtfDgDUkI4N3uS8kFfjUzbfRFtv6m9+8OzZ04O9CnVzPsm59GI0SGimpZ9UZdfUV1c3Dx4+7mKc7y5CisaYerP2zrZNvdksrcU+DJLYWpdi4BQAIaVkDHlnQwgwWru4PSEFtzFyu41IVEUFAIjAuMzdBQdSIE5MSNtjJ7YjpO9CyMi/vxsoBVGNION3kLWuH4aXL142Tb0zm2WZBxzDsi5Xq9dv32gcjIqh8aMaIwALQGIYkkZAJh8pSwzv3z84qijVpy7e8upikhFBaFe3KYWzs1NJ6eGDR7/6h0+fPP9GVhYC6fD4aHVzOy9LABmGoWk2WZ6tVktQIPLr5TkRisgw9Mwpy3NDlDjdReq7gwgAmBl+L89vxVBjrce7/MMYRJKUAqEiKqGM7Ri0XQdvV3qIY6lQAUQhjeP2LudThcvL5YuXb1h4MpvYzCaN02l1e32x3KxbllahFqhZl+xvOe84Adgyn98/Onr6+OAPnh483y8KGw2E0nuJDGDK3E0ynzkjLG1TX9/eTCaTRMPNNT69/6G1V9NZNpk86VVUYr1ZIyXWLqU+peSsB4xtV4fYsgRVjiGWZVmW02EIquN2GOQEqIZFRkt1jOBjRmnGOr6qvEtpAZVZx/xDRAHBEBkkJENIxpg7tnZMag0AjYvlMbKMF2/X12/fvj2/uMgy77O8Kqv79+8hQAgxxMQjB+99XtqH9+ZPHx589P6zD54/yPMeY5OG4JxNKXJMeZanmDLvnHOiyIpAdrVuYorz/d1PP335/rMPjG3ImKI4cpnru81quQyhSamPKaQYVLTprvu4VmWRmFJCNNZ6JGJOY5KJAAhGAEQYREc4VlVZWFXM6Karwp2PLWQIAVkEgYyhMTUhsohu3FJDaAktEhmyRAbA3B0NkUQSjDvFlVWlbdrXr0+vLm68y+ezyb179x8/fnp8cm9//+jJ48cfffThjz/+/v6MKiPzjJqbM0irwjlrChGuyjIxD2HIMh/iICIuy7Ki2NR1YhHm69Xq/HxZFJP7j05i4NlsNwzBe1qub/qhFU1933rvuqHdNKcxtSJx9HCVIYTInJjZZy5xEIVxLttORKqIMObnKmKItuI+Io6c2lhJHm8w3J6YgEQI6uDulAqDZMgAkiE7VvutJRiHflwbCiOiMx6RNpvu5ctXMQ6T6SzLy6qaLxa7D+4/fv74cUV68fJ3qamljVNfGBVmRfJj/liWJRlqmsZ7RwSKaK3LfDZerV2ITdut1/Wjx89d7omYkF68/to4aLsWSTNvm3bT9+2muSIC5mgN7e3uiagIjPM4AKuObXHbdTLi9gSkcTmtqsZaq9tAczeD3WWxgDDmmzgGfXQwnkczBnIaj9IaIVIaj/8hMggoICpKZK11RE4EYgxXV5dnF9eiOJvvVNVsMt3ZLSbrNy81bLhvZeDMTzZNd3B0OITBeccs4wS02WzyPBOAEMPt7RIBZ7MZqiJSiM1q3VTVYTXLBr7K8iIr8xcvv/LeGWO6rkHSfqhVBQGtMX0/gOp0ttO2PSASYeKIIMwiAuMRLKrjsm1EUhVAjfMethW0u+QVxg0B2wqhwvY57N2jxlE/ZJE0nvGFqISESIYcgh1HmZCMdc5lxhCCMnNkiSFeXd+cnV2s1psQU6mpPv9N6K/2dytj3NVtrdberpbe0c3N7ZiIE5IwJ47TaQWILNq29dD308nEGxPCOia+Werhw91V//XF1e1isQsEm/WmKAoEObt4s1jMrMlnk52QEidOHIdhcM4wCwurMmwrSOSM3W5Z2O5dEBFWVUPWjBWyd09rEUHx7hgafKfxAysgji0wSAYBgSWJRJax5Q4QrSFP4yEJaN32ryFDSCSCZK0ChBibtr24vKS0Lvl8PoPjw7nN8k3X1aFPKaCIKAgna43zviiKLPObZk3GGsKuG7yziAjM5QQjuOsl5XMKeE5uEgZums18unNxfmEdndw7fP36y8X8OEUF0LpZs6TxPVbVVFSGoSODqoCwPShE38Hg200e8P8A4xPQ5gplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjE4ODMxCmVuZG9iagoxNCAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4IC9Db2xvclNwYWNlIC9EZXZpY2VSR0IKL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMyAvQ29sdW1ucyA5NyAvUHJlZGljdG9yIDEwID4+IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9IZWlnaHQgOTcgL0xlbmd0aCA1MiAwIFIgL1N1YnR5cGUgL0ltYWdlIC9UeXBlIC9YT2JqZWN0IC9XaWR0aCA5NyA+PgpzdHJlYW0KeJwEwQVAG4aCANAQd4VAQgQN7u6uhQot1F3XdlvXbZ103V973VZZt27turq7UIVixd0CBBIggYQkEEJCiDvJvefSKwBYwN857zQ1g9c/6XDZnol04q0/40RHY2VH+yA/4n+WlWR6wxZdVhZU4D44rz5Id9mwZ81hHIe+Mvw5Z+0X2AcdA4mB9WfcMv1url/1FrBOPNJefe/do5gk/10bDuiUBo4fVl/JGWRzEqlMI4asK8ZB3pHziigH7Jevgdt6m/BSUPjrm9VQXcA3m3euWXftevPRqX8eXqwMWHOg5sXb29Ovfksuivy5jznFJvyU3H/z9DNwUQm0cuaO5LNzV5IK84cGrs7/dG24MKd9ofxi6tBv3W8Br0Y6HRZBSNyhRWt4PnLYBGLDQxJ9gn1AS09lK28NDHzVfbo+EOT4t2Xg8b9DbZe/CKo4dPwLW02Xobt6stEKrH+6Z6lqBm4BHg2P0bT+gQjRgEZmE23T0wRngGugpuef+x8aajr6W91LmFVwITSNpL9IcB14d9huRTjG3E/+D2iMfGRUll25UjoJ65kfdP/8c5WmOKpv1FfYXfLjVtWEXTklHLTeB/4YOxJ+QiHW2Id4b/9pGuAMlG+/1HR7TJ0ZvGylWHWGyqt9Wwqq5RC+OTxNmw/JAsUCVS45GTTYcN14SsOjoVKIvn9bfOzkiypfDwTRxnYNCAE2PAuVt7f7o9u8UyWW8YIstzI05vkB7wT2C7eNM9qBtt9dQH41cLYhnLY2dGNw3LmDHyaqnBLB0KVT3iFpl7JTo1uB2/48NcFRXEFvW73KAMAFRJIahEaZLU/ReV8o9KFUZUOEH8Da6NxyqbIdSu5M1p5vsVhc8+mgzw8d4XJU6njQAs9zrB8c/3V4UlDAxMCwOXzvChJ+ovLjHhyyWsJyULNI+aFMT/uzv5wePM7czlR1qRfWBds99m7WZDHkx//5TPyZp7LFNN9r8DPNQeMHhmU9Zj6vpVk9G2hcBjidpm2F3ecvQhwJ2k5NQoybcmCsjYiABpCQch+vqilfUG6+d5oeyUcZA1lWSHBqfL09+LhbnCM/bSY+wKb/pL0vuYr4ga2UXGXfaLZaTqwpe3dFfmSgutV0wxMD1NmyJFg44qBFvj4zZvMKS3k8zuz6R5c1ochPygB5FBWT0eNXaiD9ddaAjiWAuWtzkLZfbHgjIUj3Jh49epCeFgrFvtfRN7jClf3G5TdDapGh/JV/dCFz5eBhA6jUspwdc1g6S0gyTa0/4FcPc2lpm85ZdWhBAh2/19O7LlvqX4NJLVXuyS6PMtSJiVeOfdadB1xmQppff1gRni9Wm93j7bf7RXtXWwCxCw7dDJgE4rjO4PIOmu3tCjCHSlr6etseOoXr5h2R6IO3jbzdvgmMlo0A0XCEo6TuX1tInSoZXWGfMIrn69SvXz2T4aAUF4qHy5gLurfEo1v/Jw/lFPams9ggouo9N/NIa0wSIf7z3KBGpdSm6P3vaYaW9ePnbuHE2anJHX+DR3QL4ZHemImZe/+9dartifu8oVGhYRbyb1UDj//6PtcvNioXVpHnwEUVdiwCsDlMaK7B1yK+8P0DtXvsxATApNjEbh7as5e4ibm27f/6um41HtvHALGE53N4REuiVtgNWHMyxOWfluyuLSEqn9ufRvOYUFBqon7VQUgKOJEBgvPiftzZlB897lpe8OOOwxOb+jAKxZn/3QYBt2RVJG6O+uttM8LDE9TBH1UURElqwaL2Owl+sJN7U3rVEcOCqT4AO3zkk5mK6ZYzF0RO6RRa6QTv3xGXh6mvlT8RBTx66z7d7+9HpexfXp5dEQd8wxP6BGBRWs7P/BDT2epCB44ETq3qAfGLfdPJEpdZ7blh4OXw/fkHiSNTNNHMHFQFMC647KANvDWBbwYGR+g0a4JaLTraeYFiVtdx9ZDYMOVCNDd8c1IXDHf7OIZlv60KQhMdPNW1i3WEnOJNbh0hBYXXJ5TDab4cMwrfxiF0lZ1w9Tt86wxIBHhQ4tC4brBf+6CvCFT0sTUQ7OEP7BejVrfM0/klVM57+1CvJU98bfLf3SLqQofMMrm7YNcri6oIcuX8l70AFRWj21pyFFi59nXcG8C5/uE9O1yOeQ2n9xuYS/ayz/f/7SntoyJm+ic8IEiYSLq7cA6uwvTPrWmmue3fYg6mvRsYtVOixyYHCAZqHiUBz/zQmJ1lufS2TZtXPG4MiRMEPDsRFqfjSLELFR7gbCZXBHN2vn6wGH5EjHFFJySY6+wsGoJ47eyMi5ZmmlzjrqDNf7Q/tkz74JSxCRFxDC2GOkSKhvrhiyJGzxzIItjavIHf+/pZL16LDo60QKjguDDoqjVxhX3dzaS4bSEuT+vCwcuh/rYJ0gAma1w3ZBkA/YXeOL6Z1dFti0hzu3XmLMgeRowekO31YpU9cYbMWmcnP68a+3T4z4NwSL/ydvmTfuRaaoh3nvbsS/lJpY9yV2ZAZtkJZnBoyMOWqZZJmRXt/HLPfdXdafdhSWJyTuvr5jHPFu2sa5Sy3KjEpxXFdL8PJ727fGNfOcm1vY606bBbfUcnmOYbXbHID6R8y+0xLTM81gJGbmELAj7x52KDi/U8d5g4YrME5DLQ54uBgicjI2+bDdGyJ6a/ttTRQWE2NX2Mc9Uz3XfeudU/XyUFLavqDO4T3Qx/Y8gK84gTZr1S39qYveXh174GQR9fAMfTdc2tZu/err5o1ipf0/BEtksJV7uAh3jqpRgIMObT2crv+9pAHR0H3PpRCPeTc+GgJE/YJ+hCxJHgDy3mwoMB898dAJOfnE41ruuuiR4TGU5xoxpN/OkJkk6w5tV+C3BXkC7l4uFvQkZwcCHulE8e8u7mbRGm64MayGx09QQtvAQakBOdURLihqJVUyg1RYs9MaGLMxv2RNh5j199gfn7yS1VjrdQA/Ff1CWcDhKCOu7P8bFueL96/x1Dsw6iVYhBTMl88NeEWwkaVMka1bsFYLYr4Z+OkkLXoCD11Zq4E6MLBem5CQAU8+PwsYZZwByydok41uG/j9lbxXKHhFN883qbfAt11h5k0brM2r9HDQp4XERbMFn7KOxM+bfk48iHsNJV8I9SD9xBrlG9ql2dCu6Xz3C5AyDxEqh+aSV3YqHoFtlfYpSTKLqOVY+WH4P+WeN9arw0LKDasX/JkuEfph7LQ16kELaBJgAGg6mJui6/IuXx2/r3KhMxHetPloE5gydA4XKbZOMXxYjsohLyQsPRqoAnLjrl3xU/ryEUr+YjjdSG8u5/es63tXCy/eJVIXb+FYjHMuLaneohEx1HyyAU4XXF5JDY/MofhuwgCciNB2HVATxBn8byt4YKeJLNCZ+ZX4yW4py2QVy0cc+ahflLhjjS1NDrechWqnHq44BuCemtuwmUoOpbO1BOC5UcAH10/YLJGtI6Ppz2xwB+XEFFo5NXzVgia12QFXG04bauB6D/hYcR0cjuV51NfAChhLhC4cKD8LoANghqbOmCXjLrjaNhCSiPpWNpwvn23taM5LH5VBADVceXgtJ3b4dTyK38cYoOqfNMSqz8X5NmmqeEa7tfhqzY5OWRIcAjX7T27nZFmsJydHxYEXHZVsUNqfCb//JMzaUPUzeHVGpozqaWu2Jo3mcgcqjtQZ+ub/v7CWpI2C82IMu2st+8gYkWhh5p1y1nq9F7xSsWoHi5DUSI5t3+lz0PQnGRvl7RoUsRvrbuCV9fyvT9V6hIsAfxyT3nzUhWbyoAwm8hv9JFbYvOlh7a5cpowIJxWCdVhybT0jT/t28E5/Mgzy3sm6aR2+4nuoKX7it1luXP5uZ5Nri3p7d+EB5slvSF7pKOKUWriIzXt/Q7Ce4IPkz8+COTlOjo5KrQeHChX3SOW4+Qou9tZ3Rj1BgHZY6uQpTOFoZM9BEPuY6DBqMeuRoE1tUrwdX9PjfPGOcicpUtZ+pnO3oBfoTg4LU7VCa7VzRCuy1KuweixcHNyQltwFSEZH7ZDYUvQvWL/0kufjluAdvcwiLTPS5OgHOwcVefRAEtj4TsiYFhfRZtV0Kcy9inwTwb2y04sHU4Uw7GIPZmGmyDzoDQNNt0PfFLj+Xnnze0kzOS2WMTkVhE08ikqLB3rMLURlKzm/T0SWlGDP2v+zPpA2bowrWoBYXpg3EkIMinmKtSrbr1PNxUfwfogqKjsaYEfWo4fXBBuSI9RDD27v7teX2Lf4zPZK1oNB3EE31KNWVqshQhrLnwj8PwTOAHByFkjR3GQC0rP3wKiAmPZqcawSvfYGneaNE8x8GbGp0vjLJY20CvTiVqRgboc1qkF+Xc+3up1MUPFP9J6fq/gx077rU5fRAOjOPJqRZLaOmdNsgQr4Fol1pxaA7j2N3Dp8vCPRP8HEDR9IIzLDnS85uPNQbHqlz+k8CGQ9FgPDYl2YO1qlrdF1qiSgzZ5Sl71nhHjECYhVwAJdyTd1emi2LV8JpXnIK6qD9K1/19Ae/l06cAApxbKE3Kwv8m6hNwcuBvKQI7zgdnnrcqh3ewPthDEi72/l9wVmuX8mESc/ij+682kQPl2sUoDo187PeYU29d+YEQFPbLdZ7MCNX6FVEYhl3lhmCYGIQyOnQJCEKQoa3ajzlASi+NINA0GFkPgw64J/MpKiP+2TXM4sTkWls1LUOTI4FplEDZshppD8DEgUhLLiSBCxm7SHdtDLfzXh//6yn7qws7eryyFYt3B5sl0l+OrU5Nr/h9WPbl2dxt0e7R4bxevyOurmrMUjvo+qXrU2UVR6SZQHNEYARlkcB6psdKm/Z/w2iXLJCTiydaOvafyyKagByz/9QH4/rGrmbfEiqjEy/8RxZPnc2hCVRgwor5g5RcXO3tCJrkzkMTYUm+ALDnItNfyVaoYg0swNLlfkptzoHvbJSH9Y6bClJMgvPtY+UvPiOdIb+6iqGcR23wDWnIpiUSE/TAvaY94kCq59XyNIymzZViX1zLmCOVRr3Xo+enQjPcl4c6lKy0sI4nbyJWpv381yWBBTuau7Zz+nXuvtUuQxLL8TW+sXQJCR5Giusf69Zh+Jv8ZTx+Leh/ImBpijvogDGgsOWBlfmctWpvKNQ2qrmJt2mezvKml2d4PWCPlABnK4rTeenvGi53xDXS79OBh+GhVFhgmCo9nuvEXPiZQW2XGHr8GY2DGXz2pcVS1M8/xLOQUcvKT/jsl4c6FHcfHUxoPd5kU7jBxd+nm6y2wG3uExNn1OFkV3DG60Zujv55Z0Om9cmhX42Br+KyZe9o0SMEZW3PHB978tViel5kf/PuFWMZI+4z+m0RB9WAkOpJcErg+b8WQpaXaKBZINKYliNK2cbjjvQsoRKWn4IgLDc/SExNC3xWXDlb3xeOi7CDknyYmsG+ufJ1K56+aUn68TsvC2Ub41MQhry3L7hp35oEF/cfnnmKhl6vjF+yWEqEq2kIyahe1Q06mbQAVri0wT0e5nz7sCfDOl6JlZXxGrkBloGp6fObyS4vprVtXa2ninus0YS4oNqu7kTgp/qz+6XHwen0rNwnCyhom+fSV7mhRpmSXUVTsYgrXetX/8ppk2LP/eK1Y4+EN5tHTgiIs3vP9A4BywTa1tOeHeiVqZ2EqB+BjyuNWfWR0dLxd+F9QWLB9iKFhx/45V3R0uS3sY7++Z9gyLF41UeXv4OdTNykJUwMoRl+pReuOBOofNqwLXXg9pafuJ0BFSynoqHuspyKfwnvwfopt2rc29qWVP2qVai5pt5472woejMWqUJ7oL2RyDf+rKjmp+wtZOv3H1RRG0GhNIIuYa/KFeJSub/ub3FCQAiNl3+jkxaXEurjLVzkjVS/coIU3AOTgqlpCuBUyP7FS9cZ7SvTcmUzgLEwOmlF77DBPicx7ti8v62xMeub2u898sL7rJYHX5mfYtd67jyw4KdXfk3GNfJDRx+GxTJxhb7aMEoL3X/bwrD5GoxUbtK8r9LF7RquN9NYAAGYzNZ9wcru9XI9ZAxJ8xw/BWpGaGNgfaTt4KCKoJqcxgk2xN+QEDvj5YOkNdQSMiC+VJO5DeGQcAt8nb+L1S+WVY/v01uxJlFg4cIMjMptDjKB+tyClWzOF57IttUtL8JAesSy9UuPjYkws8qEjdC6u04xqbpzbqW+A2RuxyIMFz3c25aUYwGiMa3v5I0MmZI3/1pJXxJceneADp8MfdgMi5kE7zkA0uViKv+bYr8ZvXHjEGgU0ZfaFINh/HnXJrd7RKRPPeNrsVvXund3TWO4JoLJ8ieJvevoT/SAHRnjI1f/8E+ZCfKqU4gwkbv9Fcmzy9PdxCXov0sgnUJq1wXmYNk3pp0mjYl/vqN3bHFkZ8Vqn0y6HdGiHBZ7Afgsf3yCRnG2jeplWhipUWvQ2xv+6yjDgFWvKW+uAjwXJs9CtV3zWnfdBAXjOWvvwQCh2BWBN8Ftzm8Cuwo6kLTvDQk818nOf0JiGu+99YXJVvkTwxc7z70TdkeRliwHTS2IY1BGrASpDkgH+QotBsqCIWzt3nXeSyHfncTw2xH6bBw1g3rn17u02PTsIwlHIrNGmvoIiY4UOCovTf3ywfjpC6nlmYzHBYtQ0U1XKDYzhlX56hKo/OAvRL3+hld0ECq0lxKz1PwhJT+68vf/4vNY33J6m7MDDm76ePqPHkTM5kUXEEzln25w+owJWN6GwMTx1nuz7jywzvVCWNRumS7/nmPRd2MgpWRCMB235hBza2h7jRjQ0NhNDkMwopM+PJyvM48vVpzOKMKx37xafNTIRto2fbn2x5oW1tuEAqf82IEhJ041FxoDMAxEIsD0nfdevSVdaBmwh6WwIloFqEvyUJocWRjjsIqu/prC8BFrdXrfPNiHxcNfAnq+fAh6/PR4foJjzKqdzmAMNPCBwMZpKjQ0vvJiP/eRst+cjmRME3JEHzhMtORBlsjxoMp48d8fXImEUBeJeJBfXNQ4pe33cglt7j4frpHU/sSL8okBOvAJ8X6gc0e33b7xpHxFdnTTvRWLPbWe4cnOWaMf9GRn15HDG8rAdxBZG7cXbXm2BPVq8N/RaPdMFp0Rdot41bUf+ASUgVb/GBhMnDHZz25UNJ65GJ9O6nj26cD2z9NAvRIBrDfsWNP1X3/8zHVZLE9KK7IsWJqqJijTkgKwEkom2OAILNfzz/bsKPmwmdW+vG5eYR8Cfmj3+OrzNxDctwpj056N6sLQQNb/ygiSWINh+kzFbrlZ7hUFsVHUL8QJfr4LE9N5+E4NYW3j0+cRo9kvP4bkoVJjA/n/DA9JEWhwSaF8nuOfqqGCYz1SRqXL80wiy66f2QRdrHUr/nabT2SWV25e+b2u2fKE6FZD3U/+NOhkEIbCMj2eKh7/538z5GjkDHchCxQ7tSugX78usXtw7bFKHVRU4QfBQkTl7mEBWRs9zJhDjce74Yh5zwizkOnEfRJ1Ti9zc+KpWcFVZDuYvCLau6O5agHrTbc+oks5PYronTtcrfZXb15NKrA+mVvA6l52j3bBQg2GBk7UvRtdWHSqPzu6L+7hzadGH1pYRuagLtUN/GgW2IA6nveLAOa7N2VTUHMVG1w3aIkiL+OLZuIIL3VE3BMB2M+YsR2IRyFZ3lPIZXmpjL42gPwRgCZ3LBNFUlCtvNbz7GoVFMofxKJpk1qgT6zpDT6CEmn2kPSPBDCj0tM5fJTZOmzJdQ5pK9tSPyt6crqyYGG5ckgoQXmVOkXLsd41E0hblbPZXhMbfzKzlY+zzX/wSNsBs4J2JRjdDc/EHpMWF/eaMSABNzPgkzfbNw6iFVZe7OuwWgk4TGlxOpJTfeg51GtfAMvd8x5AEZxNQjU1MPIKXTXLZMhU7Kmdj8+grW64lVlp3FkN3oKodCtUiWYFj2977PjusJ5DBRHm6OJzHd7HyvQRye7ft/n+cn634vfPbETH6uzGpQFG1Yjfvr2/DCwvSYVfY5PRVWN/EX77pk27zvf3+eFZn3LZChZkfP7TonTaxev29noI2ey2XLY6lDc66u67gwqo3njaXqONxPS/nkMXmScWf8A+Z4x95kjJSGe6amDqvluXGJ7WaPxYwKt/ldu+2PPWmJAlQmNfg2kRkBzqqqiwdtfhO1/PWZVFbs6+LLKf8aWs2OV55HzfvMA+C+gFNTycBSRBRiAx332cKd41+qB7n6afEBkz1OydvNj1HEhcIwQE6DUXygrXL83VhH4X6y1XrN4eFJPN8i0Z4y+2X2VEx23Z9OICWxkYlquqIReHDjZUKjrqv9hVMR1stijtC4YlAxDkJmleSg81mM2uxHYosiWA5S3+cIEfdKAvJRXBHzkSGlnpi7zvN4G+LtRKyRKY73de0degdHe1CoUdkZHcC13/rGvvDE7L+AjZRE/ATs+YR6Z+5qsm3zQ1YKIl7nHxf/f5HCIPJHnMrnGzj9/raXHZHKbM+yBvsFHEfpj8VF+asIWDiWVBQ6gugeurDDkTNU+Wz1S0p1589vATTVOVR1a/qTKzDqzenM5E+9lzDj0zXs8n6f5OcPbT5pNBG89UFXS3fvtnC0QwMZ/w2Uu2yy/s8lS7mTd8s6h4nep+54YvJXGrSw9Xe3B7xAXqx2ZC46M/JgxA8O0p2cByZnDW7qKQ6bvVe92s8JiiMmYyCKCfGihivjl6391BjA1irQ/WfNQ26oOpkNGR1bRptdwQkFV8+06zmxb57tO2QObNb3xbGzi5PQUY39GXX2WWc1tBiTT6VNvHeIxM07dQplMoXgy8WlFkVYRk69pjn31oMKvzt4DXbMnWBqcmeKPDfZz2fyex83RXsvjex3k+MMRdNJH5ZZrWSh+nDteAt6shdbkO0ZPJEdDTMXoQRory/H5bggRmu+fbNkcQbXXdHq9XCaJPbkkInqj+ZFRfxifVqIkRmBd8qoYtt6N+BySDxqhfQHlBRZuiOtEpmL4/v+O2TKE8bwR/nqoDobhWz1hmIUWkVq/BNXO0H98BfIFpPsGLnRsfdt4NY0Ci13n66wnK8QUnZxrJNwom6javxyHNtsdvSmDAeLiCcopZ03yjF7PjVkHOe82CoL0blgBR/jPgadx50EdvWBBD0e2dqK3ff3d66iL6DVg4fe2R7I/t2xV/BC/aGcypuxJ+pqKtSSQR+H99eC9p40+7wvMiPuXguQB4n8fgh/N/CuHkWdkcmIrGzQKaXuC4vvhSH0fkM6rbVMejFKfzzQJNTv0oQ7rTQP0KsVuQsk/IL0hAFoxUud70sluviqLV699mzVSjNaHMzyxPLvWOykq/DMAAwi791JuSmNYYtFObTqOgECDHqW/N9XF6IdxnjbVJOQMjcN5FfZ0dhCZm+SOS/OSXazBWyqqCAgmn7kdWcSQFQ1y3fVLyvGjbenlW9Dlg9qv9L9Zuyl2/NJTk/NbFe4jdHzXX2oFQ9wcfoB3PJlfvWGAFrgx79uoTI1Wj7dXmUDHLu0OB1nk6YO6qzsfT6B8VzTXwVxLgZFRgc0JZonf2wh0LdbV776Bj/aEF+r8/LxIC82OvE5IR4Acvh5ooHmmwJiGYtW1+xOyT4I8ebRrVWZtDViYErs6TQrmudHJvK8GqNmPCwzxhC1+njJUa+0ABmEHnV2lkzm0ei3RyXTqQudQzunqtpHmqeMPIoFzw3BAsmrqwsCBwDfJCWjrEanXWprDP3e9m9qkEkvHQwyoACCRj/DVzrzrO+lasDsATozMnVmfJ1K3w9xyp1WrzWZ7YHgH9+GvfEMlxb8KRF0O49EEyzX6Ds9n4PusS2d/3o2fdwCg4iPd+zy9Guxu/mn4ou4qz4Ddc7W6yzdk8DG5+Ht2uaYmv/y1YCkbcGlV7AXW7avq806nBhHfzuGL0UHZbW9oit9qP7FSpEQP6sH6kQfYDyYISYBNhKzZ78W8mnSxquiEziZ78XGx9bg+y0/33IjXsEeHr2vA15aG8xDUdLxEC0O0yGn+GMgVwBMJnd8kpRLSDHWPEtOn9pYuLkuq2QfuMW4hB/bzhjU765FSaq8XcvzRM1CJ/3xOwA5+M6tNEkl03oG2h4sWOPA4tZSWqXZnkGmIa90ESnaDt565JlO1FCcFzWxBAlox7p5fQF1K1bo+MNzHrkzhun3O8IzidYcs46ZQjPobF67VacxH4ZFZyVHTgdYXYjf8iR+v85/V4BBr3Wqeu8AuEP+r+p5dAjbHTlGN9imwVeoDb87AgYv6py9F4d3eX+oGa9LIeQpZMp/ndKQp5o3Sd4c2izJO0HP68JXZ1wBS+A6ygURTmKuyaN9OXC+msOTBJcbEzYVX+bqeFm13I9G7HGILSk2cgvkthWYC3JzsdK+lp9197LBe+FJup4/0L7NUeC6qRtPyCj0FhN4haNA4NqF+5Hj8lkjCzk4OD6+EQQmuj4Ayvk+oa3PDSZnC0FjAosXNknkm1sAsFtEGExD+MHRD3yjVQHawGDwc1XYkfVUe9an17Ja9sSXmc6raa47Hi8p2mGZu2Qne1aBs9ikO3vWwcxYL02Wik+dCcN7bRaq45vtqvyhktuu30W2UtXkHub7TD0br+IZXt6W/qmN0ZB4wT22d3yP63UnXjbkZKXvHIaLd4kQ0J9cAJvRpVoXAIbNuAYnuaCcztWjjyyxxtHgvRTzfN5wU7/T5W13espZINkGI9p7Lrp41H+RxN3vRfUWP39QESUqy34f3bAS5QiyfHJIiBopsjatNh33g8NLRlfDodEwoKIJVFAcEi6aCphT2Qt0PjEevRM22712cizAAdsemJWGaEYLZN1LWMwG5YNTgdbSuhRgdfq4YruFPQ4pUvQ5Is7nldljG4fXvTTBBsn22V6RYowcXuP0JYja5RrKo6R7BO3m4NY+P1+eU/5bHG/q//CGIb+Y/CcCtOx5sK9KfceGfzNNg2uWCzOsaTPRAC1uIH39A2BLJ8i/rdtcmwZGP8WuyE5QD1j9BZKSSD2+kySCT0Wz415j5fxcoC/FrLDcLBiBvzsu8NSCDKj2D5zF0F4w2sQ9wD8xTxw/Zto1kRWqnEhBzQrk8cEn7qBRUn7PWVcC4PhKnlFJgMRaPjR+KjgdNiORXiPXL8Ia8OsXLtFjw7q+78iuMzKX3ThoLwXJw/fc4OkSMlLejU4FEZF3FqJpqhOQYq914dBTkkedaIdRRnPTiISmWME90F7IuZC8y2sS0JnjlSQxWWKqMODprIXZU5gRTBoGhqAJBKApUlnagiIZ5xjU2BeSMTyqSsmTVQKHid/7l+6p4nKKY4EDbjCl2u94A6ySdn+kavwmWmr6HQLjdKv8+/bls86mGleJCGqFtMWH3kjR4QDIu1Xn1modbFbCT4KQ0s4IpACsMWK2deYLdiXBhFm4ZqhmFSK3otjuoSngQ7CfcNaX4sTHbzGSXrNZlBUiP8J0TQF1QZWP9RF2RPdky+8InJDOr1CAI0C+JzS16BCPESp+Eurmt6emhvvNcwc7UtL0vIb/pMGeIt9orCRCkbO3/obrcJr1GCt4yOIvsS3POifB69nTziJRBxprmPLSxAQee0Nqrpfqqwods9ZZkGsjgTJMNtmcKLwn2qMUaSdKRVlRQABL8o4vSg58wCfzUIN/LncQ55KqEzpiAf2PcwN4/C7VgUEQcrHMze6httOzYamyBMp+txMg/xZVQ/Q+bjy6qfV9mxsriYxHvvh9JHunanQDkUF8Xtzr2ZK12v1PllWtcGj18bjvXaGeKO7zWmdfJDRQ+l9YEjGeV6bqC+nzRn/iJxyKArv1cDW+3aYNGvcE1mGseWEtcMj5z9fZvWNIBiYnAIVwJqfNZ7Q4i7F4cz69MmGsCPkI7M1w+2OmmUp59v9/CYLsjgtzcHagXz0kVSEe3vfnG437FqaGLET0Qhs78Zm79Z/l9Fla3Gh7A5d5mnRsN6jGlJYZjnAha7Q70mccIlZdmObY5ObNLeM2qrXHJkvnuJqysf1+ryXsTuRc0M8+YvZFINvJZnoAHrKbwdHRc1ayV9sn+Yiq74Th1AmfpbRi3IuPl0fS5zKnyJCnCjx94zj5Ag/NcCn1V5f96AZIPHEUj4vEssiv7IXRViULT2tk6/AsVd/yTCBgZW3Wrf9IWCX8WJ37fr7JX341IDQ6HCTqZLBkQhGxwdY6igu7W5Qd6+Pwe4ORbhBHN/u3zr0RAGUMr9sHXndDc23/I7vyKRBujRRyFYOW4TBvjI0uCwBxt5Wr8mjhkUeuTeLWG3L8jfbUkppGLHKHoeswk593P693KNETA5Nz6ss+OL/WDyDoRa3hC6yKS0FoBQFHihzxI54JMe4gIhQgg+vXJgOeZV/n5woGdVZ+mhwSGCkaK/U1jYaTl8aPmu/Ot+HSfts4K2KKkexMKKKcwVUIrPb/MBDF83Nuci9j3Cg4igBaBabYmJpXR6E9YVfei1uBbsDndwOCmMCknHk9XP4y+9h0Uw78cxjUNqikOP/fwwKgtH8nX3CPCakwA9TbYIh5uLZDGK6u/u3fqJUnyGDDJmC+9cXsqMIKtZRfmtEyMXrr4+25TcYjExQ5bn5oGaT6CFkISXYqUMB8uN3kepf7UuICmo+5agG5EAgfkEui8LqcurbIE1vcnVT922R/fb0JrunqVxiN/5S3N6bV/1z0FuaJ/vjvqPPS5nbosJvORRV+l3dJOijxhqR4QejXnyxUVsPjRG8tbZa3xCSsYkwcZSw/ylHwRLUQzLUrDykR0mrTRxSkn2YiMrxDscCjHe7Xiac/IS6PB/J/54dwyAui8/v8MUJtrlU4ZSY+0mwpWnbMwJlqd19gHX5qR7unqOD06LHjQEg5DeOQmYvtcdyXtWyDnt7Ptca3Dg5T8svt65BjYXreEs65oHu+3KolhiqmmidSjzszj11oSPTR5rB29AD0UgYabHVa1Xa4d3/vZN3laP3tgQL4iFkIzl98uiImKoNtkzV2FPTRYQDAlY6hF1GKz5wrB1m69/qgxYkL/JRLmK+76g9NVnX/l3Kk3FHqUkIU6shXRw643J1jURbrxHLrZYEz0hQtRxRqtZvTxKwgkf/AmPl52OfiNZ5DZyzbyB9JNHEbXvsLuPhAgWOnSUBIunsHHCC7MYBRArMPljY9tfpdqcEu6IQhO7NH/n4KnbLuEg8bUBl41ssJgmwfkCJzmaH35JWPbIiOB0jxDyJpcU4av2lbVU4vx7q7tw7kFJh/csd44uO97+Cdo/JBnbF575RKIt/SG1iGX9/th7z9iAZ021fcEbYTL6ukzPshjBs6svUxw6pkvs+0MVLk6vvkHb81InyCfvwXennowp/Xm/bXawQSJX0aTju53WM0/GqPEh5lm3hGC8ymAP0XPGgu1veyZdRmptoZG3u10ig+XTYGlZpmUZG9MzTkvH8b851CxsGHscF+bjPvj4KQaRhcsJs/exI/0AhrHZAe9tRc3GlfRVmdLmvmPpOyoB8dKIn99AggmBg9eZs/quPymT4rZ64XrNVzNeyvMeKy/c+atojO1+lwO7r3DLZl02qlzpG+QbekDwnauxapuHddlrCjhy882O+WN1/EyPd1VnlEcPjryogPw6UlcvQ1d4+OsABYnjl9isWD4VR4qYFJaZZnXwqWEZa8WiZXWIq3ec+iVyxcoK35Vk/wXJPYiVOSfBgXsVpV4ALQAWmFF+6tHKCJfbwzIjNS6xGD/06M5799TLl58H7vEU8pDoM62oL8oiFUs/TAVuB9xqXUf6OIYpS93s10FnZeilNnJ88s7kzpezYAEEyLEYHUEtoCW3ttfS4WSCa2/ToFV7Sb64Lnt8lh4tffFx0dhGmUhhTVb29aTvVsIe/l6aufL8H8C0FKwvarAZvDixS2dTLeWhFAeWncPuBz2w4c/Ur+eoGr/yeDVLMoZmO8eE5qmB35d9OJNFoJxmkP9fPd5d7FU0K2rYotz3+5nesB0AtXcOWoKMf8wV5uiMP6f+lRoLHf23c/BFRnzeYCkZGpwQWtPI3rMuxVxTD8NRFuST5FDvEBZ0fMqSFzk9r3TUqwuEjTM2k3rLll9+PjuK9ALNds+Bnbb0Iy8+L/sPPdmlJQWl37Our76zHELtWuJ42a3s2JXIXw+IRZFu6IioOCSdkStZdpk09QqMPWF+eWfaqVklvn6omVJS/Mzrxj8ekOXa+fBuQs3IODSL+cteb7/Igg5e+4aEAg+oVzscqrr/hqfFbPTLbFhc0fPIVLEOzCWnCwMpAVPXN9qleJPFImdGIEM5ABRaVRf5UxRzfYVmqA/v8JgGysNtI8pUsjWMTpg2KRkbWUV3QVu8c/N9NEC796fhT9/Hc+Y9/YJY5N9ExviL+tlQVwHRNMOyuM10ro6NnsRDkFY5x+zVW8/ZuiklfPy5b08Oro+oEuv94/KqOEosbzQONvlT1s4EIfdM/iAz5l0/V2LAecXYh5vlDgzmr/9rLDX6ssgLoxV+GzBp1NZxQsQ6rd0nUrVgTAK7iuh6iMfhCMLw88evzFdGNiRZgYzId789G9IzN1T4QBq/mGYlzqlnmjjzFJqlpNT8WDS5nAmpImpDzRkCnG3ksv6LtSUNtS8RoyA6yhC/Ln/mEfWY/lLjBLFHlI8fOrdX3z5Jy7RB9HZZwAJIMFTfZgZ6AWT8Hg9Es3fo0ECHG6Rwqend9MYyuHcQ2m0nw2Qy4aJtPYmggowt915J5a4LGkzqhLSL16L+bzljHnuNONauH1WVRLkDIoWGhWNuMEJvj0IJa8xCKNR9dogroPUyHlq23d5I96GEtC9Wu9NJdxqlLzwiFRGk+Pl2ogtouDooo6kh99g23bjV7INqGfhU/kVBWZq4574a4Uw+cXaYLwTO9r4ZjI+3CuxJxjvytIqZnknkr+9hGs2CU0LOyfj2elvOmlQzEQ8Z57XMOYQHvlpsOrfY67sqnzvbM085fxKHBzFjqNIzd2pt5EQmKDoYQaUm0ukko8422yfMT7eA6XJTwW/1j+oIvsrK8lQ9zXdKm2DKX3jfL02Fjvdn7opJQ1kF7KZXFrKMfQA2Lxj3/OR+4jxaQ/l10EdyKV6h8OP2gIqOTHJnHV+U0OTXamjp6a9CI+DBeBcR6Yv9+Zuz1g7v/hozRbtmLU/I1k99PP3shKyLi+/GU/EyFV9Oyllk3jXWPne0rziY2WaFuZQUFGGsoRPn/UBKbyc0EbcDXQ/ikBydTz+6R6jquGJgbHH/6+W1H3oSkjxR6+SDsqnw/DxRndSNCZrDhY2+Wn6wJA6mzDc4FuweGwc7KnefKMTjhQNPG1SGJfTpWyR2r+sIcMPmdpgtHuqzcq7u9Jcry90GLsDTv7QvDeN0xlevusRiAAAQGRsIYp9qd11UAuJWZ/DPtS1DCbsPhIH5zunrP8tHV2WcAApyuhCGr/i3BBJhovuMySdrtttY23Zs2dNrT9jA3JuHzA+P0O4szFLd40UGiJ9YVJ6/+qO3toyIqQSURNLpi3bIDopfkMg223fvd1t+Ct64JRP8d6I/MgimGsLd7N+EKI6Mr/8nLRppbECH3U/fsQZy4R8OFtk9cOf3aN9ZxfTk9MRmK0/hJh/7mw+ipgzScjB3+faC7d+994ndm0yZGm7I8sTa0le4RCWy+pcL2ceGYBmPPLZ/1fAnOWz2Mj4y7YeKE6cj4k11tIJFNs/SpuFfXrkDcvZc+vxTLcK9vi0PiM+0qeXlKcz2MWi/Ymhu1p6Tvso4p9DNyzcn2yh9XZeaUBJQioI0TWW2e2+K/NCtaI7fm4lm+Fr57kmwCZoUMMLgJkb2Vusup3bBJHR9twfCx2f31lSCERw+cepCVElk31tksrL5TIV67SQog7oV8uwx0H/N8oDje9W5rv/akRx78gRXSuboEYrqbreQdOZyS49Ufa1oRvxUmFdcJPTybOkUAqcFs/xlzIBiXOlqfAcKhx5irYU8b1OyXhcezQ/VejOg4ua5HV/gnxBXTYFLDZPk4On3+YEM8vKiwoLCq41TD7pqZkLzxt/Trn0+2fvW9EnWeaAM65UzrZ8HAG2KjibzptMzusDOrsHPTx1dss4WJcWeqPdRulZtLE4SC/4vFCdYJJaIW0ZjgwkkDMWuWMrxG18R6i5dREndvCiKXs/1XoBCvz/aca0Bm0+G8DVLw28Tc7kdC7zZBoOp8ZE4AhkT/q/xg6zX62zJBWLg+LbN3rWupLdPdeoKX2DKgAUxKF6fehSTfcx7GfTk+ctnw7Fd1X/IowSoCEhr1lmWmVrQ+DEVYrBWS/1//SyU4v/bf4KImKwUt2fudJBt1J419tYtgN5SC9p1AvX2WiaZu3IdoYYBdX/QhB7H7cjjD+d59w0z6m33zbQ4KruVnzzVTWW50rjekbkxM4/+IY+8fL7+6K1GZNn+wcCRGxvOfkgvCsCvSZEpXNqd3BXWT1pz3CdLLv+PX23cmtLVB7999RSISHpyrVNmUCd9foJhmXk+2e0VkiWDQ2UBzFqZm6XyLntWOpdBBbAdNH5P65g90zeAdgsbwACN8d3yMJ0f7+GIs8C9eYvz4O44DXwZmI7PiQS86dG1VPYijiWBuod7kc8/BjUVuG7NrlT5f9xnbHLRb3YMiD7PHaj9vQQUZz5k1Il12rvsRNggs3jryMeVj6tp2J7msIKL74tYMKngZfPR4rF/Z8pHuJyePUnJOWn1BC5ount/ZPEgB5BjLbupwliV9/3Akgl05Hc+zd8k/tn+xtnvJCwzSsi1T4K3rQhPW1/zqga9uFKChCiRTR5RUTUjKi87wFtcy9q9zj5/tHXWlBuLI0EX6oYQCzptqKRHjoRBtPMlhRQE1n1cODkFgeAtbXNdjW36GHkbfFOQ7dYkeAkbyXt1QwpXh8INXq6MeMFU/JZYG6cuJSX1duukHLkySd4wCFXFogiL9R1Wyqb4jl/qkbxA1yhkSIL05bvoUPvrW35HyvEdT06gFz3aZNjCIMFh/USVGK66DuE0zULKLrwO+D7FjgERBn/IRdIr9gTUdMfn13AILgNiSBY4b8WfbCWdOLPdPEWIIoCL9VANAAUGxes1HlPtkMRYiKRsUlh1hZEweyLWEf14fJ4q1veUg0lZzOkWU65t6fWBWSnTNraRvId7bzZuom9SNZaxF/fbyL9qhqYq46sA34jCxb/ggWs+Nshh1TcZWaS+iV6aL3pKmGQvth73aJRYPCHLEzi0Nhverowv5mp1pg7u5Uu7V6WQyWhNwhZiDCaQYDM8tHE2pHj9dyhS1DTRtYT3j/WvHSW8HBctuYX47g4LIg1xRHEBqcETi437D+wYecaLJHgSNlEPPDweiUdAxN7DYkFIRixHZnKNY/lG0kjCKR+7cv48Z5UqmBC9/klTUk8PTHPYHdQHcKEvIi5I8aPSuNPSl2tq2WZ/3+NDiXHonhPfGn/g8jQFtcRgrpChldrnmF0hAAZFNNShXI7QbsoqzvFKRtxQvX3uRoPR09QbWTGn/2R7JxUoV7ZSQGCV+6qqMufvRVBJm8jHFyd4CAAm0H307nnAx3BH8NNzH1Ll6jFp9VGD8axrvD0unmFyCfaa4aiFI7LV9FBK9s6iiSnPqlF6t1fmOl/vrEdvhAO2bKjCrzT0r98lvpq3UiPOw0XiHIKiuyJgifqE0g1tQuTMiMkMmDv57W71JGtOP2V0ci3GIN/wILT82AwiNpIAH63pScqCkTizTxWaWc26jEJfvKY5vyxiWWPY3fzYC/x59Csu+lD8jN6fRUZtmQEgNPOglTuj0FPvhXD3ebW/RAQKQvoAaTQRkB1YwBqczcfiDQhLxK3QTJygNRozEsmCsPxJTnbMFKez+8JD3QIyDXhTkeHq2o2lJNJ+6IV4QUGMlbSmJsdXNa5Pj+2E6yYr9bBVtFQWQGDnADnJZKKf22seDzwNBy4BY8kymrv/Ld2Ppb+ncRzmIZCHh/nCgmrviFGVXuoFMDg/jY71eofp9N7Ai3VfTylVpD3YAfEUVsOXWeSf8LiwpNHn753zI2yXlb6ZvvNXKvmLTJRNSYCzXKYEmSFL76sqwRFxC9LnY2NxmRGLkVH0aoF8eQHZ374Em3K1+MG3f7F/gM+H5ej8wEvlm890MX6cFptyjxlGJnpEFia7zj4Uel8Hrwf1br2NRzuTHVVzcDCcIK/fmu0VEyn6YFpAbGpvtxk7/tyfTNBWkc0fjZHz0DjlgJZIHp/GQ+XSCGJULcjfgzj328IoZw10kp1p6LZsyUtIsEU28Tmc7/+wveEdV/htttjZGn/QIN/VZ+4dLICUlJHh2fpW+73ZrHfPJi2O43tdQsCWmvRVtKZL7xnGXOWTs89KeE+FjbeOt5T+cpz74t6q6KWARglwIoJBxvyf6uWzCUtwScrj9pGQwKW3tfAtKYR2kZ8ZNNqjWhCjljmdyv5Zx8ZI9d8dV/RBBe+GhmMCohUWClPR49bW3x23Wq7S0ZKTiu7q4e2uo2Bfbi+H9NKX9+6TwSd2bn1gEGgKFZ72erTb3FWFTH034YYsjIGBgor8axCBCbnGwKW3lmBioB80MJ4ibkqhQOUh1rcCimZhw5bowkeXJ4e8GWUxIuPHqqKhvMgFFb2gMBimBmxzf95FsF8Fbmtx3fw/xsCFI9e92WD73ng/PxAAx+w5dPJAsz0Vxh2GgDEQ1uSUW6zHiKZSxQiGUzy8KB2NGnh+cTJc7Im2YlPday1JCHYJeJnq8vmVF0ORX64Z77l7KlS9cFET0n+AQuh9LNL25H+zqTgka7NP2npcbrjAk/BK1KfKLgpqmJjkIUsLdzuAnxou/J791VKYYJ3DPtUS1DJ96KeUT5jqJdDWvsHuKrmPN7lcDyey5yB8jGVcuB5gkxcR3zCzBMOgtRhbrsHF0ts1nB+QFR6BZVDrbkYdfDs2CgKeeq48+STCqzaILq60lAFDJGSiqpmF8V68vfDhTPzOaO2l0eCBFp8D+bfbJKCCfA5hZXzPWywnGBJZAwcKDFrHRtbeuHB/B9JnpgKTrW6fwPCgpXGGLlqqs9vdgni+uCt1o82mw5ISpFCZ6q3cnJyU/te/bLTUEE6tYITOfn95cp7KcL93NsDDbX1klN3gqSDPdYy0IFym3YRCUlDuxpkhC3WFY+MIsmx7Rirmwdt7YfG+AjOx7bbs+z2Y3M2biC71dY0G5OxLL3u3NeE5StcxLfAsAIwtL0ijYnYv6hMYdNen94Z3bCnEyNz5RmUk1jNF5wZDb9T3v/3K8zDrLE+aH3DHD1Pk6tPZxpt3zrktTAaQePZEb4aXFz5LATpDJB+FcxrY0lsdpSqNf4LfMsalNnCm22iuEIZtW7l5JEPwRELZDNdQaQiw2nutjN1GigKU6Zqy5kSDLz41+pULGp4UhXuLTr+Nl67PSc6e4A0t4fwQ8/IIxhNvki9CC77bpVhwrPAo8c7NLoUsDvGH6gtSknFkdzVEqp5S/u/H0g9nz+ED00PyM7obIk+/sW+KmF9/JTYQbQaGbN/HPABgoATvz5JmQy1TzzoGnreUbp7WeD5oerw/euG9gYwIOCr23UNcHFm7EXLj45mcqClqdoi6t3rGTpbnRm4JJ15pTsFIhOQU8IJswcOO9/w4t7W5XYQpcdN0bfDoBGaDZQkxP3+Uj0mxJL+wlgwv/bPOQVzUMy9GBRXrJnXx9SeAvMO8z8dEtyav3+R87+YKzy1iSt2pkoDOOPQKE9jqK+W85Jj5Dvmki8/HUvysGFHuBhRLvecsUF+jrRNmTI7fXaxC8h7NbIumzvFdXsSHR5aE1llh8XSBDyXx253WtYEQPDvCcyL8RmX37Gwbnw/c5lXc6r8Kgps1i16R3KmG5fYpsbimfg063iVYPoNPfUVakTLG/Sl9rXvdu6iu/2sOBFmxZDiDmFZDcAwz5Rd2bf5r69Vgh2l+SsjIKVO2i9ufjqMmOhOKNs48v+qOAs4nrLB1VMVQpy3tHFbKBHUcmBzquG53ScKSdH/z3mkheGdqeXz7Er+SrOtGUdLPCueAtrifLKTlrn5QPzTgUNberM6PvlulVyYOFc9/T6SCLN3dLjSV58sx9Gd5RMw7PN3y89hLOBNKfj4x3Nu2Xo4jCVClew5Vj+lm0wPZsMjJVm3tHSMAMPp20LMcZvNZFTsLMkdGF+omwCBVBzM9+LVCQJmkDmjm/d1wx7M55oDUg9dte47DiEua6MR5EqvgGQTb3jmWJ74zQYvXaKVznsWDAqwHWIE2fmqaer/6UIyAOxEWVvyXoTwGbpOxb/myBNFljEXUzAtyMISQkOx8j6J4DKYn7vQKIY5KRro5uRGxpJ7WvSf5yrk6+oYI0PQTmFiD7LbmxPu31vHSGPRf5NHTgVHxkjGsSUr1Xzo9uVUfTOXRqW5HgpGNl7iUaDYuknbnDlEt4RE8lXPiLT55joUbwX5xbS2mSocnSB6zjX76WeoWBLROZGzTec8Z1nyub77CM8lW5/YNGccL4P/7jZjhxOg7cvG2zgsvIkMgnxX2SqcVXwZ6qNOAAGDYqKRruOoPUOIQNC+u2+48v4sHNuk4SO6r9hK7ctpiTuYuIHm1dk/U+7fCJbQCqZh5dGg7K3vF/Ps+vAuMBaunM2M7YvxN2N8zN2xb/Wqgfhpn1jy8T4GlXL/ADt64nzPVP4WgWVec84l9sdyFa2wtzw3oa3wkCp83BiQGj7/DU8wtQGiYF2JwKaXQlWLwgXZLMCd8vONvPnu/wAh9oHFjUEZKqQaPLq6HJ0HjsCwRfUPKxvAI8bn/qh9wZ/1Sin2ooe8Eas/82C0BDgCCrh5+9lvQ58OdMZ4Z7qOkTFD8gLkwt6DXslY6P1uCFfjPioIyAAvDnhNCMjEH9XCsSOtFdz57or93Y4wSO90jgh0m1tdRk/003roGYdfXSjz9SGY9kDYLXZU41FUtR0/fH/4c1vjggCubikO0N/R7fxNId1n+tGl6R4l/UXo0ymkDVllfVj7XiVN3b1/FVvkS9M0rs97IdN8PPb+uGCP5I7Cz3mVIcOLcC24JbjrBIiVv97D0RbpQqQMizOhlq0bQG5wGaSL/FOW8KWt7tOgd3D3Wu+GLaP+JkcjS9dy54DCI+883vZ1iyFf7QnKHRLTPsN/Pq+cl3Y7QUw89w0vo7BHeLbZ/8KFQH8+pdyzPZfXWE88mTEZ6YJI3c3KeMSAYaCn60eNTQ9HNX8xtNuo1EajHuChQbTA87aCDiI8qmAMeE9Ov/b7bUdjwfhD55Ra4f4xJviyT9RUECKeQPntWR4danneN7961u+3eH/jCNXa1AjD1fx2FEz1ahjfX3DfSCoz7UnYiBb80WA5nX/QyazmCcAqxal/wnccQjKVjvu01/dv0gq1wEbRFZRQq3/Rq5+mBMUwvjiMvjmTJikWgXLTnv5pBRlOcM3jAx1d5xHFetMJ12UPU02aZ8VJRMpPCYM/+aN2eDdPO6qISEvabp2ccrquogm59mNm4qoSHvsSLXQ2QbWf8pOOB5mEbTjgZoct3GntRsbIXfpjOiymrgaLav/QWAYHI8M/s5ZneZh7cs1gdixsZ7ppHBFi2Rk8RWj3CPogqCMbZ6MwS33nQBc99kMkex0b+ovMp+BhE6+GWagh/36F/Ny3JRxL/vyD4AEgCYRQAzAaRjYIgCgqiiHvvvcrMynZde11XN3rdXd1dt6/b/42ua1+7LJua5t57C6goiCgKshFlI7zva+94Fp62lLgieARKnax8M9ExveXQDS83bwwt5EX8IVTaF/+xoCL818rwX3QcJO/2pIwtfJPWPlSJB5tM0hHtG+1He9xXk845Xokc4Qs4h4fQQZZZRdpYjJY6v0lImkmJUyvBU0iQlroCnrjz06DGXt3YK4m1xMZK8Evzy8mplwNNm/Zssk36BZinV6gAmhthm447LXeUYHr0iZsNclvQxZ+TNxy7/s8Q9dRWaL1R4/jzJXwlIVz80iI+cTG47c4zlISR171gwFJpk13Fe/qf3BqfD/wqBy35dyg2x7N++D6QCEOaxASVfjrIy2OkRrqLzkU/+heW7MTbVx+lJdzZmgG+8H7uwMTlzLRILtbQGmZNNrBGWrtKMhd1cbm3n858/2eU0eMR70dT5ObMpVBl4J5DGaE2XAh7HB1drKv8n5KWRhx5xK8uR3953K9ta8orADdretzY8sWQaf7jOiwnOy1mE+oPPIH5v2Y8LiS6vqsrI3QzQKoCbUr7S1AV5vT0klctshNkEseOfbDh5RVycWb7q9d7kMs3z7cneUag9m8irF/fPfcPdHL6915p0ZbScAfCYrKGMlRLjPXiDf5MKrAVgJOExZkjI5IY8SZeKzRKfsWzDJHrRfDjSlvUxZ6e2WmVcP/tYWxTMJGJTMU7ecLhtMNklOhDRMXzPiOS6F5Uyui0fRHpmcrBN+8lDXS/pCiw0gk00yO0aKjPbWO2gTdfHb3NIeAJ8c+XMt3xB5arOlKB0bfuRm0OlghUFOPkbFCVzpJY7B5Y23WWKVMs3vpr8vG//R7lhs1Vd+F0wWUy1PLtR0V0v9LO2wBfQtu1YbQVwkNt6Unzfu/4Gcm6K098lcJmyUGWbaoDRfHZAe/2zJQiBWAblIyFJYvVXKqaBp4bgDQNwumq1dj4Bp33M+9OvCx8w16vifFXAdmY51MV8MicreO4mCidAjDBs6AMb6fbpWjoGZ/yAONcLTrmsbMtBU387beLbpJ7GL3uRLHd2DjU97huro+QxaE1vdkc2Nyrydn7eWs317PM24FYXJm9E8S1B6mKs+ju4UVWZtpac/X0n9+cC5rvzg/L3BDh0zXeZFGAX64+mwizdWwHi88fSk3gSRBo5AD7tHC6V4JnEymNzD0B13+Ug2eQ3BhsROltCJcyW9EsTLAs/XXhTCGDoYzdnTnp6UJFKDx2vf8OmYp88r9Jn3XNHfJT0XPjo6zXwcgVCAkapFmcGK0tcBOhIdOvmXsYWeer12zQYY/QBAg7qV760MNnTa0LeHsfceyIHovaaR7z3jUp+WcY2PptyXnOs5XE/R2NwLCSSt20N2hoDj4JPrktTU3HVTWivois8TDrSUn5BvD6UBKryv2lc4W0Nr9y/JNilZdrjbqHlhScnYXLKglvrO6w/HLYAzV6f8azkBEBGIgAEZNNISrF1d/prD2zjy+9s7t06DUynwoOnW9DweiPFSdmFUPsDx3+0zNRvqwiFiI3PwYMPZcWPTO83IsNNGctEvehs1P/YdPcUPBX58dwVkOUagERZRiFwtVMQ1E2kwNurvt7iY0JmET/g9kXeWr2NfhAey6hy0eZHWFpr6eckyfSJPHUqbWcz/MedS1STkfIIK7jFa0B+xAMh0Cbk+MRhPMCeHVvbfq1dTTT7jGfHx+a2jmMQsL8W9LEPvT63kRkeqgl8LGhRgRWAll5q82BZ4/AAJmiNwyLks1MeHinkYFXIuWMM4PxkeixR7fkPcsde70dcz6k8K3f63ntE7ZbT2MWJAOrJVIX+fUg4rsozCrmqgZ+KKc3eunNW8U6AhLPm3sbxcicFuCWzoQjOwasA8FhG/DBeQUNN24rYiAJJNwfT5qVoNNv8Ed8oXld/wDBD4/3gt+AwK7QuSWoDRa3NAUWdiukTXx6cOyCzdvJzpLwyKCtnoXxDERrpWLSwzd8c8+0uKCk6Kg1CRxK5zTW6cBFi0EGnlph8C5bMnpndl7eMx3QMv9+153UShJ1eXTk3eb26Pz9iMogCW55x/r88YUmQlx857BsZ7bUrXp+H8BkJRdKUf1vecZBv2jK4HU24JvZtPW+WDbkilTN1C9OTA4nFv2LZWtFbwAM5jPcHmJMB9Shbe/hXgjm5qV2nvl83NDtYeRNGe345SFAWZ/xw9y8amHcF6s/BzQWStoq6ZhNDR3zq3r4xIwcjJnXgWEOfmDC2OS/y5ZVREjEYMc47nX9ArsLfFaNhnbM+B9O9FlcJWeXEoU3un74HAROWPVY8P4KFcWORtMZ3JVfflr5Zh9UOfBjRiSx7XULCkalvL8dMqDZ1lS+ECDIRwdX8He0DZtCRYDsX75roaVtSfPvn4G2oEPhxfSp4TH2ZG2EU2W8g3egsWeFR2SF+2jA+OTzMcbuldbmHzdjkBpbHTLKVOFOtmvKTdiORQ/u5LsJg/9kBbpXBdkJm9y8dX63ZCX5vElc+MgAOd8rx9fsTkSNdzWWbKylAtJm6tp3lUX/IDsSClk5HTu2OqvTpKz3JgjZQesGppEr+JOfxlPFbQu0ZuU1fordK9G/b9kJm+6fcGkOJjEwPvAnZeYxS/PkzKGAmZUFXmKSjWYG+CuQnvvKTFzIosho8qZ2rvlFxvmprbO0e535GZiGudvgFdr7UYdklWf+TlYnX3z5BAD0YPuPnCpqfcTTe0RmHEz2ZPaOdqIvN2l5dartb/SnMAtPMrg+E5LuqETme96oiDXP8U5Z99ox1ZPaLw5mgOG0jhrF2X2cDX0/eWbi3NMe6YbQr+RpwkFi6PwbWxypJoK/MjIjbFys4vhFsUF8VP/kDYErbv+9aykHt5uSRw4GxSat/7E+CqljlB6PXN2pRng+uNcExCKC9CVPjfZ3TsN0vLnwPN4BWET9x39tl0XW5i1Y0/GeyyDG4czfEt4ztf3EPv7dtwPMA2cy+3++XLhFDv3YU4GpScSzhxYmCYvPFuKEeeylqTlIJZicG0EPisc1xyXSC7bzBjESIigxcEVrS5MSaQlBxiCuPKr6BvRpKzg1+v8Owu6kZ5Pp636YqOm//ad+qBU7KF7chwooid49UvO841p99Ud/a6zRGzl47zWmxM58NfBownWsCLGcaJ+suaRe9M1a8QJEJmx6McwSmfv/YrcG363/98wtuR+8MDJ6dMTsh9O7Vis8AK36rX7qWeTLzmyw1lWgn1oIxwz9gfjou32jjgAbShxmaIccTVQ6hxlVCvuSrcq58VJNmwDVs3VnwKJRNzRoYB0rKr/YZzx4oEffT33sirUGjuWY6fL7lAlzmxBk4s1ZR1SL1ymgsL2zVLzHvb9P5VcJG2oQKDiV4JxHCo9Hy0N2FAU4dq6Jni1jde8naFOPorr6qTYdgkDAN9z6L4FmKdfnxDp5q/UO3vObwPm+Bv5iDBoFPnpKrGUsvvflvg1xCLUjyt038ZLfiRkh7v0wfrFV+7UKVf7zFnzXRPjjRww4747Sjz0nOlmETbRre9XT0Ai9L8uayyHW6l+sLBFyLDwjPSSyqMxTwDSyAv9hh9fd/o/CQQg6Nfmm+tQsH1fMZlLUDsXyMoTbmTUbPBtCcTMOr/ddO4FbGH2xvCiL1I+ikkVTv2m5j8C6+IlXW7bTl2Rgb7ciImMPafHBCsVwNsUx7NX7TPrS8npOAx59WCZUL2Z60/8ONCM5DM6j/lTBeGn/mD6BgXJqn8Ud8mlHQ62dCWI/r97IqYo/yWyLfLE/rG+qMWhjkpFk4Qt87AYT0pzd8/eUI8wPCfbETds+PJThHyFNCgKnl4ZEHQ1tPfcNODj98IwfRNcgeC9vCPf4v1s1Okt4JCfc/bC2jXVS0Z24FPbqVm6AKrdkz2tbBLLjzuHkYT1nUTkt0usS/AevFuSDxlBlYgH54+0k7Mi+uzx/8YRjdHljfdVUtKULzLfHzvHgHlanXWouY02M93/gSv7rf1+n7Xpn7ebtkY0X1jrq340KuPBpt648mQzyyc/QVAKxcVtXkWBYfE7xcu237WqGTB3c7pWAowzxybk4baW9b9ARdjQgHn9qJH5+FQheNr/pABi0jTtCLAJrKmREsWW/fVTcznCLI5JdSG5sXRfJU3ybq9VPbDuvf/UmmyzjUijTywsD/AHy8mNw7jickj4Mx9v63x5kIUNrjQ+npiweLhNEf7ZvTF+W8SuSCF6LYnLTiD/HQdRV+p4uOACsbA24VZCsyVkfDxTyN2JicwYmHKqoy69nWbq33xf1eClpNDYhda3y0TPpiy1fYlMgT6cXXZuO5EL1x6WTFu+MJLWZG9tHzgj9svvv4DyMF47u5W4cNWa3RrpPuJ8+3de5bHWK911ww2NxBhUBkGC4dMd/R+iduPX5UXNYwYyQTYkvlJDkiN8npaOJAP1yuH+A/4ZrX9iYyQLBc3UTon1rBdycB9DVNvfafzy5e6sGSs6CF5WkTih0bsGTPalDuEI2kYzRelMaxr3meDNzJJgRhQunxm+Nqmkt33kPifEp3DQvmiJf+AhUXPG5vRgm9cImevgGun0JjkdO7byPeaK5Sw62JTLDmicUJMMPYJ/MVdfG+pJVgNGSxne5frEdidyssQgacbqoX36zWkHtw0q8cvfZAq73QUA37PY2dKN4ynczOKwUtEJ0IbV/KDlaI+uC8Geu6y2eMrlpnBrE7q/121r+0kwdfBsDec5bZje8Z7iUVb45t3M7jVRR4WqT71cuNv5wKLyzQmkf8cS76yFZ9NDQWKuF7CNTnA94OfOSrFuERK+PSO4iHm5yKkHuzPOlrW7ikdgImM1n7HponrXm7T+bN/YNwj1aa7PPkTt5jY86KTHBw3NzjOziFw3GAJVuELIqQaONTiqAsDOXs/44HRnrFOR5PqU4kTeiVz9MYl3iXama2wuAefgHW4Y+ZiJmm6kkKA+XczREh+pVZsRzlw2NwkwH6qcg8N49X8cz6bo/JoV40IbjZY75Zxdnr/T47sbtpymjEIMVcub2TXMwUseqwsI7R9TlvwoLv21FhoDGNh51NL6QubshKTtWY5CqFy0m8hs/AIUC9AeWa9dF+QdO706bRxTOY7U5YeXGJcc6OvnTV9YNJatntqH5A6CRgetbSsNP+EJ+DAqpqW30F3WIn0GCVtvxFVP/2QgYTxSdiLjZCCKwQiRx9Mq5ScxAUL3QukOD26CDMxDihnpsPiDQnOVNq78aJBvJunzsvOhsqsUbYIXBk8TYBAI5gJo92DbTr0iRH4n9bdAOrf5l54eP115vZb/uGhr2GHUZXBynyUxWjySjqbyI/CNbMjCGjtq/tSysKwU0mxMr+k7pBI3QLnS7weEX7qf3hwoFsHaBeMkAob+7ed5J1C/huwbheygFK4btHe74fEdjNRkTApTUSJ65c1uYTtWMcCo4YuWl7/YNdPfEpfYyVu6amALXWxPWciuG1F6965A8T1jHD/18ATdcKujXw5ynHzKXj7PCA2N9xWH/x0mF+khcRGZB3ayoKJjALoPpDZlHt8rNzc//4bMgEMYHIbFjg7f94rn/2sl9sISwRNyv2x5ldoljtqPhKlct0FsgxRzltIMzlYR+kzhum4P4OOMd+4BzoYl2sJ46SaU2rPMYCn82VRN3PNw6Ubh0+eOgbV3goK51UR3U9MT/rFy06biuD356uiw5VKG3+j6Xgpefjg7qy4xuzMOG8+CfMSPuT3w2vXv/z5gTueDEzJ9B5UvVmpDE/e6Z9kXLBL6/v+fjc7G0/CmYlyU5Kabumjwzzq6U8Uz7Sk8VxyB0b+fEwLLtn3lyQf1OOPX3j96PjGjuqKOn7MBAXwEC1pV3XGuVCBOyssj2Z9xALcwKGBbIag9+ne7ICWg0TT3ghxOJarHFWOM9Zk+XvcUGRIk6CQskWOvrUS2QyZaK0rZnvcrcpse5ZrtaVOl7Ik7HP27WQzKCMaAp/ZUZMdfYQA9eK0QOGJglPIKmDZ6r4rkmgY7SYIioDhDrn6SonT8UaxwMYT/Lu95qo2y2znfR0EBK8NAvTWx94jHTQEOFJTulKNw8q3e33sI4/TzDjmiQ/MfqE3nIZ5P9L0KP04hJ8YD+nnYMyDITstID3pn5NW22f9chKJ/XusVbmMPEv1VrlvECBsvjTWUXDI/ZQbkNwtcvUo/1PKmZvd9ZcWvBLzPRH2mKCxRvGnoi7M+VQOgoubelAG9K/PDurtCvd2MttNrb+1ZJvZPDIsmpVSZ6Rzo5F+JTyzCNl4zTgsiNwv8qt42raygxrbbw9aT5NxSORttCCSADmbBAqZSMRIhYHN9df5MZCW7k9F0XRTOKi0Wvakf97IhlT+US0IejO371Vb7TMchMGmgGnAteiOL4tI9HwxMT/H1u0db8H1YD3+TIGxGC9Nnbyt80Kas8KguBQznSX2qNZnFTUhrJl3WtQUpIA8bLS2dPVHu39W9y6d/I5biRXOtfkrTAhNKGSwpM+ipaED2+BL647Wu6v+LbPzQRaaj498+evWvS6eEBLG05LIzYwxvnyZvkg+VwaN6c+wA1CY9LlrZK/Ge7lDajD2ilzuPonZ7x+p55AjtwqfpawUl0js+AZuL7KngWNDJ8sUOxa3d2/yyHk7Axjuq+cZ2TMz4kBtGej4bNJb8NYJZDJsdzKcGGTPjDBqV3QKIzLXFkXucfvRAHYnSJ9Cii5xKU0cYKTskBi1t/bljX7TQrOXwfeR80KADuF+49mbIqmFK+569Xzw7TrTv5zw3ezLVmxvquiotbAd24VS+/eeB+DbIycKsHG0y7dZMmZdJj2l6S8ryzsISOqnd8cMWR/AfPwUZaToaXUc5QFADNUqTUp4iyzx5C/tdramE0fr8Vlp8AflL5NdJLxLN5F9Msv3/1GxGwxOPdLiUrbq6cXLj7GiE0rfHGVHzl3oBkdzOPbiL5ORPWHVjXNypayipAr7KZvujOwnf8eW9pMYnlTXfo5E7rk3k4cybef2tiiwrn2LE2SVHpuZfqcaHzjRtcI/2am4z4OtP5kvTIvHBPDD8ts+q7ez7uZTCB4dk2vz/dg99j752f6xm6PzxoKIngPqeh/GVP/ANBK9CMboQrn3A6lIK1Xqlb0DlzEYHoIR45WXiRsAG8YbFo9X9YbX1uIWv4edPd5C1hqUy74vDwPHC/tsPlaWocu+D0gaQjr1WnIvwZ7qxq2PzgM0kb6cUY1hlOA2Nj3Y1DxGsE6pbin46L6HwdRD1hCMLCU9Qd4C6wzXfV4RCHBsg7JNs2ldJPBdSovKLX4j2tz3ryP03JSMpgxdt3vW+m+Ll84ucXxoOoBdn1w01xOx3tPaQtkgpiLO5g8QhWMsOhcHQ3nle1el5bxk71R9Gt3mryTItnqjsVdA0Ko7Yd2bN6TVf4waEbHzQ+Vb3/ZVe8uWUEE2HK8f6IjQQwEwhqXTCBpF7Q96lsH5wq2xMfMGfL8CS7Ac9uu+RRsuavdc34XS7828vDx2J23e/fz1RqYxpdVcXL3LS0vuregZTU95LvSvy8PxuyUzTs3e+elXTlP3MQNnO+W6ELvNa79Auq5xk6bCiGO2+L8zsYoz8PCfITN6SnO82b35UrYZ6X8DBSRNzPlerlhNCDZVrdAUyj/31OZO+GSRkYAgDC2ateJDa2vYuOmbD5ITRFewKhl35dv1CYfnOKRmucbkSI9VSfoVhF5vXO0e6VRtZ2b/F9Cd8BrR/rGJkcKS2kj9E/bfv8p9xoecAHt5Sp+/l5+tXHDQpf1MkPGcyg+pOv/kaj/Ev+Cn4wdu87VmnbVEaOE9NHlDuxrI/Tz81NqB8Oy7SI7Jjb1xqhbqHXB6dV7Q8u/PbFXtfAJPHKu/K+eoyKUnY9UAhaAe2TLcFussY5NIpt9flSMkyOZvrnYyjavcB/QuSGq1PU4d1R8wsnSdG423WGf0uvcwe6qiNY1UTW72kDHX/2LEFPaHoWXgm9OebxVDwtUd/XgyNe1YDW7PbSH0vfNFEAABB/Nlb0DrS5r9kGMp4s1NT0bganJQXgk8OUerB5pSkhKYxACpmLCid7hpB9o5SayPnqdrNEuZ5GujsifTmA9w7G5mcwKx7Jp6c5R1jnl0fWzrFiAa0ifJwclEqDF5x73hSNnv83pLwh/8tLTFu7F/f78jPtNXnrPy7F1c+626fLeHfhOS7f+KIpdhoqZuksYC7QL4n84K0wEUrdHJzN1r+NWu/3eM5d914RBohdtHSfxe/m2Y+GSyCk9p5ZXlFkr2zMCpwi/+jLSSiPSoqJc3W0Y9gfPi7N6ZXewZnfx1YQb6DuKBVc+idTJ1U3+YOL8afUHjJbBq8awkn126mgBDOWkwBd9zGF0sjY1xEpE1zE1rTw9BhTC1+UCkMpWtrcksthlfVy/9/VUDkmhHkqoRlMpyNPfpGvufl0CVyyorYHvvkmMA7og7SNDc8ZjaENv9RBVXqf3mezcjgIro1/h9sxQmby6yPW85P2emfk/RBZ207Mp07YcsoF6tqc3HfQ97xRtBkGeWRsNYzk4QNsDEbTebNM2ILCHXTkblyIq0GUnOLHxAmcZqcRjUYDY718NymaXycShFPx3JEgWDoy5LfHDr8LW2LRsxZW2JB3NL6TyJrUZTMnhpW6az7aCl3ohm2EFy+Cd8Wt+Vvm+FxAB/Iq2pTZI6OZJiBmOBv2Fv8e786mqlv5xk84obT27jnKF4cfN9ZG/tsBkEyA0rkaDCxEjgw9cKy6eS650GOyxYTMBGa1VaPjzKjoaAPFa6lTfDibawfG4UaAwEgLmJkX9MHeZChpq1osXe0/oA7zre7tpZKyBmzZKLPiVf/A1KqwFbSrbslNSWbPlOuDmQTPiIhDJZlIW1aAr1bGAb3Cnu86bzCIq6CDYkyYP5dZHLCO6Denru1qgVBJGGQ+gA9yRQJ5U8jR1j6IZpxllg2PD5ohlmt3mwUSu7c1wjLanL8jdknFrH8c/6bpUggbGTjYicPBa2s+tg+QU0Q9mzon2E4PmM/EAN61oVi6ZB9KC9nfPlCHc6q1L78WcstW+zXZXGH5SFzIH9Bfw/dnDr5tdfhzpq3Q5KhWKu9RoAoRJ9+dxkRsZHjFBWExTIuLhF+qH3p4L7Uwt/kxb2FSNSuCtQgZo/j8VKzziL+7Y2aXakrvDam3re4A+/5x4o0wCdXbDZItf4kvXegTyzGTojtXaGtulxdk95GA0RHgB1fiEw741FU0XNhpTSzgepHSIXPfqSaw4wv4G32Rvy3btatJFkPyOF/mWJE8ojmf1X4ilnVpAv1C6A6JpL3vercak5ehCTQ1he28kBVUQgzPXIzh/zETdpAZc0ATG4BC61Q3BrrLX0T5qTP2bCnbkBkmltTPLXN2f5JIlmQaluR00Teh36M5ptyCYCLRAFONACq7EvC99q1xQWalC5O1+3TGv4z0dt47RQMPUpbanXEAQul51bjzMTiVkRbtJ9MMoLl0eEmVgv7WNxaFgy5OYYMufYdgUKD60dR1qTf+6e+RE4PIWsbqYiTO+WIIBCiN6b/+XD4vSyOtgjFskVWMX+t6RNFPlK+u610QyRde6/3RFhnDOwwOCjSGo4tDvczepu7pbeHrU9/XCJdvD9UMD8w6afHIulmx31yv1s+0iD18gmiQVSDA4xkQ4KbklrWtQIPaSfbzNeT0hkYEDXfv2/hYt/Uwd3L55uKLj/zixp7vijVHfU1vlVTfEZWA/ZxYu590Jm5fQhffiiaiB8FMieB3YcjrSGO1nebYAVnr0CbDs9yC+iqhyMSOKJhxjLYfOLbQz34qJIQoHuPBxgrftK/zrxQzr85yvardRyV2X6+9YSZ+r35AsQquF3Ezq3gKAjQ2PVwDhPjqL+z8iLG5vr0+CYYxY8hQxQTjUK7N6BfMZVHhmIb2SYxGZ8IwD1w8MzHgAd4WS4Sio0KpMdrYd3x3M47s8QwCLC0qhr+8/4m/v18SKwjhXAuNwdoJuvrRLI+nL9GjKgQ5Z16+qvaKci68WF2jfl796bs/0pOTDdmF0TwjHqadSVlv7eEfSRwk5+SLm65kZtoyAj2nhocTi8w3n7pU8YWbppURTLwyRyNzRYU9oRYMnb8qHBsQLqvElhgOKYObBX3R3hIxzj/na15ozkHdmo54JcnELjTtJemVHjtzjN0Drt1nJ16nZFX1SY8eph8af2vokLYIrNhJhs468iz6g+agT2KeJP434HsBNtIMdyu1C7poMJxfbd1ycu1PlRZlaNMZ8b9TDLOR8aU/6BaMsRH+m71VHlhaYWdj5MtG44ZPDDo3fyIMC7wzx+aD373+Nx/lmpksJbnmdqHQSeJotTVSoGt/Utv28lFd+8N+eaN4zkF68KA8/Dwgu+3+CK6sv1tdZzkSWVdb+nvdZ/VT297bCV5u/1c7Gd5773ndxJ6ybZebInIiC/g3pVIRJnO1OIbGQAEyAydskFGaNG0Sg1KSIndjOcV5cGAa0cgyYh++vhORizwpnoujkCM+ANKdVsEDvw8P0y5d6e/q+l9+0Ko5NoKMH/RsmxHoC1fIA8tR790Vgj205zw3BXzsy5soPP+B54Elpne/MW6sWZ5gKjvywt+rYZwr9QPoI2rwae8jeuiy/sJt/5c4bwLPWZOv/tkzWL++xJf/e2TQ3IdAIuFAOhGSkODR9NOrpUz+kG9ZaV2ASjfhxtCiuOOiLvCJy0eUcPnnIQlKajyRjqvqhlS97j1RtBocsJMZAr1V11ik1BUn+vgeOPRsqGvKa83D5FtGNMb6zAPy7oicRdA50EpAFobJYxBGSOHqdwr/7/mx7/IRSdzylzJuXHRIQN/f1UUvxTGHrEy+jiaBm1CaSfgZ5KxIUyke+/h7giybFSx8JTSxjhck1ImzDB0rcvaT1dMlwkVHCXei1jdPnXYpS1dwyt0K3Cist392+NX8lhwTewUV3aEjeBR4zcs8kzyW1sU1SDO6r2tw3SZ+h7T31QF7wg3S0GZrhI2MgnCEeiCndSzoGCx0cuWpxabCKnWdfvFhJ7+M9HdFAbqxyZnJm13m5y3LrC2UaC8IZrjnqfAtKT49A4i3vRpY/Av878cRf22RjH5fDc+MMzgVbwdeS2mPdL7Aku37IwkXwzLfbVnEhGBtarcnnAgWY5Lzt/BVXn5FBzbUBnnjMamj1y+/mxvm+cfUwzrOy7qgmUX4/53wIrwINcLQQCJSDpLl7LV+B93vPzMa3PA5GCsAlO3/69IISfRINtCis+oKAo8sW5YSokZObDzDXm8BHtiB4STdb5qMER+a8Y1qWcri+krTdAP3RgchhDBFLEK8MINKWbkB+RcFiExT1QhrfVdemU9Q/QlZNOmjm6u7Ex9e3F39TOXel34jyBo40f/rWrT3YQK6YM5Hpml+fEHsb8YgPeT6efza6aLFR0Jp9/bT/7tYN6yOy8jvOWMLirSTw0cXSLpMth1lt4y+1nFyWOdywOF7v6+61IbQtivG3/rQMFGJNkeyfTPb99SlexNoH1twzsaU4JoZJYlKi0tN2L47JxqpoyWUPZzl5kXyUiFzHGb4845ZbQSbyCUU5hZIZsYCwwK/GXsyZUYEbkmGzrtI0SF48AvQ1FOwzB8QiBLNUHOSHfcGgSNIv8AVI3Cq/NLINGjlENcwqYvYbPeJ/LlrXjk1BwsO4b8GHJwYTyVjbeCb6efkX/+oiWqQ+RSm1pDvSPA2BUDmwDq2Wz+fryI2/d1V3ytyYBaGDn2R7GCkg4rCt6H49m/vDRmtasPIwPeubMGzOoM6CWBDwPF0erPwNRvpvDhltkgFk1OdRV/HX/5CtfVo8t0L5U2X6/XeH3pYhlfmJuPXBMHHt+3C3QcD4o/Yx5x/KLvK19QffpMvEHXpQVHe6pedL/YFrVureZ6hmGypU8RK3rxUwQwDb2uSM/fpzRJVxDJ9YRUJzW3sUckjNbzXr14b5NqVlXUIgF7ZFx2bpi9gAkHOPy8J2oZffU59M2TDzelZFC6+L2SQs61Mj9W9+zHDjp5XoknlE2dWsEodBfbnjzcA//280b2oTqI24jbtdrwJmE1rF/V+gV5bU8uqBHzoVoRXmqoPCaK4M1We9lmVr8e+mR+G27mLh2IkXsYCi7pLJ3f5w2nGCwYvLMXHo7/teIxxve/r9rwtIz4LG3deOJMV87hhVNQ60dXf8+k2xwZvZl9WHpes9icQLl+9zRNmZUQQSUFzSTmYBwRK49UXOKlneqQ/eF3JTyN8r+hvA+KzCwQKlzo8KsclF43kVb8C4z0KVsGNuWh1P4Aar9X5VN5+wZGo9aB4DgZoewlSrX/YLO+o6RLXC9yODeFIKN3IAFDSxsU2F5kb6UWZ6u9EgcePmPoC954ct4ZqjkRfeqAoda1VtlaLvEE2SStoSBq8cZskysPHUg3IQ/fe0Kd7rHoLhzU4nEDabpaFDDiW0la2mYovzn3GKkhStbB3ZOY21i/bRL6HaIA0NAKZfHtiTR0/GuH3F2LLc5/IsPCIxwNI4K9818wv+71Xq8sOETrr/WI9ll6QN6KNQpbxn6dTt46XccSqgO1ljRWTjg3vb3xH+NsD+8lgrGJicM1tYkUsUmdAnhHBqesiwU4ijxoPvvExuAdz0ZAFiCOWE4ZErZo4a2vDstKMMi0lheMZwhUxp8TqtDmHuV1m0Lxq5bDlbHW7ZWGBlhTiWHYstc+7oue+MFuVpEBCSHEgwQfrsd1dp6G3oUNyMXfpKbKi3DHHLU9e01TlEroJ2Wy1WZZyNinR3h8MDWQvgC9qEws7qmEBG/3w+kJSR8xBFzo4V54WxB8S/PT1BsyVdwsWc/2CET5epj4nz+HhYa5Yepn5/ZLvshOAVUuRmpvDB3adtHkpAdGaSmX2OSd899/1YTPfLSZuz0VphkKLmA7dNxtBL1s8v21+O9UDCQjlrEeveiKk/RGlW7Zv4aaSwfZeIC8UO4vsH++TFb3/USzmwpfPC/3IbQqwC+UgTmgOF4NnuEfAAAcDMPGK4LdPvqCYn4cfCPX05Y3REbMF7+fONBjOfxLOKiJzQM1y+xpyxiZZZuxm9MaQdS6KrLlB70PW6Tn+/gEeGv3eIt+mObB7zBKUYzcDR853jyg90Z4RAwLZZ6H/4AnEyJJt8WmB0Uy5H5cFpcVFj03CAjhnzkoPZJR4n58FV46sm7UwRQ66vLdHaQR+dH3aThUm+hiBtTaPc/rg9ZxyTzP0wgcokRSc6HpBneyM46+BV3aO9iagwMlBmAHWYeEhxknqWIuPj2NZ7BmJx4/lA/mWIGXV4ontOwi0tFFQLNQb7Eu1WsfWeI03GCjZ7ZtRe7Kzb9x6BRKCopgec0JhuK4ycUsWkbVSsIVe/tt0ZIgARiRX8cvAvx4tLW05aVpoftMGmxRJdCNS7lHPFq33+h0bJ/MUNz/+0zM5cp1Vs9DQc7wADvGcL/k1vtGJk4sxSZwg2MNv8PDfS/MDhAuOiust3OzYTY7A4v7Ooaa+6J9w4ItGSSjQK8XegsczHFnChLR1SMv43St682z7Q2AUhzxtQkzK+yDZjRNZK71Y+IyJCfSYupSnaF4LlvckHP4E4gdEssSg9T7o58nrR+Yz2CgbDQX8W+i/0rtNnRnlHZRjrUSGURQldbdjwv6bgStmEGnRgsWUuF9YQ4MTPKFdmbI9tVv/9/xfWtzAj1N99atbvWl/3LMxppctxSnWzPAN49OONv8VKYnafWNimK3dHeZytqPuoe3wd92/TjcbpB1gGIf5J/jo6QQ5LRQc7Tx3LCzy3WLc8K/FhZ7ooCQVAPb6mzYqTeUPYGpJeJHLJzZJRJUca1XYSH0yCF/fLag5yNZ28ea+qaDuXDc4COCgjCbZ4yH+huTxefB4gL9fQbbqD3hZCAz+yxoEmh4ZipF2vaU6CF5QSTdqz4aAMe0SkAqFMIjw2jrqHkzCh4DTBd0tJvOG7gGGSy7bT18hBFOwMA1eLZYiJrXSOYHV8NYkJo4gCYrsUs3NsQv6CxyHCqITYQ1J7WuDVmzY9rAWkfmJKLdnf/QaucG02tr7VonfVHblwfZwjhIBDFCKPF7xNgXMvGEtrKG1g5IVgh29bF1oOLuEjdiIRxpH9gcW/vxgVTte9c4h8p9DHZa5QDaOCP6/XUj9EpNVilEop+Gz/QGbtvw471i3iFYSMK+7XkHcWOouvGTJsoHWhZQ1zIPYtLpnHczl49PBoZ/GfUUmbfmKbWShn7ZNnY3NyCqmBTrErwXzK8FZo8sCwx913x5iDd0A7/zl5s1yexHpTWjYXdEce17OzdkzN3XPmJvlHBqchpcjNX5/DJ0/mHcpmPsQp54+VSGpTdzlE9XZWavsbFO0N4vb5dToHNWEAM7VUPt92kkXT9tS5HhYGF8qFexMg0mGsJf5Hkgpok2JuNxPn48DTkXJQrfmnIsdgIH9Vt78M+QEO6OOHQuNdKsm925Y2Ujo/lm0aL345XUxGedvKTnmp04Lm+ptTc3Z8F+FR+z+xK423DUaN/DXyHR6Qlq4HQxpi12DWFMhUzHF27RvKr796qYzJE1/70o72Rf+CVHQU7Er4FASLRr66DYhOrr38LF05F1W7qk1Q/frLz53h2cNDZr63z+2jusbGZX36W83/N/dBlDbxFvMYQ+qTYjtRaGmxdgfblXYL+4dll/+RFgUgE7Hm7pUk7Z5Qfv2CMk7qtptHiKUjNoRmRHCeOvxPD2WdLAF6FvNj1OhUPnZhHm8DGyYbwwsCO9wUZQ0WLgeEUpZrBXr6b55csVUaMERodUf1FhesjMdhoKH0GZ812dN72JxQozNv6/tQ5ni8w4CjW/czLDMlJy2/YdwtW+PGkefnH1zVXFg5BDMhMKJwE24qTtmB8oxpkXMh6Tn465epR0sz5X4tsC7n4+XREZgB8HhW3+pfNZFp3Vnbc9SMaNqaoNdrY8zaUTWxvNc8pwXTAVLRj6pFEjm3A+ftggjirWeOM3IixDb0SEPPzFyVBue8msJ0mMFdfTzqxR6rlxyODfRUhDIsvQPuY58IHAfG39xbwc5jqF7VBkUsitXNg0ZEVqQUqxv8LR/SkP0hAP8PY05UwJnx3hVPQPJXEAJc/lT2uXB/PWjkz1RrQ2grhCmvtlH3R6o02M+3ds1NUgj9OWtO33zcnU62WfyFnrr6DXvZS6W4hVCMP78RjQbjZ0Y8F9esieyAfHyl998N+sVtj//o3xt2fan3tAVVXZ2uIS681RpYT1KszAYEGp/1sBsqOIv6G2c4q/oebMrTic0hJbleiQQakLFpKgaKS4djHlvMx2k750djoSvkXwVhtFm+LLIcvyYtK08mxnLDMqUtOsoZnTP8LAVhrP18bIjmVNwodbX0yj1Ey5NZ6JfCT3WesAqhZspefXCZdBpNT0EAJAvg3+6IS00RRhi8TZXimD+ia9qB0HH4r+T8dbyR8dCBcNp3AY4khbfixQPfcPD/jCDy0N9erokgZ4f+CAt9PVi9g7jSLS65ReydWEZHR2iJ31EHFJt+cxS9/OjmBB/0BAz29J5BZzg/Ujzjq14KXUd+PHzpZd5H+9bF4iwj3V8aaYKNi9q6y83eGewmlImOibN0BUOdsupdYEnfaZ5CNTKsYnnxwVJyDXkbFBYokEIMD6UIowdGz5LfLg6H4B29Uax9Hdcq9FZY5XA/wfCFIBGCmVuZHN0cmVhbQplbmRvYmoKNTIgMCBvYmoKMjc4NjQKZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjUzIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMTA4MjAxODM2MDFaKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjIuMiwgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4yLjIpID4+CmVuZG9iagp4cmVmCjAgNTQKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwNzcxMzEgMDAwMDAgbiAKMDAwMDAxMTA2MyAwMDAwMCBuIAowMDAwMDExMDk1IDAwMDAwIG4gCjAwMDAwMTExOTQgMDAwMDAgbiAKMDAwMDAxMTIxNSAwMDAwMCBuIAowMDAwMDExMjM2IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5MiAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDE0MzQgMDAwMDAgbiAKMDAwMDAxMTI5MCAwMDAwMCBuIAowMDAwMDI5OTQwIDAwMDAwIG4gCjAwMDAwNDkwMTkgMDAwMDAgbiAKMDAwMDAwOTY2NCAwMDAwMCBuIAowMDAwMDA5NDY0IDAwMDAwIG4gCjAwMDAwMDkwMjYgMDAwMDAgbiAKMDAwMDAxMDcxNyAwMDAwMCBuIAowMDAwMDAxNDU0IDAwMDAwIG4gCjAwMDAwMDE2MTQgMDAwMDAgbiAKMDAwMDAwMTkxOSAwMDAwMCBuIAowMDAwMDAyMDY2IDAwMDAwIG4gCjAwMDAwMDIzMDQgMDAwMDAgbiAKMDAwMDAwMjY4MSAwMDAwMCBuIAowMDAwMDAyOTkxIDAwMDAwIG4gCjAwMDAwMDMyOTQgMDAwMDAgbiAKMDAwMDAwMzU5NCAwMDAwMCBuIAowMDAwMDAzOTEyIDAwMDAwIG4gCjAwMDAwMDQxMTggMDAwMDAgbiAKMDAwMDAwNDI4MCAwMDAwMCBuIAowMDAwMDA0NjkxIDAwMDAwIG4gCjAwMDAwMDQ5MjcgMDAwMDAgbiAKMDAwMDAwNTA2NyAwMDAwMCBuIAowMDAwMDA1MjIwIDAwMDAwIG4gCjAwMDAwMDUzMzcgMDAwMDAgbiAKMDAwMDAwNTY2NSAwMDAwMCBuIAowMDAwMDA1ODk5IDAwMDAwIG4gCjAwMDAwMDYxODYgMDAwMDAgbiAKMDAwMDAwNjQxNiAwMDAwMCBuIAowMDAwMDA2ODIxIDAwMDAwIG4gCjAwMDAwMDcyMTEgMDAwMDAgbiAKMDAwMDAwNzMwMCAwMDAwMCBuIAowMDAwMDA3NTA0IDAwMDAwIG4gCjAwMDAwMDc4MjUgMDAwMDAgbiAKMDAwMDAwODA2OSAwMDAwMCBuIAowMDAwMDA4MjEzIDAwMDAwIG4gCjAwMDAwMDgzNzMgMDAwMDAgbiAKMDAwMDAwODUzMiAwMDAwMCBuIAowMDAwMDA4NzQzIDAwMDAwIG4gCjAwMDAwMjk5MTggMDAwMDAgbiAKMDAwMDA0ODk5NyAwMDAwMCBuIAowMDAwMDc3MTA5IDAwMDAwIG4gCjAwMDAwNzcxOTEgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA1MyAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNTQgPj4Kc3RhcnR4cmVmCjc3MzM5CiUlRU9GCg==\n",
+ "image/svg+xml": [
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "adv_imgs, noise_grad = fast_gradient_sign_method(pretrained_model, exmp_batch, label_batch, epsilon=0.02)\n",
+ "with torch.no_grad():\n",
+ " adv_preds = pretrained_model(adv_imgs.to(device))\n",
+ " \n",
+ "for i in range(1,17,5):\n",
+ " show_prediction(exmp_batch[i], label_batch[i], adv_preds[i], adv_img=adv_imgs[i], noise=noise_grad[i])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "VR2lAceatrGO"
+ },
+ "source": [
+ "Despite the minor amount of noise, we are able to fool the network on all of our examples. \n",
+ "\n",
+ "**NOTE:** None of the labels have made it into the `top-5` for the four images, showing that we indeed fooled the model. \n",
+ "\n",
+ "We can also check the accuracy of the model on the adversarial images:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 83,
+ "referenced_widgets": [
+ "b4b89fcbcd2a4723a4a565c78c938e12",
+ "2c4207aa2ff34f54bc66ed012aa49ced",
+ "d79983d5bb32425bb54dbd51bc8e51e1",
+ "2082842dfe5f4d3bbd95b24239ec4c0d",
+ "6ede070467d64a419b908d9c4eab3b8a",
+ "f137f324b566450785bc6ceba862e929",
+ "8dda20bfad4f4821a6517cfdbf5359f9",
+ "6a0721775a7e40839b099beb87755dfd",
+ "fb751c0b255b4721aab860f89c8bad90",
+ "d8c88672f9fd4698a3b88386127932df",
+ "96c0e584b7a547719538e17ca256a4f7"
+ ]
+ },
+ "id": "JwWlitedtrGP",
+ "outputId": "7aa33a2f-e2e7-4f21-98ea-34c050e75e0a"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "b4b89fcbcd2a4723a4a565c78c938e12",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Validating...: 0%| | 0/157 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Top-1 error: 93.56%\n",
+ "Top-5 error: 60.52%\n"
+ ]
+ }
+ ],
+ "source": [
+ "# BEWARE: this may take while if run on a CPU\n",
+ "_ = eval_model(data_loader, img_func=lambda x, y: fast_gradient_sign_method(pretrained_model, x, y, epsilon=0.02)[0])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "yfsyFCLCtrGP"
+ },
+ "source": [
+ "As expected, the model is fooled on almost every image at least for the `top-1` error, and more than half don't have the true label in their `top-5`. \n",
+ "\n",
+ "This is a **quite significant difference** compared to the error rate of `4.3%` on the clean images. \n",
+ "\n",
+ "However, note that the predictions remain semantically similar. \n",
+ "For instance, in the images we visualized above, the `tench` is still recognized as another `fish`, as well as the\n",
+ "`great white shark` being a `dugong`."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "cJjvQN4FtrGP"
+ },
+ "source": [
+ "### Adversarial Patches\n",
+ "\n",
+ "Instead of changing _every pixel by a little bit_, we can also try to change a small part of the image into whatever values we would like. \n",
+ "\n",
+ "In other words, we will create a small **image patch** that covers a minor part of the original image but causes the model to confidentially predict a specific class we choose. \n",
+ "\n",
+ "This form of attack is an **even bigger threat** in real-world applications than `FSGM`. \n",
+ "\n",
+ "Imagine a network in an autonomous car that receives a live image from a camera. \n",
+ "\n",
+ "Another driver could print out a specific pattern and put it on the back of his/her vehicle to make the autonomous car believe that the car is actually a pedestrian. Meanwhile, humans would not notice it. \n",
+ "\n",
+ "[Tom Brown et al.](https://arxiv.org/pdf/1712.09665.pdf) proposed a way of learning such adversarial image patches \n",
+ "robustly in 2017, and provided a short demonstration on [YouTube](https://youtu.be/i1sp4X57TL4). \n",
+ "\n",
+ "Interestingly, if you add a small picture of the target class (here *toaster*) to the original image, the model does not pick it up at all. A specifically designed patch, however, which only roughly looks like a toaster, can change the network's prediction instantaneously.\n",
+ "\n",
+ "[![Adversarial patch in real world](https://img.youtube.com/vi/i1sp4X57TL4/0.jpg)](https://youtu.be/i1sp4X57TL4)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "id": "BZnTEju5trGQ"
+ },
+ "outputs": [],
+ "source": [
+ "def place_patch(img, patch):\n",
+ " \"\"\"Place the given patch on the image, in a randomly selected location\"\"\"\n",
+ " for i in range(img.shape[0]):\n",
+ " h_offset = np.random.randint(0,img.shape[2]-patch.shape[1]-1)\n",
+ " w_offset = np.random.randint(0,img.shape[3]-patch.shape[2]-1)\n",
+ " img[i,:,h_offset:h_offset+patch.shape[1],w_offset:w_offset+patch.shape[2]] = patch_forward(patch)\n",
+ " return img"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "5ldGX46xtrGQ"
+ },
+ "source": [
+ "**Convert Patch to Tensor** \n",
+ "\n",
+ "The patch itself will be an `nn.Parameter` whose values are in the range between $-\\infty$ and $\\infty$. \n",
+ "\n",
+ "Images are, however, naturally limited in their range, and thus we write a small function that maps the parameter into the image value range of ImageNet:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "id": "9Jf_LeoOtrGQ"
+ },
+ "outputs": [],
+ "source": [
+ "TENSOR_MEANS, TENSOR_STD = torch.FloatTensor(NORM_MEAN)[:,None,None], torch.FloatTensor(NORM_STD)[:,None,None]\n",
+ "def patch_forward(patch):\n",
+ " # Map patch values from [-infty,infty] to ImageNet min and max\n",
+ " patch = (torch.tanh(patch) + 1 - 2 * TENSOR_MEANS) / (2 * TENSOR_STD)\n",
+ " return patch"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "mWxb4S_7trGR"
+ },
+ "source": [
+ "**Evaluate Function**\n",
+ "\n",
+ "Before looking at the actual training code, we can write a small evaluation function. \n",
+ "We evaluate the success of a patch by how many times we were able to fool the network into predicting our target class.\n",
+ "\n",
+ "A simple function for this is implemented below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "id": "UzO5pMFgtrGR"
+ },
+ "outputs": [],
+ "source": [
+ "def eval_patch(model, patch, val_loader, target_class):\n",
+ " model.eval()\n",
+ " tp, tp_5, counter = 0., 0., 0.\n",
+ " with torch.no_grad():\n",
+ " for img, img_labels in tqdm(val_loader, desc=\"Validating...\", leave=False):\n",
+ " # For stability, place the patch at 4 random locations per image, and average the performance\n",
+ " for _ in range(4): \n",
+ " patch_img = place_patch(img, patch)\n",
+ " patch_img = patch_img.to(device)\n",
+ " img_labels = img_labels.to(device)\n",
+ " pred = model(patch_img)\n",
+ " # In the accuracy calculation, we need to exclude the images that are of our target class\n",
+ " # as we would not \"fool\" the model into predicting those\n",
+ " tp += torch.logical_and(pred.argmax(dim=-1) == target_class, img_labels != target_class).sum()\n",
+ " tp_5 += torch.logical_and((pred.topk(5, dim=-1)[1] == target_class).any(dim=-1), img_labels != target_class).sum()\n",
+ " counter += (img_labels != target_class).sum()\n",
+ " acc = tp/counter\n",
+ " top5 = tp_5/counter\n",
+ " return acc, top5"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "FvByBiKFtrGR"
+ },
+ "source": [
+ "**Finally, we can look at the training loop** \n",
+ "\n",
+ "Given a model to fool, a target class to design the patch for, and a size $k$ of the patch in the number of pixels, we first start by creating a parameter of size $3\\times k\\times k$. \n",
+ "\n",
+ "These are the **only** parameters we will train, and the network itself remains untouched. \n",
+ "We use a simple SGD optimizer with `momentum` to minimize the classification loss of the model \n",
+ "given the patch in the image. \n",
+ "\n",
+ "While we first start with a very high loss due to the good initial performance of the network, the loss quickly decreases once we start changing the patch. \n",
+ "In the end, the patch will represent patterns that are characteristic of the class. \n",
+ "\n",
+ "For instance, if we would want the model to predict a \"goldfish\" in every image, we would expect the pattern to look somewhat like a goldfish. Over the iterations, the model finetunes the pattern and, hopefully, achieves a high fooling accuracy."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "id": "7Q0fWzMTtrGR"
+ },
+ "outputs": [],
+ "source": [
+ "def patch_attack(model, target_class, patch_size=64, num_epochs=5):\n",
+ " \"\"\"Perform the Patch Attack\"\"\"\n",
+ " \n",
+ " # Leave a small set of images out to check generalization\n",
+ " # In most of our experiments, the performance on the hold-out data points\n",
+ " # was as good as on the training set. Overfitting was little possible due\n",
+ " # to the small size of the patches.\n",
+ " train_set, val_set = torch.utils.data.random_split(dataset, [4500, 500])\n",
+ " train_loader = data.DataLoader(train_set, batch_size=32, shuffle=True, drop_last=True, num_workers=8)\n",
+ " val_loader = data.DataLoader(val_set, batch_size=32, shuffle=False, drop_last=False, num_workers=4)\n",
+ " \n",
+ " # Create parameter and optimizer\n",
+ " if not isinstance(patch_size, tuple):\n",
+ " patch_size = (patch_size, patch_size)\n",
+ " patch = nn.Parameter(torch.zeros(3, patch_size[0], patch_size[1]), requires_grad=True)\n",
+ " optimizer = torch.optim.SGD([patch], lr=1e-1, momentum=0.8)\n",
+ " loss_module = nn.CrossEntropyLoss()\n",
+ " \n",
+ " # Training loop\n",
+ " for epoch in range(num_epochs):\n",
+ " t = tqdm(train_loader, leave=False)\n",
+ " for img, _ in t:\n",
+ " img = place_patch(img, patch)\n",
+ " img = img.to(device)\n",
+ " pred = model(img)\n",
+ " labels = torch.zeros(img.shape[0], device=pred.device, dtype=torch.long).fill_(target_class)\n",
+ " loss = loss_module(pred, labels)\n",
+ " optimizer.zero_grad()\n",
+ " loss.mean().backward()\n",
+ " optimizer.step()\n",
+ " t.set_description(\"Epoch %i, Loss: %4.2f\" % (epoch, loss.item()))\n",
+ " \n",
+ " # Final validation\n",
+ " acc, top5 = eval_patch(model, patch, val_loader, target_class)\n",
+ " \n",
+ " return patch.data, {\"acc\": acc.item(), \"top5\": top5.item()}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "IfcC0XmftrGS"
+ },
+ "source": [
+ "**Train on Multiple Patches**\n",
+ "\n",
+ "To get some experience with what to expect from an adversarial patch attack, we want to train multiple patches for different classes. \n",
+ "\n",
+ "As the training of a patch can take one or two minutes on a GPU, we have provided a couple of pre-trained patches including their results on the full dataset. \n",
+ "\n",
+ "The results are saved in a JSON file, which is loaded below."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {
+ "id": "es4HBqoWtrGS"
+ },
+ "outputs": [],
+ "source": [
+ "# Load evaluation results of the pretrained patches\n",
+ "json_results_file = os.path.join(CHECKPOINT_PATH, \"patch_results.json\")\n",
+ "json_results = {}\n",
+ "if os.path.isfile(json_results_file):\n",
+ " with open(json_results_file, \"r\") as f:\n",
+ " json_results = json.load(f)\n",
+ " \n",
+ "# If you train new patches, you can save the results via calling this function\n",
+ "def save_results(patch_dict):\n",
+ " result_dict = {cname: {psize: [t.item() if isinstance(t, torch.Tensor) else t \n",
+ " for t in patch_dict[cname][psize][\"results\"]] \n",
+ " for psize in patch_dict[cname]} \n",
+ " for cname in patch_dict}\n",
+ " with open(os.path.join(CHECKPOINT_PATH, \"patch_results.json\"), \"w\") as f:\n",
+ " json.dump(result_dict, f, indent=4)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "eJUthLrStrGS"
+ },
+ "source": [
+ "**Utility**: Train and Evaluate Patches from a list of classes and sizes\n",
+ "\n",
+ "The pretrained patches include the classes *toaster*, *goldfish*, *school bus*, *lipstick*, and *pineapple*. \n",
+ "\n",
+ "The classes were chosen arbitrarily to cover multiple domains (_animals, vehicles, fruits, devices, etc._), and at three different patch sizes: $32\\times32$ pixels, $48\\times48$ pixels, and $64\\times64$ pixels. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "⚠️ Highly recommended to run on **GPU**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {
+ "id": "Fv0CUUN1trGS"
+ },
+ "outputs": [],
+ "source": [
+ "def get_patches(class_names, patch_sizes):\n",
+ " result_dict = dict()\n",
+ "\n",
+ " # Loop over all classes and patch sizes\n",
+ " for name in class_names:\n",
+ " result_dict[name] = dict()\n",
+ " for patch_size in patch_sizes:\n",
+ " c = label_names.index(name)\n",
+ " file_name = os.path.join(CHECKPOINT_PATH, \"%s_%i_patch.pt\" % (name, patch_size))\n",
+ " # Load patch if pretrained file exists, otherwise start training\n",
+ " if not os.path.isfile(file_name):\n",
+ " patch, val_results = patch_attack(pretrained_model, target_class=c, patch_size=patch_size, num_epochs=5)\n",
+ " print(\"Validation results for %s and %i:\" % (name, patch_size), val_results)\n",
+ " torch.save(patch, file_name)\n",
+ " else:\n",
+ " patch = torch.load(file_name)\n",
+ " # Load evaluation results if exist, otherwise manually evaluate the patch\n",
+ " if name in json_results:\n",
+ " results = json_results[name][str(patch_size)]\n",
+ " else:\n",
+ " results = eval_patch(pretrained_model, patch, data_loader, target_class=c) \n",
+ " \n",
+ " # Store results and the patches in a dict for better access\n",
+ " result_dict[name][patch_size] = {\n",
+ " \"results\": results,\n",
+ " \"patch\": patch\n",
+ " }\n",
+ " \n",
+ " return result_dict"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "PvPLbuL3trGT"
+ },
+ "source": [
+ "Feel free to add any additional classes and/or patch sizes."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "id": "tyTNP0ZbtrGT"
+ },
+ "outputs": [],
+ "source": [
+ "class_names = ['toaster', 'goldfish', 'school bus', 'lipstick', 'pineapple']\n",
+ "patch_sizes = [32, 48, 64]\n",
+ "\n",
+ "patch_dict = get_patches(class_names, patch_sizes)\n",
+ "# save_results(patch_dict) # Uncomment if you add new class names and want to save the new results"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "O82TZxVgtrGT"
+ },
+ "source": [
+ "Before looking at the quantitative results, we can actually visualize the patches."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 538
+ },
+ "id": "jku3gonztrGT",
+ "outputId": "77b7e578-3116-4e48-a186-e717b54303c4"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYzMy4zMzI4MTI1IDM4Ny42NDEgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnicrdZRT6swFAfw936K8+hNTKEtLfCoURcfNSQ+3PjgZcwxUaZMTfz0nrZ3oS17PMkYg2V/9ss4/1XAjmUXAp4nwCfIYYfbN/yFR9yv8dzKnmc5Hr0yoxRXSlZC4uEQHqqq5KYQeDIPXm8Z27B3KLkEaQxXwkBd28dHBw/wBtmF9Bfe4TZfNMeLZlfdV99296tLaCfMwA/Z74C7MK19hexWwNUId+wO3o+BORcaMYtce3r1/1122UB2IwC/fLNhIufKFLmRGlQpXHazZmeH8Wk6dB/nMPU/HSj5B5odXDfuWkJpXhO64jwnkxQyZXhZqDKGPY/DetNP25MyaQpuCGVxnpMpApnUeCskP9jUbsdxgH+f00mZqvGOJZTFeU5WEMhUjb+ZViLBDf1+OvTty0malpRDFqY5liZgaWF4ZUpRJTfjvn/rnvb7oTsJs/PubmJdEbXHMc3BDG17yEK47GV7FNWyPehccZ6TlaTtEcKS9ohlftrpZHGek1WE7RG6Fu0Ry/y008niPCeradsjxCXtEdPsvNPBwjT/F50T10cIS+sjltmBtxtNddjNi4hXHUJIjF62himWrUHDmbM8iHaxMXuSsohBfrhpQHOWB1GuMWbOoiNikJ9pGtCc5UHES4vZlFRDLLLDTOM5JnkN9Ypi5qSFEHjYL9z/+mEKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iago1MDgKZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA0ID4+CnN0cmVhbQp4nD2SO5LDMAxDe52CF8iM+JPk82Qnlff+7T4yyVaASYkAKC91mbKmPCBpJgn/0eHhYjvld9iezczAtUQvE8spz6ErxNxF+bKZjbqyOsWqwzCdW/SonIuGTZOa5ypLGbcLnsO1ieeWfcQPNzSoB3WNS8IN3dVoWQrNcHX/O71H2Xc1PBebVOrUF48XURXm+SFPoofpSuJ8PCghXHswRhYS5FPRQI6zXK3yXkL2DrcassJBaknnsyc82HV6Ty5uF80QD2S5VPhOUezt0DO+7EoJPRK24VjufTuasekamzjsfu9G1sqMrmghfshXJ+slYNxTJkUSZE62WG6L1Z7uoSimc4ZzGSDq2YqGUuZiV6t/DDtvLC/ZLMiUzAsyRqdNnjh4yH6NmvR5led4/QFs83M7CmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzcgPj4Kc3RyZWFtCnicRVFJcgQhDLv3K/SBqcIr8J5Ozanz/2ssM0lOFmBrMWmBgS14iSHWwMyBL7l8Teg0fDcy2/A62R5wT7gu3JfLgmfClsBXVJd3vS9d2Uh9d4eqfmZke7NIzZCVlTr1QjQm2CERPSMyyVYsc4OkKa1S5b4oW4Au6pW2TjuNkqAjFOFvlCPh6RVKdk1sGqvUOqChCMu2Log6mSSidmFxavGWISKfdWM1x/iLTiJ2x+P+rDDrUSSS0mcH3XEmo02WXQM5uXmqsFYqOYg+XtHGhOp0qoFjvNe29BNp4Ln2X+EHPn3/jxj6ud4/xu5cIgplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMwID4+CnN0cmVhbQp4nDVRSW7DMAy86xXzgQDiLr/HQU/t/68d0glgYGhLnM0RGxsReInBz0HkxlvWjJr4m8ld8bs8FR4Jt4InUQRehnvZCS5vGJf9OMx88F5aOZMaTzIgF9n08ETIYJdA6MDsGtRhm2kn+oaEz45INRtZTl9L0EurEChP2X6nC0q0rerP7bMutO1rTzjZ7aknlU8gnluyApeNV0wWYxn0ROUuxfRBqrOFnoTyonwOsvmoIRJdopyBJwYHo0A7sOe2n4lXhaB1dZ+2jaEaKR1P/zY0NUki5BMlnNnSuFv4/p57/fwDplRTnwplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjYgPj4Kc3RyZWFtCnicMza0UDBQMDdX0DU0NFUwMjJQMDQyUUgx5DI0NAczc7lggjlglokBkGEIJMEacrhgWnPAOiCyUK05XGkATTgR9QplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjI3ID4+CnN0cmVhbQp4nDVPO7IDIQzrOYUukBmMbWDPs5lUL/dvn2SyDRL+SPL0REcmXubICKzZ8bYWGYgZ+BZT8a897cOE6j24hwjl4kKYYSScNeu4m6fjxb9d5TPWwbsNvmKWFwS2MJP1lcWZy3bBWBoncU6yG2PXRGxjXevpFNYRTCgDIZ3tMCXIHBUpfbKjjDk6TuSJ52KqxS6/72F9waYxosIcVwVP0GRQlj3vJqAdF/Tf1Y3fSTSLXgIykWBhnSTmzllO+NVrR8dRiyIxJ6QZ5DIR0pyuYgqhCcU6OwoqFQWX6nPK3T7/aF1bTQplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ1ID4+CnN0cmVhbQp4nEVQu41DMQzrPQUXCGD9LHued0iV2789SkZwhSFaP5JaEpiIwEsMsZRv4kdGQT0LvxeF4jPEzxeFQc6EpECc9RkQmXiG2kZu6HZwzrzDM4w5AhfFWnCm05n2XNjknAcnEM5tlPGMQrpJVBVxVJ9xTPGqss+N14GltWyz05HsIY2ES0klJpd+Uyr/tClbKujaRROwSOSBk0004Sw/Q5JizKCUUfcwtY70cbKRR3XQydmcOS2Z2e6n7Ux8D1gmmVHlKZ3nMj4nqfNcTn3usx3R5KKlVfuc/d6RlvIitduh1elXJVGZjdWnkLg8/4yf8f4DjqBZPgplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzkyID4+CnN0cmVhbQp4nD1SS24FMQjbzym4QKXwTXKeqd7u3X9bm8xUqgovA7YxlJcMqSU/6pKIM0x+9XJd4lHyvWxqZ+Yh7i42pvhYcl+6hthy0ZpisU8cyS/ItFRYoVbdo0PxhSgTDwAt4IEF4b4c//EXqMHXsIVyw3tkAmBK1G5AxkPRGUhZQRFh+5EV6KRQr2zh7yggV9SshaF0YogNlgApvqsNiZio2aCHhJWSqh3S8Yyk8FvBXYlhUFtb2wR4ZtAQ2d6RjREz7dEZcVkRaz896aNRMrVRGQ9NZ3zx3TJS89EV6KTSyN3KQ2fPQidgJOZJmOdwI+Ge20ELMfRxr5ZPbPeYKVaR8AU7ygEDvf3eko3Pe+AsjFzb7Ewn8NFppxwTrb4eYv2DP2xLm1zHK4dFFKi8KAh+10ETcXxYxfdko0R3tAHWIxPVaCUQDBLCzu0w8njGedneFbTm9ERoo0Qe1I4RPSiyxeWcFbCn/KzNsRyeDyZ7b7SPlMzMqIQV1HZ6qLbPYx3Ud577+vwBLgChGQplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMzID4+CnN0cmVhbQp4nE2PQRLDMAgD736FnoCxAfOedHpK/n8tkDbuBe2MgJGGMAg8YgzrMCW8evvhVaRLcDaO+SUZRTwIagvcF1QFR2OKnfjY3aHspeLpFE2L6xFz07SkdDdRKm29ncj4wH2f3h9VtiSdgh5b6oQu0STyRQJz2FQwz+rGS0uPp+3Z3h9mPjPXCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicRVJLcsUwCNvnFFwgM+Zn4/O8Tlfp/beVcDrdPPQMCAkyPWVIptw2lmSE5BzypVdkiNWQn0aORMQQ3ymhwK7yubyWxFzIbolK8aEdP5elNzLNrtCqt0enNotGNSsj5yBDhHpW6MzuUdtkw+t2Iek6UxaHcCz/QwWylHXKKZQEbUHf2CPobxY8EdwGs+Zys7lMbvW/7lsLntc6W7FtB0AJlnPeYAYAxMMJ2gDE3NreFikoH1W6iknCrfJcJztQttCqdLw3gBkHGDlgw5KtDtdobwDDPg/0okbF9hWgqCwg/s7ZZsHeMclIsCfmBk49cTrFkXBJOMYCQIqt4hS68R3Y4i8Xroia8Al1OmVNvMKe2uLHQpMI71JxAvAiG25dHUW1bE/nCbQ/KpIzYqQexNEJkdSSzhEUlwb10Br7uIkZr43E5p6+3T/COZ/r+xcWuIPgCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjMgPj4Kc3RyZWFtCnicRZC5dQQxDENzVYESeIA66hk/R7P9pwtpvN5A+niEeIg9CcNyXcWF0Q0/3rbMNLyOMtyN9WXG+KixQE7QBxgiE1ejSfXtijNU6eHVYq6jolwvOiISzJLjq0AjfDqyx0Nb25l+Oq9/7CHvE/8qKuduYQEuqu5A+VIf8dSP2VHqmqGPKitrHmravwi7IpS2fVxOZZy6ewe0wmcrV/t9A6jnOoAKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY4ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiFtCNEGUglgQpWYmZhBJOAMilwYAybQV5QplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODEgPj4Kc3RyZWFtCnicPcy7FYAwCAXQPlO8EUJ8gOzjsdL9W8FEG7h81QMdIRnUDW4dh7SsS3eTfep6tYmkyIDSU2pcGk6MqGl9qX1q4Lsb5kvViT/Nz+cDh8cZawplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoingYAn30MtQplbmRzdHJlYW0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYxID4+CnN0cmVhbQp4nEWQSxLDIAxD95xCR/BHBnyedLpK77+tIU2zgKexQAZ3JwSptQUT0QUvbUu6Cz5bCc7GeOg2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlHcPVf9Uex7pzNxMBk5Q6EZvUp7nybHVFd3WR/0mNu1mt/FfaqsLSspeWE285dM6AE7qkc7f0FqXM6hAplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE0ID4+CnN0cmVhbQp4nD1QuxFDMQjrPQUL5M587TfPy6XL/m0knKRCNkISlJpMyZSHOsqSrClPHT5LYoe8h+VuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rXL3UtzvPRxvooiUdPCu+eX0y88tvE49jkS6vfmKa3GmOgpEcEZq8op0YcWyyEOk1QQ1PQNrtQCu3nr5N2hHdBmA7BOJ4zSlHEP/1rjH6wOHilL0CmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzYgPj4Kc3RyZWFtCnicTVBLbkQhDNtzilzgSSQhAc5D1VXn/tuxw1TtKoYYf0gP6bJVHutTYnWJ7PKlTZfKMnkVqOVP2/9RDAJu/9DIQbS3jJ1i5hLWxcIkPOU0Ixsn1ywfjztPG2aFxsSN450uGWCfFgE1W5XNgTltOjdAupAat6qz3mRQDCLqQs0Hky6cp9GXiDmeqGBKdya1kBtcPtWhA3FavQq5Y4uTb8QcWaHAYdBMcdZfAdaoybJZyCBJhiHOfaN7lAqNqMp5KxXCD5OhEfWG1aAGlbmFoqnlkvwd2gIwBbaMdekMSoGqAMHfKqd9vwEkjV1TCmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNTcgPj4Kc3RyZWFtCnicRZC5EUMxCERzVUEJErAI6rHH0Xf/qRf5SrRvAC2HryVTqh8nIqbc12j0MHkOn00lVizYJraTGnIbFkFKMZh4TjGro7ehmYfU67ioqrh1ZpXTacvKxX/zaFczkz3CNeon8E3o+J88tKnoW6CvC5R9QLU4nUlQMX2vYoGjnHZ/IpwY4D4ZR5kpI3Fibgrs9xkAZr5XuMbjBd0BN3kKZW5kc3RyZWFtCmVuZG9iago0OSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzMiA+PgpzdHJlYW0KeJwtUjmOJDEMy/0KfmAA6/Lxnh5M1Pv/dElVBQWqbMs85HLDRCV+LJDbUWvi10ZmoMLwr6vMhe9I28g6iGvIRVzJlsJnRCzkMcQ8xILv2/gZHvmszMmzB8Yv2fcZVuypCctCxosztMMqjsMqyLFg6yKqe3hTpMOpJNjji/8+xXMXgha+I2jAL/nnqyN4vqRF2j1m27RbD5ZpR5UUloPtac7L5EvrLFfH4/kg2d4VO0JqV4CiMHfGeS6OMm1lRGthZ4OkxsX25tiPpQRd6MZlpDgC+ZkqwgNKmsxsoiD+yOkhpzIQpq7pSie3URV36slcs7m8nUkyW/dFis0UzuvCmfV3mDKrzTt5lhOlTkX4GXu2BA2d4+rZa5mFRrc5wSslfDZ2enLyvZpZD8mpSEgV07oKTqPIFEvYlviaiprS1Mvw35f3GX//ATPifAEKZW5kc3RyZWFtCmVuZG9iago1MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxNyA+PgpzdHJlYW0KeJw1UktyQzEI279TcIHOmL99nnSyau6/rYQnK7AtQEIuL1nSS37UJdulw+RXH/clsUI+j+2azFLF9xazFM8tr0fPEbctCgRREz34MicVItTP1Og6eGGXPgOvEE4pFngHkwAGr+FfeJROg8A7GzLeEZORGhAkwZpLi01IlD1J/Cvl9aSVNHR+Jitz+XtyqRRqo8kIFSBYudgHpCspHiQTPYlIsnK9N1aI3pBXksdnJSYZEN0msU20wOPclbSEmZhCBeZYgNV0s7r6HExY47CE8SphFtWDTZ41qYRmtI5jZMN498JMiYWGwxJQm32VCaqXj9PcCSOmR0127cKyWzbvIUSj+TMslMHHKCQBh05jJArSsIARgTm9sIq95gs5FsCIZZ2aLAxtaCW7eo6FwNCcs6Vhxtee1/P+B0Vbe6MKZW5kc3RyZWFtCmVuZG9iago1MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3ID4+CnN0cmVhbQp4nDM2tFAwgMMUQy4AGpQC7AplbmRzdHJlYW0KZW5kb2JqCjUyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMxID4+CnN0cmVhbQp4nEWPyw0EIQxD71ThEvIZPqmH1Z7Y/q/rMJpBQvhBIjvxMAis8/I20MXw0aLDN/421atjlSwfunpSVg/pkIe88hVQaTBRxIVZTB1DYc6YysiWMrcb4bZNg6xslVStg3Y8Bg+2p2WrCH6pbWHqLPEMwlVeuMcNP5BLrXe9Vb5/QlMwlwplbmRzdHJlYW0KZW5kb2JqCjUzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nDVSOa7dQAzrfQpdIIB2zZznBal+7t+GlF8KQ7RWipqOFpVp+WUhVS2TLr/tSW2JG/L3yQqJE5JXJdqlDJFQ+TyFVL9ny7y+1pwRIEuVCpOTksclC/4Ml94uHOdjaz+PI3c9emBVjIQSAcsUE6NrWTq7w5qN/DymAT/iEXKuWLccYxVIDbpx2hXvQ/N5yBogZpiWigpdVokWfkHxoEetffdYVFgg0e0cSXCMjVCRgHaB2kgMObMWu6gv+lmUmAl07Ysi7qLAEknMnGJdOvoPPnQsqL8248uvjkr6SCtrTNp3o0lpzCKTrpdFbzdvfT24QPMuyn9ezSBBU9YoaXzQqp1jKJoZZYV3HJoMNMcch8wTPIczEpT0fSh+X0smuiiRPw4NoX9fHqOMnAZvAXPRn7aKAxfx2WGvHGCF0sWa5H1AKhN6YPr/1/h5/vwDHLaAVAplbmRzdHJlYW0KZW5kb2JqCjU0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjU1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcxID4+CnN0cmVhbQp4nE2QTQ5CIRCD95yiFzCh8wOP82hc6f23dvD54oL0SyFDp8MDHUfiRkeGzuh4sMkxDrwLMiZejfOfjOskjgnqFW3BurQ77s0sMScsEyNga5Tcm0cU+OGYC0GC7PLDFxhEpGuYbzWfdZN+frvTXdSldffTIwqcyI5QDBtwBdjTPQ7cEs7vmia/VCkZmziUD1QXkbLZCYWopWKXU1VojOJWPe+LXu35AcH2O/sKZW5kc3RyZWFtCmVuZG9iago1NiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc0ID4+CnN0cmVhbQp4nD2MwQ2AMAwD/50iIzSJTTIQ4gX7f2kK7cc+nWTTKF3gFWlChJzayElPW+6ehIODFJCwX23o1b4qS3uqIGoy/jZ8d9cLdxwXTgplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDMwIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQ0IC9jb21tYSA1MCAvdHdvIC90aHJlZSAvZm91ciA1NCAvc2l4IDU2IC9laWdodCA5NyAvYSAvYiAvYwovZCAvZSAvZiAvZyAvaCAvaSAxMDcgL2sgL2wgMTEwIC9uIC9vIC9wIDExNCAvciAvcyAvdCAvdSAxMjIgL3ogXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDI4IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDI3IDAgUiA+PgplbmRvYmoKMjggMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoyNyAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagozMCAwIG9iago8PCAvYSAzMSAwIFIgL2IgMzIgMCBSIC9jIDMzIDAgUiAvY29tbWEgMzQgMCBSIC9kIDM1IDAgUiAvZSAzNiAwIFIKL2VpZ2h0IDM3IDAgUiAvZiAzOCAwIFIgL2ZvdXIgMzkgMCBSIC9nIDQwIDAgUiAvaCA0MSAwIFIgL2kgNDIgMCBSCi9rIDQzIDAgUiAvbCA0NCAwIFIgL24gNDUgMCBSIC9vIDQ2IDAgUiAvcCA0NyAwIFIgL3IgNDggMCBSIC9zIDQ5IDAgUgovc2l4IDUwIDAgUiAvc3BhY2UgNTEgMCBSIC90IDUyIDAgUiAvdGhyZWUgNTMgMCBSIC90d28gNTQgMCBSIC91IDU1IDAgUgoveiA1NiAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDI5IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvSTEgMTIgMCBSIC9JMTAgMjEgMCBSIC9JMTEgMjIgMCBSIC9JMTIgMjMgMCBSIC9JMTMgMjQgMCBSIC9JMTQgMjUgMCBSCi9JMTUgMjYgMCBSIC9JMiAxMyAwIFIgL0kzIDE0IDAgUiAvSTQgMTUgMCBSIC9JNSAxNiAwIFIgL0k2IDE3IDAgUgovSTcgMTggMCBSIC9JOCAxOSAwIFIgL0k5IDIwIDAgUiA+PgplbmRvYmoKMTIgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSAvRGV2aWNlUkdCCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDMgL0NvbHVtbnMgOTkgL1ByZWRpY3RvciAxMCA+PiAvRmlsdGVyIC9GbGF0ZURlY29kZQovSGVpZ2h0IDk5IC9MZW5ndGggNTcgMCBSIC9TdWJ0eXBlIC9JbWFnZSAvVHlwZSAvWE9iamVjdCAvV2lkdGggOTkgPj4Kc3RyZWFtCnic7Z1peFzVecfvHd3ZpNHI0kga7bIsG8uywdjYLDa7scEkQBMCGELSkKYtT52koSENTUiTlDyB0oQ0DUsprSkNO9hO00DYjLGxDcbG8iJ50zZaPdo1I82iGc1MP7y/cycfL9/v+0X/586959w5c/7nXc+R3v7U9zRN0zTtk2XfEfDScz0CnG99WcBjjlkBFTU5TUm21BAwW1UiYKqlRoDu5orHAOgen4CEUSkg4lsqIJ4oEBBI9gsom33b7EUPczGSdQsYztUKyGTqabO4iqaKFguIljsE+PRGAWvPzQtomv6Z2bh79DDoeIov9QBtji7cJ+Dvzz0rwKHZYk3skbIqxtmivxH0zjFGrSnEfPvXM78U4NAeFpCdHTefzESWC5if/pIA10BSQLLzqID0cCdXxiYEDI4mBLw9A5HbI7qASDwtoCg3Z/ZSZ2QF1JR5BATqiwSUBX0KuASUlkPVxuW8W87HguAMBnhbfZvZuLfoBwL0ud9x/5I+Ad9PQOTah95Xg2CLNbFHyqro+wbgxfyhbgFrr/itAMccIHUltJqJG+aTwwF00K6a6wTMVkOfYArt6Y4MCghHId1EGjbNGfxIzgK4k8zS+Hw2r2HnUuisnKeQSxnYF/CiWHMVtFnvr+CFDfRpyn2hgO2pq/gK0aDZ+Nr3uPi8xnt6+r8ooKd0u4Crdbqz55RVsUfKqhiz85OC3r1nk4DVQUg0NYg9VlTpFOD6cbP5ZNFSFOIV/jIBsyMnBHjORQXkJgD+2QUCxjI8PjYD6SbPKabEsG91Pc8+Pc3LOIq4323wqZ7k/gK3X0D3eExAdVmpgKCrTcAXWmHo67HbzMadW48IaN64SED//EkBCydfopcFmN/2nLIq9khZFf3vNrQK6tiPwvrdHiy6+TewADO34D2Nd3/ZfHI4fb6A4BqY1fHRbwS4e0MCxjqmBHTHsBt7U4D4PKRzufm1Cr1w3CgoMHtZ5IA1sQhc8zXwerNKLS7wo4V9NTTlmsOanR9nAYn6laEbd5qNnyy8W0Cd7wIBid+vFbBz33EBv65nwbHnlFWxR8qqGM1DY4IeuB0TK1vL9A7tZnr/98voxxeHHzGfzOSYz7/8HE5Wh4M5nx7mnsVFmILFBv7XmlIVmcnGBThyGKU9M1B1OB43ewmlMUczCV5vCAWrldRypXtvu4CNK7Aqu6dVAMeJWoxVVwtoqS0zGy/ofkzA6s0/EfBMbKOAiehzfLSMtcWeU1bFHimrYo+UVTFGJ/B+9fsI14YewDj492Eo3RtTXnQmZT7p1FiVdhzAtd76OIGqw+8NCFi+cZWA9o5RAe4Abu1cCPM9HuHXWthUJ6BIT5i9TI5MCwj6CDANHMKbDSxmPZ0bKxbwfsc5AS/swn948I4fCWgp4fFTo0mz8aIyglDezEEBl63GZ962/VMBN153iQB7TlkVe6SsirGumpxHIoCH/HLoIwGbttwo4K2dGN+RXD4+dZWyrd9OQMkKN37mEg01X1FA1uTKVWjr8Qk469lIFiQ0hFs7NjIioK7UbfZSsxBQ6seauWQ99vShjt0Cvvvqfwi4dMWtAh58gI/KV2GRHwthc9etXms23jmIBVAcZblYtpkFp+0NLKS5FSwF9pyyKvZIWRXDuBCjuWMALVPuJrhT23xWQGUFdLj+jkrzyYI25ud5/TixE30EdzwXcNvUNJRZvGmLAO8MStAoQMOWBLlneoCfrbez1+zlSLtXQF8vKq9AkfTNTqJLj/7LegEpFcx6fSfppf/6BXnfM8deFVAx4zUb1yvLBUQ7TwsIrlvCm0dwBeZyOBz2nLIq9khZFSPRBFMGPiQA1ORnfjrKWPb1pgoF/OaTU0egw2W34Je+9Coa5KYtCwU88TAZx39oahCw7aG9AlYsxSjdP0BxQGQQW3RKGzF70XOop3CcxuPTKFaXi3hxKsM64HVwczyJs/3OR2cE+JZi8Q71RM3Gl1wDPtWmLOoSjFitokn+dn/8GqOh2WJN7JGyKkawAQvw5AtonIabNwjo7ekQUBK4VECxY958siGI0pzIMtznVfJpvP0dAYEkgS0jtUPAPf+Eejq4AyX4pQf/SkDfIbSMMz5q9jJ9nEqInjreM3KO0oHY6IyAY304nu6kStJ0o8cnkhEBzYtRc6H2PPuurMUwPv0xTWkpLNXgsosEdL0Fbe05ZVXskbIqRniY+fnHHnTZddWYgmNtzOGWWky7icOfmE9evIlyhPa2Pwpo/Q6TOXqa4Kx+AJP1tUcpD/ruDpzKkSfx0YwMui+cIsjrzuRLB+bLeJmhSXiRm0blTZ3Ddl3gg3TJGHlXp0G/4aEhAUsXtwhIGPm06/AsfA+qQPN4WBVnXEo66slXCSvbc8qq2CNlVYzqIBZd0EvOMhc4T0A8Bx+L65jw00Np80nvUgKGyX0qtVnGDI+30dQ9R5n8qRwPPlRcrxqAKU/1oGWqb8ZuHBkw79GWLEVnGeMQqraUKE2qEa20Lx6mBQ2mvPwajDYcKlfq4pVcRl73Fcb51LOAiGg2hrF9UQsBVaOZlceeU1bFHimrYvQ9w2pf5SHYcuIkfCzyEgDMZDD/Eq5Z88lsEdHLjmlVNrf/fwXoHfwAc1nUk66rUgMe0jwFNL5oK9ROFF4moLDQZ/ZSNLpHQK0HhZiJ4aOF1bukNFKzBzr61BXumZ2j8REPDl3KETEbj8zCxJQH4qdSLvXdYWtlJcS055RVsUfKqhjt0xBk+SqW/ZNh2Hf5+TiAqSEsyar6peaTk+PE8DUPMfzOKWKedz18jYCCS38o4Om1mKmPxUMCvnHnVgGvf/qfAi6qv0uA26sK9zRNO5/oRyhCsCVZhH2bUVVEuRleuPVa9VEUk3J8nkzluSNdAhY2rDDbHuhFaa6+iizG6TDGtq6RWymvIo1izymrYo+UVTF6U2ijzdcQ2Ny7G9Ou5vPYlmc+ICCz6Op8Jk5PhgT4DSrFs8XLBBzrQleWqi1YK++nF/37qJ4971HsfvufE/x0J9CGudl8QjwWR8PVlMGsAqWe4k4+Char0lgHDuAHE/Ry5/2sAztfIZ++cMmFZuPT40prp4iRlseJ90ZmWIsqFtp+32cUe6SsirFzjGzdnaeY/KMhtTWiBHOxawa90+ApMZ90u4hUpDuJZ959388F/PPj/ybgx9/7WwHbDhCueeTZBwXEZ7ASS1TZXE8/GrblvD8hyBy9zE2jxYwIVmVAVcRGMhDk8AmsxCF187svEslZuhLyTo31mY37KlhwBhOYoFWFrCT9PSw4NXXkSuw5ZVXskbIq9khZFaNxGWXvpS0QsnYvKXmXhzUiGWApcZTn47bDpF20sypuW5BiOauNYuAuWk+aPxviJ0mHsb/ffI5VacM11wsIVOItHPvgmNmLg5VHy7jpxe9hYR2MYgqcHsWwvuDeywX86FbqEk7s/4OACi8NDYa6zcZrm1WtcQ/FfEvWrxQwcIrsbP3lfAV7TlkVe6SsihFJYvKOjqNZGwphQTqp3MU0U9GlDiTQNO29//tAwNov3iAg3I3DWbmGORxYQJTneFQ13rJZwLrL+ZEWr4fj0S4c7EU31Zq9eIqxACKDULtL1cgub2Djzmp1KsOB/lMCJqNU+cwnMfdjmsrpVmfNxh0BloKEyqSWVfEyR3fRVPAitW1Os8Wa2CNlVYzqSjIxu5Joh0XLmajRMCU1zeUY645IfkdLNgQla1tUxYDalj3rx4zOefGoF6uiHFeBij2dYHqXbEIBdbYRQnr3hZjZy/7JlwWcvxhH2utTQShjp4DJQXVcyiTaMKMK6Rqq+cjt5E087gVm43qMiwUJVonZMTR6RTlVFwNj8NeeU1bFHimrYqyvw+g6eBotc8FN7Nw6pNza86+gKujU3rxNmPGgNHM6utJXSHbn2nqstZkR6ntKiomxxuZgVu062HRgmIyO56urBWy/9ZDZy7ufPC/g+fYnBNSdJf8anoEXgRq4U+pjJXF6WCWmZ2FTf4S3NVLKltW06RwtFFdQmBgaIZXrKOe2T7v4yvacsir2SFkVY5MXS2x/F4U7Vc03CTi5m9OqbtiCwbnj5781n2y6npRMRQt7vsO7ibEWTROuLVO1C05VmJ6MRNVHTPjSpqsFtNZQJ/QXA01mLz+8jYLUVICXOd5HyKnuQpSmgyiTFp9hAUnq6gQUvzrpIUbgyZfOq+/ZBEGoqjJyMycOs219y+2kaYdf4c3tOWVV7JGyKkbOTTaiMMrEq3YzdceHVY5EFXzren4nZHoOip05yKbB1Vfh080rBedSZ/ZEM1TCeQwcq9Q0rH//0f0CvrnrAC1nVH2qpm3f+48CKotRRptWLeQ2DzsnE04yQPU5+FiUwI+bUSeEZce5Muufyn/5EqJDg+Oo7zFVoTirQkmvb39cgD2nrIo9UlbFOOqEDhXleGThSUIWjmYqaYa7iIKmsvnMaKk6AmFxDUkdpx9CJUfwrc62E0gZGcBJ7I/DrPf/8B4NZfi1RmNYibfd+G2zlw0bYFZMFcJGiri/2EW/nkLI7pwhIzsxp3YyF/DC0wWqHEmV+2iaNtEDo30NLEFfWLVOQNVCrjz4iH1K5WcUe6Ssin7nbZ8XtMYT4lKAiKWzhVrV8Q7CL349f9BOWuVNq3zM53cPcTjlWBgHsImopJZNoTS9zXD2qkvxBFvr2Hgfy0KZA+O7zV6Of8SOlECOwrvycvjojbJuzLtQrAVubNCMOo0vohGx9Gloamdxfit1STH+aVU9bTa40PIfhLj/7Xm7Kugzij1SVkVvbiJS8a0tGHK73sD62nLfzQKe+NX/CLhyYz4X0PYR5QtjIyjN6zfiPZXVED+pWIQGcabJGM5r6NOhTtITU2eJzEyWq4BMZT6vsWYZkz+TQYvN5eiurIKmkg5FKJfKCWZhn1GizjhQZw65HXndl4ijEMdjaOTeUzi/Z3VaSJeygthzyqrYI2VV9JpKfKW7VzHnT3RhJd5yHbrvw4MEOj4dzjtNKyshVONKdY5MDYGUfpXQrnRxT0QVpjcvw1z0qiO7LrkSVZsysC3TifxG/YnjIQEVasd+VjlraSc0nHPwYMAPH3VVqp7x0dSM8kBLHPl8XzYG332KpJM6fDzaz9pyyTjAnlNWxR4pq2KPlFXRL1mFGu7rIm77zZVkE399QqUJvSQj+6b6zSdLvdi1lbUsTy0XYHC0rMWeXtlKBLmyGuvZpTzVaeJF2sgQdffzU6jqqkWNZi/lQda1aIJV6XQ/a2XGRVOGchyavPgGVdW4vu5yFkqPi3XK+JOjemcSRIqf2UeYeN9LJIo2GORW150mOmDPKatij5RV0V9+4SlBX/86/9RgeJz6gLVfQ38XhTDNJ4fzJxk8/Zu/FjDmJO3RVA3XJifVcQUh1HDbGZznarMQRyOG1bqaXuIxCDIZz28s6z7KgUBuH9q9oRRTYEEprHeXYQq0LmDrgM8P+/yNKlI2yZu8v/eg2fjvX/mVgMI0yeBGgzzoFhclxsEkbLXnlFWxR8qq6IM9cK25ha3Jl70IU7Ztwvbde0QlTSP5HduH93A63akB4krnhjCNC7NopdaLSJouWQUv3Oownt4hVFjkNKmdRBjlW71EpTo1raiUZGe6GC12bA+75cL95CwHR/gKWoJ7xmKUF/hLbxEwE+HUoo2+OrPxJ9ueFHDfbV8R8I17Pyfg/p9SD/GTpwlV23PKqtgjZVX02SmOztp9jP2gd9zE6SPFTdcKiJw2YzR59pWpg7L+cgNV4NFlFPpcfiFNdR5D0ez5mGhUdxgbrzZI8cGfrVPnwKs92d2pfOlAzyGI3xuGYpV+vNnSZgzU0gAh3RvW8j9QQhOUCa65g/jvvCoFvK4x/68oXirhKzRWEbSKbrpYwImvsAdoc2O9+u62WBN7pKyKHnlInZS+lQT8wSHY9GaCyVn+ra8KuHtzp/nkTJQJ/XEQvbYnpvy1fvUv+VrRp5Mq5PTtuwlmHdnGofTdHxIOe7adxp35E020smL04F3roXZhIRp2vICIVVCdbVd2mBPC6i+GRD9wwfFf3HunAF8yf/xz4c8wOEtW8MLnduDM7tjKVrxHv0ZkzZ5TVsUeKavy/4T024UKZW5kc3RyZWFtCmVuZG9iago1NyAwIG9iago0NTY0CmVuZG9iagoxMyAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4IC9Db2xvclNwYWNlIC9EZXZpY2VSR0IKL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMyAvQ29sdW1ucyA5OSAvUHJlZGljdG9yIDEwID4+IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9IZWlnaHQgOTkgL0xlbmd0aCA1OCAwIFIgL1N1YnR5cGUgL0ltYWdlIC9UeXBlIC9YT2JqZWN0IC9XaWR0aCA5OSA+PgpzdHJlYW0KeJztnXtwXNV9x+/dvft+SWs9Vu+VZCzLb2zANdgYSIAEUkLcpCUkcUhTMkymTDqTpk1CJk3bEJJOkzaZkMI4lEwoZKA0DwgxAQo2GIyxkYVt+YFtSdZbsrTat1baV//4fc7d/nn5//7+0Xf23nPO3bPne37Pe6Tve+wlTdM0Tdv+wPsCunPfEOBpXRGgzVYAx9s1JUXjNQGZoxkBi4lRAZfyUwKmAnMCIktlAU2JTtrXtcrfs/XjDHI4R4f7N5ij1C81CYh5eZiYPyUgWVkSMO85LcAVyHNPuF/A0BSd3+Y9LiDuPGJ27pyaF1CJOHjyjjUCHvzKfwk46psQ4NBssSb2TFkV/Vu/fVPQw3svCfgb7e8FfPO1BHftXpa/1f83sdW/Cwoof+FVAZl0WsD4edg3kVgQMJNxcfMKpEucpK8XDx0T4FqaFHCtJ2COclUYnPM7BUytVAUsebwCglGonU7ANY+He+I91wg4fIotYq8+aXbe539egFG5zJdS+82RcbeA/b97UIC9pqyKPVNWRX/y/s8I+tK+FwUM3f8PAlp6H+Cur6BTHB1Os+XynCHgG+UI9zffLyBdzyLOhgsM4+Ge7IJiU/KMgKgLjvdG62mue81RCnqDgOnlpIB4nY+HKcK1+eqigDVtaK7LM9MCVnnRbsEtmwQcGtxmdv6XUxD/ysYnBLjv5ZtWlnQBrzzEYrLXlFWxZ8qq6J/fcYeg4DlMsn85EuXax0cFlEZRLmWPYbZ8p26tAM+DvxNgKJvw4M/+U0AajaeVUJ6aa94joLHMzfkq1y6W4Gw5UNN99V50VsEBL0IOdK6RoYfuLvTp0Aw6t78Fy9OdOy8g2obKK8avMjufOn2tgBuXXhcQO/2MgPBv0X2VCDS015RVsWfKqhhzS+sFfdU3LMBxBH1RnsF+07b45e+zxS6z5eO3/kRA2/gFAeMP/62AZgPl1dN6hQCnwWIOhEMCplaCCkDRWCOtytXp2vMVwfEw9wdL/LrzST5ZnIa29WUeOJkaE1Ct49sVphhlm3PE7LwhitIcW3ObgMpnPyrg5Ce/JODq/y4KsNeUVbFnyqoY15YOCPJ4CGJUlMtTaYApQyNhAd9bjpotrzlK1GX78kEB1wdXCVgwegSsFPklilXiNvNLKKx4qENAd2hR3Ux8I6W7zVHaY5sFjA7jmlWU8+nRYGuDk3G7ejFKh4bPCui/ppnmZ7BgC4u1DaStb5arRx8TULoZ43nLm4cFDN75JwLsNWVV7JmyKvZMWRWjK42fGdwAyQthwHNpzNOf62wWm5q2mC331BPPys0qI9vPFjCX45OQg72vQ8P7zWn0eWbiiLoHB6AjxPbkXFEWvaaVyngF6RW6Wt+u4sWtbHCvvElX3R0bBehaScDQ/7LdbLuOQFVpps7s3NPLfrp+Ozvd3CvfF+D43I8E9P/qn/lEs8Wa2DNlVQwtx+I3biOElEujUMf8XPpMJ87whfRhs+Xzg8SCXaG4gIBrtYBM6V0B69vxXU9fIH2yoYOubuxGf09NKrf2KnzXgaM1MzocwrzYu4PY08Hf4812drYJ2BbjgU9eOCFg591XC5jdf0pA0IlBkMheMDvPvQq1m772ZwCdgFrq7E8FuJvZN+w1ZVXsmbIqxofboEPgrn8UMH33vwqoW3WlgBMJrPDDcxfNlt1hFEe7H53lS6OD+uvwVCNBFFY8gMZx+DGsZ4vkQZ0+Ll06f1TA2lgtBq0tYrgvT6FYe3zQdn4Q3de3c6uA1iPEsNzvjtI8CZuqEwy3+nPrzb6X98PWYhLPwej/C56zSMPK8iE+0WyxJvZMWRXD++2bBOV/+R8Cnh3AFm1ZB/vCXth0s6/JbNlYT41CdgUzL5dn8QdDEOTl91A0/e4WAbMjRI4MnZTMmgjKJZNECV5x01ZzlJnj2ISlMQiy7SMkVwpv0rlnChXmzuHJuwpwbfO9OwScfuRtni3pNzsvBmMClgbgeDi+U8Dw008K6LvvFgH2mrIq9kxZFWPZzd7+yENEh69t+YSAwibyIocPwZSlgm62rK5AB91B4LWnvltAuLFRgDczI2DXZozSs0PYrmuaIF1jJ9owdYp+vGM5c5TVPagqPYGmC2hw3Ovm8fQI4WzfR8i1LOyn4CC6h+2i1ctwzolaesnogciuEFa308Dndbswa994xvb7PqDYM2VVjPzTFO68q5GzvHUPGuG1t34vIBgkKLymNVJrOodHVudnhWfy+IndKjezJYpRml8mXOt0Y1WOzsHo4Qlo1R/AtqyeWTAHCcSV25VCIzsGobbjavRaaYKyJGM3GtZzFL1cnCSz0nAvKmxp4Ezty2/Gl8y+OSrAtVl5hQm8WiNBJMdeU1bFnimrYuQOZwVtbSEJMdeJy5N/lXkMheGjN1AxW17KEvPc0NYr4GIFbTg6Tqxjwzq04dRZEpzRKtqzJQatfF6qEFZVVI3dZK1szh2BLI5d3F8tQrFyNwHYog9jsuTEBvbfcR2X5hRnd6/jnsFRs3NvG5aq7waVQ8pQxzBwAEbX7yKHZK8pq2LPlFUxMmXSn7EdNwsYOkMswlXGFAy4UTeF+XGzZaObpTs7i3nZ2YSmM5QnWPWgesIeLnWtQveVXJiXlRKRGa2E3+e6rZZ/1cfpXD8Ff/WPsV1UJil219tw1soRaGh0oLkcWVVC1IA2rNt7m9l54dwBvuA1KvLz66cEuEO4uhdO8FT2mrIq9kxZFSMdpHzNdR3KZfoA6badG6jpSeag4fnhWr3OVe1cnZqCR60VnCZNFe7kxrFFXUv4aA4HtuuyqsAL5Sg4CEQZtzKYNUdZHoUF3j13CnCW3gDECZX443EaNkFDzUMPejeBWS2IYtUbWszO8899h1m4ASM2XcHoHSuyXdSrdIa9pqyKPVNWxQjUUxHrM1TEMoHl2flRarjHfo027PI3mC0LyzhuyQKV4pUsXCvodLW0hF7bvBnVoydgUyoPQTpuxDrVw/Sz8D81v6/8w/0CnAMEPwP79vHA2x7hnu/8WID7RZhVrb5Fn56P0ZETi1fXVaGhpnkaGVHTB5mOHnaAuRST0BiyK2I/oNgzZVWMQC/KKHWSXF7cwBFLzWA3Ti9Col5njX3H5vDI1kWVXbrCvEc6YIE7CUMrys5czNPnjAPzsls1P/M4WcVDDXeYo7z0ECMeewvHze0kaDl6/10Cntj3qIB7HqO0zrWTHvSD5P0dn0cvFxefqX15FeFcTvOcV+zGEtB/ypuTroIyYjVbrIk9U1bFnimrYsyvogT49AmyETfvplLh7HuEdLesU8GdqUtmy00tfLimj6juiT+Q5glU2Pvq1nAplcGbdbXji7ZVsftXxkcF/DKBXz2W6jZHGZy+QUBFvdZZ0mj45NceF7CuHTd4YYTtpsFLXZFxSZX3pflk5VtP1b79HoqWJp8jItb+hQ8JuP27BKr++F22RXtNWRV7pqyKkTqFGu6Jk4TINbKGnS641rGeOoOxbC1u27qJCOzcyZMCNq6GtqGtUCwxQjwrVYHazX0s+JnjsN4xyTq/JUzo+dG5R81RqlXytU4HP+oVXthnGNguxjZom0nCtSa1pWh1tKooahejIbPzUhp7yJHFrDn4I2yIq++jgvad2wmQ2WvKqtgzZVWMwMTHBa3+NNZzUtXrdDZDmWqe4E7H7u21liWVy69AsYgiaW4Yj9ofwRA/n4B0mSQc9/TjTs+/QbHsalVw8KeORXOUoir4a3Shg76+FpLW5wGhGUinfHzNYb739gn2gZUKN8811RRrdkzVDq7jDJXqQT459E8Y97vvUn1qtlgTe6asitG8ifWZrqO2JnV+VEAoTPZlfpiAUe81tVN8Lj71joDmCD1cnCUzOv4+KvLq6whL9a/FODw2hAVY183N0T7c1JJ6CaRfpXY0TfumC9Zc0Ngcvn8a2n5SZWlvUWT1xogllUfpwXn7ZwUkCClr6Z6a7guEeIbZCbR86z0/EPD6zx8W0P0LAmT2mrIq9kxZFWN4D/Zb7jgrMLEMC9wpjK7ULOzLTLWaLaeTsNUZJR85msRPjNSjK0+cU6t6I9n9zgicKU1Dw9kLKkmjDgiZLdUCuIey8Mg8euGLTfy6m9X72V5iStqKj0vG7ViSuuuLAibSLwtYKMyYneujbCCxtXyFl05RFdT5V98W4HpeFUZotlgTe6asijFYRE81H+OIkVQdtlkpSfqkoQwfl8drfl/T6jgfLpC5X1NPVV9eQz2lOigYykYoR8hOs+C39sD6ojIpi6rIb7NKsGqadmUXDWdUn03qMC2N7ImWVe9wz69Hw8ZiTwtYSTPKwsXjargJs/PcCl0430cJ3vwhYsFPvEVhU0sPZynZa8qq2DNlVYzCH1hvkRJhyYU8imCxiLEXM8hKrozU6hK6btolYOp1CNLejt+3OMOBly3qvcf5IRI/sRC+2fQAwZbeZthXUKUA4xmTYNr8gkpMGvyoutKMvhiflK/ngQtbvioglcK8nDtKGNZZGRVwbqT2mmWuBN+PjJA6uqv5NwK+fCfHlR3aR+f2mrIq9kxZFSM+Dh3GXZS95ku8suvyoMvSHhV+UapE07SOMtzs2wDFIptQPb53STS41GshegalGb0yLmC6AAsGL7HyPeqNr0B37bSSZuWlFStcbe7DBnVsVy9xGbfyeMXrBSweZ7hKelRAUB0iEFqsUXsly4fNPmj4vX9/T8ADvmcF9H7qPobTbLEm9kxZFaN/luDeC2tZuv7mA4A0LlIkREVdoL520M7SAks3osrdXK1EDqMNxGHKYyTp2jr5SWaOYwF6e1QGoReO+7PYt0lVyadpWk7VOvhaCQEtuWB05gzh08UUR4R4NF6zLBbJOJT87CQzs+ocWfXmmKZpE+qFSX+Qq3tWc/VX+54TsOUXfQLsNWVV7JmyKkZsGUcsmedtkIkMIYtdMTTC8giqpLGzz2wZ6CKb4FfvNJrlbq46bNHyGMkI73p+koaYOqdjEaYkDwESc7DP31z7/eq2kdfQ47ycPHeZxyuq88DMc/W8DoI8db2EifIebOYN2zmVY2Hystm5b4LHmzxCTZ4rgau7rYJmP3vsgAB7TVkVe6asij1TVkU/cSUbx0gHO8Kp1bxZspCD/zfFsJSLE2mzZdcmMvcNV8UFeJvJxDjcKkcyT8lCceiPAjIDKgZ9GhMk1IbR7N+lXqnpUuX2mjY2xs546jQ/aiGtThbJ8HiVPFvPinLpl9W7OE4fTx6t5yHbNmwyO4+0Elc2HOrM/AsEtpKH6LwQp6jfXlNWxZ4pq6IffpzTcY4/SPaiaS18vNDN0VkeVQGwc2Mtreh2wDVPB45xxUG2RvOQq/Spd2LcOXihe+jK2UpFTsUNoxcnuXTsaLM5ynuT6uT5IrT1lsgAuVOYAg4X+Zugm1CXRx315/Twck+lgClTp9deymmIcf/09Z8WkA2zA7S9yn9R2THMBmKvKatiz5RVMe57hNK6g2/sFfD2p+4R0LdE6mKmDAXGB4pmy0CbqlHwEp9q2IqeijZygoK7AFO0SxjBpSkos3QWi3xmEV6czZM9Tfpq+deuK8iRRCv4Ca4EL7vk3bi1l5UXfRlHXitpENlhEPIOKaK1h2tHPoTXcl7CC1n43l7BQ969FW0YqNr/w+gDij1TVkUPhlnzQVUgPvDylwWc+eG/CajrIlzrNWpx25LiSKGRsFSmiOIozqhSWh98qL+OQ7+Mjj8XsFLCwU6ksDwvL6I6M8Nvm6Pkz3Fuwdgx+nxvBqtyRP1XsqLOuF43Ks8bIOYViqCXnRFcZZ+vFmIrBuICNrag7u92/IyGvxkQENxvv7X2AcWeKaui/3iUarWvr4UXUf/tAv56OwUx758D7CjUTitZ52BZtrcqbm4HePaqMymbeWVzeY7Ez+Rr/DYjx7EA319Cu83MUxqbULV9mqZN5uBasoR56Vbj1rnZLiLqv66sClFb72riAZpUqKsppg4midcUa0+U+3sdL3DVIDfj3KjqAiP4ifaasir2TFmV/wNg187oCmVuZHN0cmVhbQplbmRvYmoKNTggMCBvYmoKNDUwMwplbmRvYmoKMTQgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSAvRGV2aWNlUkdCCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDMgL0NvbHVtbnMgOTkgL1ByZWRpY3RvciAxMCA+PiAvRmlsdGVyIC9GbGF0ZURlY29kZQovSGVpZ2h0IDk5IC9MZW5ndGggNTkgMCBSIC9TdWJ0eXBlIC9JbWFnZSAvVHlwZSAvWE9iamVjdCAvV2lkdGggOTkgPj4Kc3RyZWFtCnic7Z1pmBzVdYaruqt7ep9914xaoxlJIzAjCW1IwlqMhJBjg8wWE2OwYrPYJiBsnBCDjZPHcZwETPwYJ8GJkR7JEBtbrFoiGZDAyBII7RIajbbZpFl7mZ7p6aW6Oj/ue6v+lv7X+TPf01V16/ad+93vnHNPVauTuwKKoiiK4qoVf5X0D8sEWPPkCQHOZz0CTH7he4q0jV+9TYAn7t4jgK8pxzHvoPib7b8iQPehegFOdc0QQO+sEKA0nxegvCTNJ1N6zbu422nBV8UnYR8dDhbHBdDKzgugBrMCGNVRARKFnwrQ23AtDWZkJxWl/cJMWlibYBDu51DxGZ8AF96bwiHFMXvmjJRdU3P/XiKQ68GgAMWMLsD+R5mxD/5opwCRn5wyr9zz+a8J4Jk+KYC+QxOgbysE+flYiwDHcrCvyhsTYG4VtHI3puiA208H4pp5F32c7rn1ggALJ/sFuMGdFKAkAG1dU7mqMLdcgE2bHhXgqfvpbXZn0Wz83EvDAlQ3LuGjFtpUHlbpzOMMizOn7JozUnZN3VDiFehZhWkZ2IzS6XPaBTi4+R8EmPrHb5tX1s8dFcA4bQgwmq0T4OXm+wRIRFGsjkKfAKE6dC2RHhFgTHHTziCaWxnxmnep0PhfltXBglIXfKyegCCui78VwP/UnfR8b1yAdP1jAnzHw4LwTqDCbHz0xqcEuHAvK0Ddd1/m2BLIrlySq5PimD1zRsquqUOTCMfcpq8LcObPXxUg820+0btxw0qqYuaVJfcAjJULBBiOMZm7dFTM1X9EgMDwAQGOJvHxMjrEVPO4gg0urhpX+827FPxwMxbjNK8G6U4WFwmwNwz40vo5Avz3IrTsjTvh48O7XhDg2YOPm43/wL9RgBNtnQJcORsWwLdmHp05Cw2dOWXXnJGya+pfpzMCbalDLx7cg/Y98f6tAlSsh33F4oB5pd7bKsAHL98swKbukAC+HJFgPtsjQMaL9KTKZHgZp80KlfDNGKVxjz9o3iVWYHGojKCwWSmMJ5OVAgz0otH52Bv007gowBfn3yDAjGKXAC+dGTYb//Dk7wRYeteEAKtenSvAC5GIALNr+JrOnLJrzkjZNW1zJCoxdPhWcL8AwVkEQdnf4zf+cZMVNP14HKkaKv5ZgOZmDjVopwWIVONM5tKcXKvIGC2Ms+etIuvivYZgLaFLhirKlCKky+RIAdUbnHb8LE5syI9gxQ0o5lZZQN49jeZ6F/E1I2HLrf30hTcFeESB+Is/+pUA2ur/FGBZlcxKKY7ZM2ek7JozUnZN82qsIF3H9wkQ9twtQOp7LATDpUSVmysXmVcaIfK89d5PBPCkWEpcjSwTlwbwsL90PWtYUD8pQF1VkwAHxnCCx2V+2pOcNO8yLU2iuagBFneQAt6zGxdkybpGAXa8zDJaGq6hk8qQANkxAvKmco/Z+NAkbda2cuuqnZcFmOhZJ4A/iRPjzCm75oyUXdOebUWGI5HbBUh/Do0P/C1BbOEcaeLM+enmle6TuwQYG8SH6J8kiO1L42RPDeMTvPbmOwI8tApfZJ/0PO64CRqe7WSLZdGtreZdxl87I0DoZpg1noAy9RruxRfb6PBeD2nl2XXMgEyRtaXBK/NcAWtyjORxDnKlxCeR+wiMXZOw9UcrOOTMKbvmjJRd09pTMkA9S6jsqkYd0n0wZctbzPyh9CXzysFhsF5EvArSy88OI153t7Ct+OtzpJzUpajM6hg+elRlk6atA/Jq48fNu+hDxK6KB0YnDnDaAzNKBUhdIOf1jXap42mii+oy+KipgPaQlR2eVYlE+uuIJQqhqACxczj3JTcxmZw5ZdeckbJrWvs/4xymfgX7vBsIQXvfgFbr5jBju/us7HBeIRs1Zkj2jTOHParcs2zgUCgMDbcliGZv93Hf+FtjAjS9wqHizox5F+9MWGOU8E91p/kkWl8twPZDeMiz/ZxzLE4La2bSZmeOJaXMyggorgRNeTT6cOD4MQHS+esE8O9CBJ05ZdeckbJrWu5jwqhTR6HDnI13CODe+pYAHQ8xA6sfOmleuWhOgwCfDKF08RNws6UB/u4+we5ppBnf9fC2cwLc8/d88uGxQwLcGUK59F6Lfe4pbEzqV/CQA82cVtpOh5eXIItls8glLfuAnlQvQB9jJ5Hv2bVDZuPBCnpeugqund4B++bfzx7wf70eFcCZU3bNGSm7pu3/kGmZaCHKi3Tyyc4ewDcKSFi6YF1ZISOpuiBblTmNwzVtHOrOIC4L2uDOxS4OHdc6BPi4iuTJejfbIdpNsjRHUdzToJirDoKE3pMesp82qy/Tz2wOqnqa0GVXFdoXkdmbpmVW4+oETqyRZsNmYRw+RgMkmh/4C6cq6CrNGSm7pnVVs1cRXUHZXCzPDFx63y0CXBhgxq67pca8sidAerC2BcXZfZ7Tou0Ux413IprBThTnM3UoZqwnKsDXV+OUegOf0qdVlvYpeaRZ8SCauofG816AezEkKqulqeY/odHT5kHDsldJ6ZQYVuODb7JcvJEg/dLqIn0a+cr/CHDttq0COHPKrjkjZde00ykcuZVTkZ5Luz4UYNG3KA/a8vTbAtz13b8yrzzyL/8hwPU3rhAg4IePbXH8vVoPacmWBlSpr5q6vVAfijkjK/cUfkfwVazTzbuohJKKawGsKf/cGgHSMpTzyX+3MUZ+cs5KWghW4Pp62/nEtyBkNt64gIqKHRvIu258Eq974S1Ic183pbTOnLJrzkjZNS3oRc6CKem/nSILWkwjgmePk7EMuUfNK6dBLKU5CG0/X0cLS1qQvNQVEpvFAl5i43QErin/AT3oQXeMuaRMM/0l5l08U6GfmsSJLSYpHcjHSIcGF7LzGO/Dia2YyZJiTMBow4/EJ16yngbZvZ2KisPHtgjwahmVhvVNVBpN7uwWwJlTds0ZKbumuactFyhv4DeGmiloS7sIeXylTF0je9C8ckkze3lVAyRnWqYhPZqHOa+3wKPMCPGXp0g+JFCKS9n/OnQ4NTxNgEf23mTexatSVPdk8PsCrMzLQvZK5Cz8U3Yo9v+SqxZswKV87zFWknianrySSJuN5ww2OxSDpWT7EiQvVAWjd3zUJoAzp+yaM1J2Tf3HH1NEbpyAdDfcKCXvmBSXS9BqYcOIeWXdZ1E692846lnLnC96OZRTcA4LzShs6reoZ/jLKN03H+eqzp88J8ClLVZFTbEH0dz0Fvr76rL1Ajy3HSe26yyMzl+WeZt2tkguvItijgyTvXn/Pesxy09H2SgclCqfl7snmlvmWg2+izOn7JozUnbNGSm7pj1wG9Hs5k/Q2tbl9wpw5H9fFGDVuqgAhTOWj+5dinwqRz8Wf13rWQuKBL+KKyFr8H2UE2lroX1x2l0CXA7KjdVu3HFf7wHzLqmuvxHg3DibJe9OcH4iTqx78SSuQHmaWv7+Ac4ZceOCHLhEJJDyWT66xldXGn30czjFgrVhIYvgS0dxIJw5ZdeckbJrauL3FMClZBDralslwPnnKOFvXEa42HfWem5m5m14sa7NuwXwrmai5tjXUBKNlA709uPlD8sNzqP7mPovXuLsjI5nXzCsLSBDVu6HS8hB++RTa4tkFUKD3FKNVvJdcjV4J1kfbk1LKw69K209Dt5fwBVIXqTnngKRw7sX8ZAu5+STqYpj9swZKbumDlzLrNarmZYvnAFsSzPz9aL0uVVrZP1uZniN/KzWg/bNDFGXoNTjmvfJh8+Cs+ShLlSm/zK7JkeGYd9k3jDv4tVkm5XE2MtnwM3rx+FFzXI2aQbkAzd6mD71nsezvxSDVp3dUpgVJa/zTUfjePkhH17+hQzsu/1hPnHmlF1zRsquqYMvykq4K4zac1uh1eEioHcMptSGrEcpvEFC3Lkd8tnrImBePe/gCYbZEHX5ufDidMhe7EWVGkdI6abcMHSwaLGv3A/X9EFoWOkl4+yL0+ErYRS2r8B3UXIoXYku/cYaDrkMqyJWD/C9/H5oOByEyKPldO/7HRS7O3PKrjkjZde0/VlCnjnzAYf+gExEZvJJzTkm8w0N1sjmPXw4vR3WlMuihaoa5rzmIcjyDEKx4jAuaNcELNgvw70uuTkUH7YSuNlhNkQrDCjpd9G4v5TOlLbQ4SkzoGFHGzudEVkVlAsRJPozg2bj8lERZTRJii2UZFd4XlLmoB+TL/FSHLNnzkjZNXXlzyg+SP6CYtBUDqcrU0RlPFLx6kKW29YUZJRba1GlbBz6zL+W+KsQgGuz2pjomX6YNSTrIcay8Cvpwv1LpKy6BK8mszQ5SBeWmzpGA4fKIyRb/Bn4H06gy/ownFXDcFzLdpqNp/1QTI2xLzW9nMbV06wb5aucuO8qzRkpu6bu7OQp4ifveF6AVTMYvlEpBMESmDKjzHqTQbMkYng27mXT6vkC/PxrhHKHJxCaG8NM5hVR6RzOojgvIf3bnAvWq5b0KQU3tzFcUNKo5HC4Ej7WN7Gl2tT6BQH8AVI6bjfsK+j0JG+MW61rlDEFstsE8PYhgsoxPN7cNOdZrKs0Z6Tsmlbzs28KtLGGBGB9pelBImpV5Rzyyt16RVEUmZgsv5VwL1z/tACDRd6P9fzr7Bf4laOc48I5HM9QAl42TsyVGed2eszKeaoumaIMEqMFytC1cAA+egIQWXfzj88WpVPqIcnj8xHQpXLW5DgsZfc6N4LoKZDmNdII6/ktLA7OnLJrzkjZNW3GPZQjtJ5h8hfqSIxMKux5KSEooxasoMnXzJzXSjlazBHcrb2OrEtl9VIBUvIFAYPd6Kki3dpJyb6CgcKGI1ZixOuSz3V46Z6ShxeG3JvT1bMCpHU60L2Lfnr2UcVeNkhC9YSv2mx86/yHBAiEedTkmQu82K+0H2H9uwG658wpu+aMlF1TM6dJrahy69nIwYKsTjylKzxl4fZEzCs1l3ThEtSMJh4haFpxBBCTqZJlzaRBPtuEe+mfiZ5mvZJfBqI22We9ASedoIWRSfOBK/kAs3y95WAad3FMI8xMyrzNK3dA5I5HkTlP7Y1m4wU3O/hXclxYlFGhfuoZ7pKgM86csmvOSNk1Z6TsmpqqhKLeJ+S70/+SFaQQWixALrNMAH3MepO82ovbrY6yKGQ/RVDHZ3NhT5FioJoplBPlhnmbV3+Wk2Np3OhsXr4RIW+VDgQMPoxNsGClkuSSxsYQ/px811dPKWLf46EgesvjBBVTQv8mgOaz8lOGyuqZyFB4kZ4kclD3bWc0Mk714lWaM1J2TZ3olM+F7UR0c7+GhgNuZPv/VJyD2vnN5pVtDZxW2cr8NPNKZrVcXL71XUmSCUrnYUpvWJ4zRgfcMuaemLD+f6qs71PlezVnN+DWRH0If2mQV1h352hqczMvxf1oD/nfub/ZIMBTaaussHGNZNa93LE4ItNheUDPDsdHv0pzRsquqWfeJqP69i8JL9fcImPIEjYFi/VRAU70uM0rTx2CDqfe50G0I0MXBBjT8dFdsoqoSv7wUFju84RCxARlPkKCmiDq5glYT635vOABWQh7uY+6wKTcvFR0ElWVXnS8bPFnAM//QoBH5RZpfeErZuPBLKW3blkFaOyXTS7gvp8c5BluZ07ZNWek7Jq6+g88uXXwO3h0/7QbpbvmDCXjyjucc8hTZl7Z46EevU7+9lBNFtLFcQmVbvkyvIkY+zeJFAo7oUj/Vkpeiawd94Wt/dcp8hdVWlvh78K5uIsN0agAAQ//byPOOjDeRSnP1lOQff8SUmb/2vQns/HWMH6mViarD+W7MJNPo/vX/+AaAZw5ZdeckbJr6hlJkHlR3vDhVvjFotogj3l8WT7TMW9OvXllfCq/DqZUyjcQ+GXkKN8NaXghcsQlnzpVybrqHuZ5ISMlT75GJJEMmHcZGUUieycvCTCchMg56eh2qBD5ZgP/tjGKao9VsSB84JLvMXrN+h2HtUMc9cla/HyZ3AfdS9x3zYJNfKI4Zs+ckbJr/w/+GtP8CmVuZHN0cmVhbQplbmRvYmoKNTkgMCBvYmoKNDQ3OAplbmRvYmoKMTUgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSAvRGV2aWNlUkdCCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDMgL0NvbHVtbnMgOTkgL1ByZWRpY3RvciAxMCA+PiAvRmlsdGVyIC9GbGF0ZURlY29kZQovSGVpZ2h0IDk5IC9MZW5ndGggNjAgMCBSIC9TdWJ0eXBlIC9JbWFnZSAvVHlwZSAvWE9iamVjdCAvV2lkdGggOTkgPj4Kc3RyZWFtCnic7Z3Zj1xXXsfvVnVrr+rqfbO73bazOB57vIckZJJAHggDGoYHxDZ5GGkkNGgeeEGCIIQEwxMIBBICXphIGBBZFE2GGRgHO5kQx2PHSZz23u129eLeq7r2unXrXh7O53drHu8fcH8v/VXVPefcPv37nt9yfue0vrx0T9M0TdNGf/SmAp3f+2MFVnRDgSv5QwqsPv1NTeSIVVNgxuvSQ+6gAn5rRIGS/mMFql/NKRBP/4IC9y7dV2D4xCN6bKXVz3p1Nxgll/cV6GpVBYq9IbrqmQq4qQEFxhK2AsliUQF9+hifTPBMJtYMOjdXnuSFj1dklCRvpd9R4Pj5hAKGFkk4iWYqrOjO8l8qVJ/5IwUMIV2iik66Jnq+WO/zIr4AbY1blgLO23xlZjKAWb66f+HfFci/AsVGzj6nwK03P1dg7txR3qnWCEaxeii/logznN/jsTSgN8goCTPLVw2+Sg7nFfDfoXmucDvo3HzrV3j+ZoePNufVz0wW2nrG9xhXiyScRDMVVnRnEPX+WhkT9nYTK+ObMQXmO44CD1YWgpazF95QwLp/QIF88YQC7av00CnD1szLGKybix/QPgkdsodnFUhd45Nifl8wirnU4mVcATlsbifHKPXCugLeKgYu1uPhdLdMRyXs8njreNB5YuV3QPWr6qexx+Kg2Vv0kKDPSKfCSjRTYUWv21DMSaLzqc2bCvzrblsB73uo4jOTPwpa1tc3FTC+gD72Zzh1A/aMAt0Wnyy2P6HZE4+rn6YOo5txsYZLgEQtH4yS9LFreprn3QJgy32oQGdkmTdp0LASx/jqekmBfUPw6/OPfzHo/KXSCwoMdR7wkfOb6qfV3FbgZmqUzrVIwkk0U2FF/08b27f4DmyaO4PCx/8JDTx9GNKVLr4RtNyM4zpO32O6Cyu4jr1VSNczdQV2BzBPK0WInOthaqvdYQViu6wDB7KPB6M0Kh6PeXiMqQJ9/qS+xAtMFRTY2ySW1FI8s52ChuXWxwq8+FLfrf3u29i1f9H+Q4H04lkFBl9nEjqvYr4jnQor0UyFFf39Idb/d64Qtu1dxrV7rXRRgdbKvynwkf6VoOXYyqoCoxJIFerPKlBrEnZ1LOxUaeALBbanXQW66wSVY3G4lq4NKpBs90OzBYcecqkpBXwL07xuMkrWmKDzKg0n8qRfrnZJ6WTHMYsbq/8XdP7Mc5D0hxsM/drqt3mrvb9WwP6zP1cg0qmwEs1UWIlmKqxY/xP7Q4WOLUHpfZf+UQH3wJ4C12qEl9vJ9aDlnIZJtvQvK1Btk7FKxFk4uklyu1nJWC1usGANtfAJdnd3FFh2cFM8X/LFmjaef0KBu/5d3qHBAjeewL24WfmpAhMGo3zc4U3iFomnhrOiQNIsBp3ffp/4OVlg6PKJ8wr895t89erwDxSIdCqsRDMVVqzEHA5u6sO3FOh1UwrcKOGnLpfrCkx3+/b73hIa+2UDv7bi43Yf/Y1TCqy9/boCNzdIAZc9ou6YO6dAu4PTnDDIT8Vjo8EoV5tEtgM53Iv1DryYNfAS2j1C5X0Gsfo9F99iv0deu9zG9emZyaDzQpIdI2ubb1t3WQp6Pj34o+8pEOlUWIlmKqxY89r/KvRzGjmaB2UyuT3YoA3W2CbMtrpBy0dNjFe595EC77l47ck36eoznc2Shg2hCi2ibqdLblf3oEDFwzwljKFglC0XOgz1WCV0HULdlo2ismzNXnKWFGhq2NxrMspknEi74fYj5BQ5ZM0weH61AQ29GO577U8xtZFOhZVopsKKlfWvK+RViCob5pIC2QYs8Kuot6eng5ZtF/Z96GB6zo3Co7+pfqrAmSLhd72Gm9p2+NsYLlo9qcHQmo+X2PG2g1HmZLNzqYo7OqSJ69iFR0cMvNMtn4YxAWUfi+lCJs03BGlauicbqPLhJwa/6eMF7P7OLT6JdCqsRDMVViz/EXaqWvu6Amb2ogJuFX55aSKsessNWs4Mw7VLK2yNJHV80afnSDkdO0zAeOXHZIVSFoU43R4K73iA20K6YcMKRvHFKhV0EkxpKdy5reGCZsTCGhr8PWNi6UodbN9hC0P+wPWDzjMyUFec2EScb/MJdOgT7HmkU6ElmqmwYk1WsSADQy8rcOkGu5gvTIwr8Oka5QgHZKtD0zS9R8NnBtlSrcZQfseHmFeuEicWU2Rm6nWs54oG157OEKylbb565N8LRqmLV1nrSsZZh31nzMMKtDswy5Q//ECcr1rOhgJGWgqV2n3Pc7HH809l6WG7Q4R77Cz54u+cZ2810qmwEs1UWLE+bK4p9OIj7Nr4FOVoTuOWAkeGqXBtaoWg5fYOzuTUATKc19dIS86KhYxZ8HdsCuu5UcLUPmc/zSj+ogJeEbuz2+lHl5qEaQULx7jnwfE9Bz7mTJj1oCfJE5uI7iljRoHVAcj+ysl+VdCVD0nh7puF0bU9Ys/Ur/F633wXMxrpVFiJZiqsWK8NYKdWHYK15S5VBZNpkp/1h3xiSXm3pmmxOnat4mEvDj1Ncd5TGdzLxXnosFy5pIBh8MlODO5cb5HSmUjB4nW3XzJ+rgjpShUIpUsZU0ODpM0kvutYSgoUfEY5PonrG+yUrG32f3mbvrXuOJOQM8d4/gGGeObcL/PmWiThJJqpsGJ9MIXOn/7OOQX077MpMDhBfiPtYIBWR/pWaegg32Ztpnt1B+X/5KMbChhZOcsxREN9EI+uKxmPmfh+BeaOUqNjlfoVsTeuYWGTMQycLaHZQJZ6pkZSKoeE2oOpgLPEfbUuD8/k+85zOybWNo7ta7iEkB0Pq91tSdm9Fkk4iWYqrFgXjv+BQvv20OFjM19SoNciHVrJ4uwVpypBy+0ldsRiDqansc5jx579eQXuPLyowI7kWGyHFM22RXHeXJrNiPPnKVWfGRkLRsnGoWQigzFypd6uZgqjbYgc02FWzYF08SIBXcbCum3pe0HndgKKeQYjTmXo3DN5z/wpOYWiRRJOopkKK1b1JCYv1yXKq38mpBtHq7fF9k2Wt4KWuyXoYE1hK5OSflmQ05XlNmnJbak5GS+i3oZkI8tbJDNPnTrDJwNmMEphQZJCh2DBvRq8GErgGDekbs8zCDizccJM107J6/JMItVXDlseG49jK4dtnN61JP7wM9+gSi/SqbASzVRYiWYqrFjr8ywcy6MwM2VyzPpBmSOVzSbOwf5HG0HLnIeP7tmsDqNDrCkLu4D840SzMSmy2Six9g3s5xR4Mk5RcFtj79M+2Y8E9Dyvt7mLdc8ewdteWcTDnjo4qUDLxtWON1meml12XyZs1r5CMRt07kqF0JhFkk4fJI1VPfW8An6BfFakU2ElmqmwYiXmKbtxfnVaAbdFvukgRNGWPdz3bC4XtMzU5OS0RWDsb0CHgwfR2As75IWGDFyBof0E5G4ThtpSe5SMETyvfy67kZpWGMWQz98gb3v2efZd/LwcSJUYW5PTrrbUHhTzUHufAenqfizofLsIJdtpSOftO6LAW9mvKdAxcYYinQor0UyFFeuXyn+rUKfGzmg9ib4dNbEIJYkqtyRfrGnaTowtwydyTymwflG852PYlGPHZxTw16HhhlS028OwoNUhX9u1CJX9zZFglPYh8PEReJRLSi3gBLxtbpI4tgoSWg9LeYFFq4dlfgWnX9ekLQ2wqnTTOfnd6XPFwsJetBgu0qmwEs1UWLG+up961sstTI8/KwncTdg0OCibGOlq0DI3h863YkTU1VPkkoonUfX5LyhxOHEA9d6Vuw1sTXJDVZzSjAUxDkxPB6M4WcLv1CCMvnkHOzX+pccUuDr0mQJHpO52y8IslhosIEkLS+3ZcjGJpi2nsZFugsDYj+H9+gZ++BeyGRzpVFiJZiqsWA+PwKx0nKRSkMDZGUDzMxaRXc/wgpYdOfthzKLPi5aEZvtpODAGuFyBYoWDPHy3gcf77CwkasnlChmjb/tubbMCnBzi9MhQU761iEafLEr1krukQNPAd43LbQe+xZtv633lqErc5/vsAOk+j+naDxVo+DP8mlok4SSaqbBiLRzlgp+pYWp6zJbcgFXE+2oukWzJj0wGLZNVnLQtjf3IswfIw9yqUPpz+jGivAsOpuRbBZItep7mgx4EcVu4i51mPwc9O0kP93vQMDuMwVpoYbXXLOzpplTSJnQpUDCplXcMHMi810/ptFssF76cFakYYgQ13sH3uUoh0qmwEs1UWLFqLdIak9PUxi0k4FpbXEFbThHX2ztBy4zU6zQyOJyDu2Q2RuQCkp7U5H3rSSxXzkSrT+ukSqodFN716GfX6ROk28aK+R7cbLb59lGbTE4tBrOSMfJFzQ7vacuurdbmZEuq0U/ppGJy1FOMu5Pmk1gCY23pUmOhRRJOopkKK1Z6k/V/toAHeNfGck3r2LKNFkbwsc5A0NLfw754WblhyyeF+EKOrYpdDyKnTVzQuz3Ue9XFBW3VYVNnk2BtrNm/qSvb4m/ZluMcez3e6ohOn7c3sH1dH9IVa3RueHKkSuxp3u93viZW3hqUS/vkrfwMRN6T8vVIp8JKNFNhxdqo/EShCfsfACbVq09oeIkzScxc3kn0m8rhf1OygrFRKZJrwYveHlp9X8ewLnYxRp1NWs3uQt6cHEjuNfplcxWD0My1oHanKxfsSVlSRsI3y6CHhsZXVbmsaNBjlHWvH7o6UkHrbuE8p1tLCgyMo0ONa6/w62qRhJNopsKKtVFikU8YlG6ftn5XgbjH5ldeJ71pxvvsc6UO1W1iX2pNdHizijFabeLReds4pU86PJNosXlhOlIQb8LxXa9/SU1N53m3SvbSk9rygofVztTkonRxSrdjDGclebdGTa7uG+kf5uw9YJXwY9hoe5w+d+6zVZF6g2MhkU6FlWimwko0U2HFWrwmpX8eTB6Vm7dcCWLbHt6z6/dJbpjc7NdpsWCtrbHk1eRWLbfN8+lHMwr44iUsa3y15bLKNOWuArP2aTCK3iHBNJBknXLkuEy1TldbNRajphxf6/IimruFF15P43xX+rkvLVkmWs7uY+1bLLFWdh78iQIjG0v8vlok4SSaqbBiNfbQ2NUL6NuBl/9KgZb7kgLNBvcfXG/2jztnSrjd3Tso/5bLjmazC1M0IVSlQm637JGo2ungWBtNyn2KdW7zyvzMbXxt2cjcLLFKLG7D1orDm3s9/O9Oj3XAlIN3ekJIZ0PIttYOOu9ZfFheoc/dO1RpOJt/ocDRAktBpFNhJZqpsKKfOM3ew/z1byiwc/u3FDCK/6VA/S526rLTT+7sbWJWBu8AFip48PflEGdDtlscR0rpqzBlSq6mG+qwwVkw4MLD3b6FvVyh87UGfZpSjK/H5WV8SQHLlT++/B8HR+/fTaLEs/q/QqcLN6u7nHZt7n0kX0LSzWs8H+lUWIlmKqzor//gmkLf/nX+h5Hnvq/AednLj4sO3yjYQcs3MmC5l0dLFeTk5aRslqTIT6UkSztRx8rMLkv6VfKv39+DMityEYKmaXaCWLcwPC6fMK4tXDPl5jxd41U8jR4kS6y1pPOdn/n3ZB053BaLkfXOjfIPzj549/cVyLz7qgKRToWVaKbCirWz9l2Ffnv+nxV47+v8I7/pKr7o363hyB3q9K3SV54li5Sahg6FFuxzfLkMT86hpregQX0DcEOituu+7L+Ocujt+VT/QpHcAPa0UyCFVBMf0pQQ0tAZJSnHsnX5l2cFi1eatKF/at9w0Lmd5R9PnDjM9uehs/jM7Z9Sj176+xcZRYsknEQzFVb+H2+JB7IKZW5kc3RyZWFtCmVuZG9iago2MCAwIG9iago0MzI3CmVuZG9iagoxNiAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4IC9Db2xvclNwYWNlIC9EZXZpY2VSR0IKL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMyAvQ29sdW1ucyA5OSAvUHJlZGljdG9yIDEwID4+IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9IZWlnaHQgOTkgL0xlbmd0aCA2MSAwIFIgL1N1YnR5cGUgL0ltYWdlIC9UeXBlIC9YT2JqZWN0IC9XaWR0aCA5OSA+PgpzdHJlYW0KeJztnWd8VFXawOfOTMokkwrpCQkhjQihipAgRIqKgEBApOgCFqK4u6gUFVhf0UV3Fd7VRYMFVxQLRrBgWZQiCIp0QgihpJJeSELapMxM3g/Pf+68H6/f7/Pp/2PmnnPn5Dz3qeeinHzrToPBYDAYGqxBAmHe3QLWJptAp9MkcKOz1+ASS12jQFddC5/G8rW02fMENj76m4B5IlfNzr5D4B+rPhNYs/WvAk/OeVMg5bGB6iwR5usClV+2C2zd9rjAi8u/Flg2NEBgaBa3V/lEhUDo3OkC3zQlCygZyergd8X3CXz2z/0CvktvFfDzZ6hL87kro0EXbaKvlFYx95lQGXtniECHH5/1BXsJdDt8+U5Ap3qlzee0wHWnWWD7l20Cd1huCpxsqxWYPipdICfnRwFHHX+krz7YIzA1tb+AcrJZnWVQ5miBs8VHBXbsZoQZG9Hx51Z9L7AgDdWetvakQOnrnwsMjY4SaJ+yUR38pfWF/MAwu8DLQ0YKZKaOEVhm5hGk7ymtoq+UVjErhn5CIQHRAkbfHgGvHnTN14Y19PN260VHALrZYvEU8KiyCFQE8QcIuy1SoPFKlYDtSofA3dmYw8pibOiABKtA4dkydZbuWhR/WtbtzFvEUFc8cgXWb54m8PbeSwKpCxk85imMoFcJd260fKgOPiPghsCE/3lS4PDyPwmYHfz2p8bxW/Q9pVX0ldIqyv7ty4V8fCMELBGKgNWBUTN0YMtqKi6oV1Y4MFXfFqJQ6Vm4be8+vUNg3NIhAu2dfCfME5319PQWuPob+3zKHL7c4VDUWcoPXxOIisdGtxt4SpjsV7jz3nrGTBwm0BfNd8pOYzFXzIwV8PZwm2/7wTx+aX+HwIHsGoHbXT89OJsb1veUVtFXSquYOyxYnJAQrIx/CGrV3YI/1tzGzr/uF6teueszArETp84L9AanCnR2sJn9jGziglN8uSuG6TLGhgrYolFth43pQiKi1Vnqnfiunib09/I5ngDLlz4s8H7OGwLjI7HRytU6gcYr/gK5QRh0m1KhDj4nMlDAGtIkMGOFh4DXZO68Yx2WXd9TWkVfKa1itjUQ1zitbP4OG/u8wwO/8WLlZYHt7/+iXhkQh6mKH04eIy4Kw2FfgBn1tWLFbp9FPOXRg67Z21oFJs4aLPDjIYK1mWmB6iy98Shy5O0EbpMGo2IXdn3BLP3IFwUOYt68j44LPLowUaCkkQfIz053Suda5CAB/2CngFcEfqnxGUxkQSPutL6ntIq+UlpFXymtYm6qRoEdgzGoVj8eT202njK7dh8WUCxm9cq2tmKBO2fgGZf/UiQw9KEJAgdzDggMikXt752ZJPDWi/sEtnx8j0C6s0QgMSxGncVrFi7yhSv/FVgyea3Afc88KrD2DeCna6TMiku5/ODZqwK1V7oEHlk9Sx38TBPOfWkAia2U2bcIfJX/nIAxhFhC31NaRV8prWIuaCgTKnmPVOmk+bcJXLnYIFBZRQrp3lduU688+jnKUtKLn3G+gO/7V/D9xU9lCPz074MCwf34l7sfHyXgbSZBVnwRB8LffFSdZXTKAwLZWZsF7vsNb1sJxt3vbcKtOb0Tb2ZIYrjAXbOHCvz6RTmz5J5RBx+UxNe+O0mqK3rJEoH7NzJdz00CAH1PaRV9pbSK8sZH9wo1lxOLJsTjNL+3tUzAOwoX1iesW72y+BjWZMmmLAE/BS3YsxW7tng9ZVdnLVbmzE1GSHC52v4O8rapsXMFqvquqrOMDCLzW9P9vkBZC0NdvMh3RigECZW/EyQMnUT88Owm/PhxqdjcMJu/Ovjw28kFxE+YL+Dpy6Og6MgHAvuep3Sk7ymtoq+UVlG2rBwnlL6Qymi7fbLAsvlvCwxbjG/ZfsWtF0mRGK+iGhJGaXcSBvs78NYul58TiLMS6NoTuHz1DFy7d36mLyF7MtGp3dCjzrLg/CKB3aPIRh27iZ3KsL4q8N2ZdwXeXFogEBuAh5yQSXYpZSyZNf++W9XB+3rJVXWZcIzjhy0Q8LRgFguP5Qjoe0qr6CulVcztJZi81X/FpviHsPFiBlFfDEuiReZCbpV6Zfr0sQJR6ehmwTE2/60TcVDvmUpEVthLe1BRO/rY46wWuJLP4E0TCSSrnJfVWSYnEZZ6GFH8ta9wD7tfeFog91dc35yPNwgc//4jgWnz8TwPfc4NfHLK/ROWPonVNlVzV901JODiRiwVSMxiTH1PaRV9pbSKcupgitBb9WQeynZRrfdqoNkucjiJ404/98omD8GaFO0n2TL3z48IfL+FbrmoOC6cvAKzeKj6Bz4y0Q/XL8BHICPydYFNjQvUWbL7oVkRHjQrzSsjpfJJTJrA15VUYipexqtsbcfU5l3AGU4JxQg+si1LHfzrz0gij4mNF0ibQAqouYEYdsenOwT0PaVV9JXSKuZ3nnN1DLx2l4AyCRNWuJOm1YrjfCd4SKJ6ZWQ0mlVWQZXlZMnHAgvXjxD45IdDAv0t6M4DCURkm/f/JPDIRLrfim5yeaKznzpLgAKftP0uMMQXParuxV0MM1G22XKQxNG+E1sF9u+lJ2/vNloQTF2ufKjBMKAJF9czJljg1G6yQ7Z2OnGznybto+8praKvlFYx1weECZ3ehFVqLzolkDkDF1QZhe5YbT7qlZZLKOna9TMFfss7JhA1Ead0/gLKijvqPhFYFEI5Izoa2xdrXSnwr61A8jR3ZbQjaIDAy19gp17LchnraszTQ1babd/aRYnEw8jjInAAeZW/5awQuPbdXnXwgjy+1hiMGxwbTh518gJXYcJCu4a+p7SKvlJaxbx0c7aQoyNOYNVsjkaYbSjmtX3ESsPjBqtXlpeyyh41JC0v/UQac6cvPuT9c0jgK07yMLVGLGZSFIrpdBCjXfiqTGDuEldqxmAo7aQMUZdDIsXjHpoP0uqxuaFe2Ee7N0bwm+fIF/03j+889SJO6Z7DLergw+/GeR4/jQpjuJ0o2FFOeXH5Kuypvqe0ir5SWsW87nkM1rCIswIBfhi46LlYmfxd5CLyL7mLZeExqMPANBTqzhyqA7Ud2Klm51cC84LxRZv62N67mzg60pr/rYCpnnEGeLht37rlPAo8TfxRm9spK8QU0QxUdYCka6eVIHHUQvzbSWsoNDRWk7Rp7XAfJ8uaP16gKHenwI1j6GadF6Z5Ts5iAX1PaRV9pbSKedKz7OFDyyjShfmiVjUniZUiHTScPLhuonrl9WtkJvdsISJbsATTY41kzK2NaOvrAykc+DnRpleSUO36EHIm626gjwmx7s4/ex9aMGostrKru1Lg2k88JRKMfJSygoNbHuH8i8HIVvDxIVqcONL1kcFQcwSz2/AL7QEZj6P4Y8bhBn9+Hfuo7ymtoq+UVtFXSqsouSUc2HppHk+Hh1dlCpw7QsWi8Bj5Yqt/n3pl1hK6AUobyPJEjcUPbgzEr12cjN8Q6oHb/UzZGoE14XTum41TBaYOohWg5qb7aItRYcapcfTUNzr466ZaeKZMG4tPEDico9tdAWSHr110JY7zCCSyprkb/gyVVIP8Qnk0N4ZwV8/sJLQuvUB8ou8praKvlFZRom4l4evZhCsw+m4C40u/cmLspe1kSE8fd/vonUZ0ZMYEjrlYXC9aOHYT92J+0kIBLyPJrD3Fvwr0OsklnXCQEsr2oV3vgYw96iw9vTjuca5DAKkuTVn0GE6JVxA/YUAiFSCjD182uY7iFe7FC9/+Wok6eGEbN9xkR8ednmi000JT/5ineTjoe0qr6CulVZSBz3NGOdMDMxFYj1pdLCaYzJiJ3enfZVWvPF5GH0O0q0jTn2SyYeh4ssmKD5ryWS3nO1eHkx32NVGI/eA85ZDjK0nRniltVWdxxcWGOaN5OCzewsPBZMJOBZk5LRcSQD+E046yewTSFGg0MW9NybPq4BsXc96uwskNWxJ5u0n0NHqeFg+jlVbfU1pFXymtooTNpJkg5wkcyM0rcUHHz80UuHSeHFZnnVO9cvXbswVMJmok+w9R1HnwwUkCbQo26KiNE2mjPVDkq64k7fRwfNGesl0Cd034QZ1loDfff/Q5WgarE/EJBweifQO8yQ4Hu8BswgV1+GLLuj2wbmaDu7xU9htdtnlnMILfHuXJc8sAHiWl53XP8w+KvlJaxWz247DyOy/Q321UaIMLiCBWWpTOOcuq6g71ygMHTwjE9ifjMyotTuByNTv2ZDlu3rLxuKC9fSRwW035DOSkUcC/P/o10st94isrFfXpMqKG4TUYwX6uMq3DQf2mN5QR+vz5yGgh3mwrw/jmPrtNHfzjfG4vwspP6FSw438Zgf4mbNbzU39Q9JXSKsreGnK7T46ZI/Dn5ZT5z+bjdJ05STnkn9unq1feOItunj9O2eP+DXhr1XWYEl8FCxc7jFzwsXLOWWWE4hPaHbzgp/0iszz0cIE6y/TR6FFUBkoX1Ubq2b/LFffFEdxFptBgZAnjy5ZIHE6TheC013VyzGAwPJL5kEBdL/mi7M38y5sraYTNGaefhPyDoq+UVjFv3PSyUFcnXmWb6wUhhnDWcfQU6ou1Xe3qlXkHycks30ADjWLGPNUfILVyxzL6GByutyM0n8Ou2TJJS545TUNtZAth5vAgkzrL1OnwvsP4hM3NeMhJIa7fYMGr7OkkjvOPdpnvRuYNTCaL4hM0Qx38pbcfFJgy698CDf3pZ/rgF2pIx+fTnqvvKa2ir5RWMftEY+Cs3sRoxnYqlM5aNGXUBCxIcJ87aOryYYe3dKNHVw/j3VU185HRk/T+pzs+FfAbgp3qtqNrjT/izY4cQfHS2emOLje8iFdpc/1RV02iSS5iCu5iVROPi9Z2Hg6ORmyfuQXL1f4evQv+I79QB495CAP39w2YvFcf442ww77lqEnosif4LQZdtIm+UlrFHBuApjR5oUS1jaiDv4G0Rtlh1xH6Prt65ew1JEsLLlOGaHRlUlIzUbrWVgqFDfWo9qzRHLOsOEeqM8FV+Gt0vfKjpK9GnaW8i7ty9AH/+zMPh3uKybEYk1GxUTM5H1JYic4aPXFT+/VDo/M/cr/qr/+RVQIztvHiWHMYmdj/fMghyXtTMej6ntIq+kppFSXAl5AnMx0tiB2BTakrwsqseJo9uW/nEfXK+DuocdeVE/f5tuIcpqSx54/uo4hgc71Qdt4ijk0e+gd9e8kjqCBUBKFff3rg7+osnmayLm03OHU8cwwZ0TpXTT7ISoYkZQgVh7IWPlu4Gj/TVMxbnEe6CiUGg6G7mNtTwhmhZ/prAl1RONuXv6VQqO8praKvlFbRV0qrKEFBBJqxKVQHfboxqMmuo9tjHyRDer3I3fberZCE6qzHqAd58qDx8sWydplwu+fNulugtYC4uvw4z4thj1Lj8QhklmB/90v/+hTSSRYPslEGJ4541Ym3BL7ZSJ76QBVOzIUbdCNGhpEFi8jgI99reerg98XwOBsyHD+j1M6Z0fIxj/EzW/CZ9D2lVfSV0irKM4eJGM9+ystCwquoWPgqqKEyFL2odJlVg8EwKhq9sJcBnmFE1JZkvARrPy6sO0ieqLoQ/b1tEW3Ingns/BAfwu9Qb/fbdJ1euPuBYTwKfFy10t5O9LfuxCZu2Adjv2UDQUVuIR6MpyenQn3M/69zH//EsHYLvkj1Ee6hfMEOgVcKaMXQ95RW0VdKq5gDcncL5e8huzTw3mUCxpE/C1Reowxj72pSr/Qqx5rkn8PkRSfh3FdXE+s2NpM5Sh7ECwlmv4DT7BsRJ+Dhhc0N8kR3vPrc2eE+13uDOtsIjC/UYoy8DEQXNUVEF+++w3+wsusIbw/6Ju0vAt09PCIUg3vwvGZ+gu1V7jNuKjfjb2OoiXdy8E7fU1pFXymtorRUYIMGDaZCaXP99w0Dp/MSr5AK3r26brI7b7vmXXJAxa5XgwyMI4mc/gAR9W0xtAXExWN6GppcDeKl2CClA1VtrQOctiB1FquCXvRh8QzVUa6Iuok/8y0hKNT2V18SSJ5BTaizjx7Zwi+/FPAPdL/yYevfAJ8XeJNQxmB++2u/8xbAlTX41fqe0ir6SmkVpaOBuM/WS0tcbBLd578Wc2p5W/oUgeMN7qJ+FTpnsBvx1jad4dzbO0/wgtX4PuK+qhu0HAVY4wQiAojjwkKpa/rGMI49ONJ9f77cnreBoby7cYz9HRji5lrUdvuHPEC6PPGQc4/xo2YOW8+IxmJ18LOXcbYLp/MfJE3IYeu0peMqJ7ocVX1PaRV9pbTK/wEANcYiCmVuZHN0cmVhbQplbmRvYmoKNjEgMCBvYmoKNDY4OQplbmRvYmoKMTcgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSAvRGV2aWNlUkdCCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDMgL0NvbHVtbnMgOTkgL1ByZWRpY3RvciAxMCA+PiAvRmlsdGVyIC9GbGF0ZURlY29kZQovSGVpZ2h0IDk5IC9MZW5ndGggNjIgMCBSIC9TdWJ0eXBlIC9JbWFnZSAvVHlwZSAvWE9iamVjdCAvV2lkdGggOTkgPj4Kc3RyZWFtCnicPLpJr21JlqC1OrPdnOae27z7nnfhHp4RGS2pTLJAlFAKqWDCCGb8D6YgJMSYAQP4BwgxQUwQAwRMoLKUCUFlG1nhEd6Eu7/uvtucZp+9zWw1DF6qJBvYzLRM1qz1fQv/6//xvwsNe3dGjY1shFJRMsclkzLMclBeGIzBs0oySXVOdW46tXoyXbROoeHFO/GL3HrxXddyhvWOIUvZbTxd6PBPFcan056Y/skv/3A7pm+++F9O+28zfYK4ebOvh1mn2i0qGV3AeSk8l4tOLoekVpuebdzq9fMT5le0ulitf/bBh52dhqe/7fDdVf9X+ubpm//2q+Vey4vtlNM/b+sH7HYvPhvGzacpduQf0nEHy9juejvQsdK5zQeZ9/xb3f66Xj70n79c/THvcvq4w3THw68z+zahGj2eehLbXJ9IXFwNLCICAiI83MIjAiMgHMACIgidwUiDVEkLWWW3QCBmyTkYgyGz59wSm2TiFIgAQNAi3C2KBi7HmQinw4EttXOzBVyM0MhMwhNaECbyRMEWZCgJiIDCERxCrRYNr4Zziwd+zHbqD6eB53EX0Qh74RXIyDnxyFgAUyhZM8TGsACdSZL0SRSdUJARhXAosZl1wbmrey+9noM6I0kR5qRhQBAYYI5hhP/Vf/NfRmCURIFbZAFszha4MBtis8miXuB5xEqnPZ5PAi7hNPS8GvM4DBcbSkPqt0jGPFOUZI9oBc9P2vSwr6Wmx9NH50JfvnynoT/+xWqzYZlnNl8N25Q6JwhCHBk6ShkkAzaERhxIAWWep9NxUnxY+OHgX3xnS7Hjobg2rIfbHfxH/7S/zDbe33MYXg7G/P1JpkKv3sp5pqA1ULe6WHdD9/nzeHEZu/F+2z+iHckOy1tcXsEXX/Bf/qW8SS++GH6WLvuLH65TPq+HV0wgPBjBIZtjiC0NAMMIghzdAdXDgCxCEUONzBLWDmZuZ/KTsLCwdCJDn8ehH0dMA+VVoDmiG1WfwSMq6YLL0Utty/64LFgPk4aeHgo0WkeHIM7m0SQTERI6EiQGZgRncA6DcIjQcPXqenY9WRxKndrT/aSqrTQv8u5dHyvinBIzZ3LCdU+JcC/NEBYYFHwKXiI/UeqZu0HHTeRoyU8pbBP+eF9uVja3jg6PwRfleBG9NOKQ6NAC0JQMAf+L/+w/hwAIJ4x1h0R47+Mc0gAcYjcfR11ul9cX+rj7mNfPqXv243zzB05dcDedTvvHx/1eX76q56KPU3EtuhzIalqOBJ4JEYmxY+bNdkidrHeddLweVyIiMCFqEiGi0g7NzoCAGHYmO1MoeIPWbGmtuJ6tuId7OHLj/rzQt6/FzTJNHeoHPKfQUmam+OzTzbgWG5IzL3jZYng1r/Y1W127Dr+84h/v+Fb/9tb+Lv0A049wXlbH08WXf1n+/H84fQ+Xv+p+lLfd7eerIS/P0qtIcNhtnUiiAUAgKGC4YyAV9xJh4BHBVnNbep+HOK+G9cVVJ9frdHNVjauJn0upejovD0/TtNj9sZo2K4VMc3MhWA0khEM2YlitpeuTpEzEKB0mdpshHN0JoNZWagEAgNAT2YShGA2aeTVr0BwqE4w5UBBXPM18nLp50funI4f3guJ43iuT3z6zlCltQHoARAYUD4I4znw+p6d+9STjuu1aW1NVkTZcp9UPxvmufbidTnNu0xSCpV4zupIBAyIgoSgZQuSohFF5DJZao1m7ojJA+0i/3enji5/A1UddfvZZuvz0/p0+/M0X3303ff3VUeu5zkdICCPlxB8874R5yNeMIKAEwQgA7rwE+EM5xhls30ew0IkQtRzdKiiAo6IaWErCwlEhKmSEjrCpl1aBFVNrpc772QGM3iJxL0NmTFcujB/sOo58em1W7d1T3B+1vIUQXq+WroNPfzz84lmaYVvj6myX3/hF7Lex/2X/qz/v/6f/ff1PHnf/4d3tD4Y/+0+f734tX/7Pb09e9ne7pdd8k4gCVANcAh3AEQwRDNGB3D0MOqhrrJs4bWG/vVxvPh5gtYnhuui7/f3T3cv9d189gFf0pdvSOIpw7vqUE6/HzASMCSLA3cEKNnU/n6tWr+cII/KKga1Mrs0bhEEkDMacISUEDbToGUGgaizNyY3RlqLH42LuzT0lvtg1Ee5TSpn7NUqQrUQZlwJa/FzDKNAMBtt0fnsVrRNN3e/Pq/2yXaJf9FkcvvC/9XyzxL4OI3a/fP52tpt8Rs2PcwO0xUg8OBwjpOkjITZMCNzmcLBcajbd4f0Fni/Xh10uw/VnvPvo++/j7ZuvHo/b/fTDq0/wn/0IhRahadGnQ3lZlzjtm57Lu28fVW1ZWjM/FdPwBYpDICICUiAGcgABdDmYQXIiYkgCQiIh7CkgQSSwBNDQm2GzWA4axU2xKkyLAfjT8UxCsuqysBxbz3TdkaypDOzIcX0TXe97xxrx8GT5sPpkTLu83T3/Ce82P6S1YvvwP6if3sLpr+p//3/ST/fy7//+Y4H/+AV+Nfv/Wg9L8FEHUd/AwhgSsXiQsSBg04hwtipWB5hGPPVd6dcuwwrzzel0fPPycI7dHFe7m+4HH/WJ5iyH/Ung7t0EbXqotrTp/lirHk6lqj8u1jyWaIHQj5mZMgdjcAQDEAkSITMlxowoyIRMkDA6BPIgD+RwwmYwt0ADAoqIpuAetigxDSguPjWLROm27xOzkJPI5QqH1ek86VJhrnGy5MuYysUKZewSJ+F89s80evjVk/6dyVhQ91umn6wlsN+0OaA7ena3AA8wYSEEguAIzLAgxIjHzPUiTxsp/fOdXEtNn+jpB3cn//bkn/7BBz///Pnx7uWXv/lKH+/rq+8P7fymPFaN0+LoLmoAIGsW5BX3QAgEQEAZkUDACKIXEaQkTIwp98QSxIGUiISIwRkNmmFtsGLacAPZQE/qqThY8/msxabHGkA49gAAxVrAaZGm5CiQqBOSDlA1Fu26D1a7bUq34Ntlnq1+1w27btjVLcUP1/Xr3pWHgE5Meh1304fk/970zSva/Av7WBWtpQgWIgDAsPeXohLYgEuPtU+t71S2F3S5Ubqy5fJY0lOVH29vPv782Zent/f3j/Pv35x+/c0R7C2aIlSmJLHpgQlSJmFarTIzsRAShARgsCtBjDkLMQIhIKcOSSwogIRIGDEMASI8FLuM1LMyptyxQW7I1nKVNre9ny3Quk4dplY8oChFMDC+z9BEEM2jOfFGulvELVhXtJS4N5SQ0TLEdadjUieJAAoSzeNyUelHfJ/QfhUfuIsrB5LM3gisxxkBURdyS2CZgMYxVkMdfwr5w8fpB1O5mCp1PQFhafPlB5d//O/+Ufn5J+c/+cHZ6lNbWlixRqHZ5ghTLxERBhBOVcPdISJC1SNibhSA3sItABTAAgAQiJCIWFAEh5xWFz1gADp3JCPXyZ7u6pi7y6uLGAu3t2ZRoAPi5y+uEAFadfXj3qPhsz53m55G8X3553/5r+r/85uf/OLHH33y4d98+fKL797KuJZx87N/40d//G/98my+x9WL6pfvACvis6Wndnv3ZBg/He/2ebjDtTlJdWP0jgoCoC9oJgQJALsORm75o5A/eFq2D/uhKOYMgFC1rHfj7c1ndbkup+ullcNyUm1LnaNVOh9U9VzPqjZPLZrFcQ41e19QuqtD1VCPtripu3p4IDlgICEipi5JJ5RlPQ7kitZAOIakc5vOVTD36yvsFpxPqk4tkcjl7QYRD/t9WVrbNzPEJNJnyhQC//AP339/d0Rfp7r6m3/xmz//619jn7BLAf/sZ3/yBwf319R3anZ0VsMtpuoX6VyRPsqHPtkDbBRYJBEH9L4k9wzGBNL3mCUur2y3WvpboO3cqMx11cNmCNJXb79/vNpd9zfP3avqUk7H6e5dbXWaz1EbnCZ1O3s1RzWGANYEIUERAZQhBXAXAeAjhEeiIAphJwrpOkmZOIhgvcnbix6ghpe02nbXL8ocH3/SBGElKIgvPv9ROc/ffPFbqw0KsuDNBxfmHvWwnPX1d6/ePNztbi9fvLjAN+8Or5d35eHl+ZUM8oMXnyjNiovpwzdvfn1Cu//831zl493f3Q2b8/oWoyp1S+/lE3s30PwGVjMkYSYJT1a6sB5QkLhL0Pexfe67y9ZdOa4XXerSLi9iu3G11w9vf9elH1/fXHs01VLP0/zuoZRynCavGsfZIia0QAZeIZJwInifIAARAWDiQApEIsSh8yyQxFiiH9e5HyIMQod1Wl1kAIaIfrvb3n5qTrVBXerpbp+74fbFZ+fD4fXbt/V4ggUIaHczosDyrpzQv377bg67+bMX1x/cwv+VJm+P9XA3v5NOXtw8X/R+sWq6f3X/5Qzj8aOfXZS7xy9NP8rD5w3mBfPct/rcH9nbBdwkzMJ+YIieW8aIWdRRuo2vt95dm+yWknU2sJp5cZuWeS71rtYD0usZ+vOr/f53d7FUPy9K1jIx5+6yA4ouKSAR9QBI7hjAiAgYBhAA4kgR4QieMjIDBLhFmbW1BuhIwR33kSEUws2W8D3TdjV+QHbYtzeGBA4p5dsffDw97F/9y997q0uaJSNodCwwgxbfv3mCCMG4vBjP0/m73785PMV09C5rl6087J/+4feCL3bPd20//Pp8dQvbdbqm9GB5Mol+hWu2Kzz1noT8wAAdYQZcGpqLd9tYX3t/bWlXDqksBloyz2738/K4nN4t0/Hsb96oH3+zv/+Lt6PIbuhxDfCMqJfuYuQEMjZCZEzgEUUxQEAwMKpHBCQPcrcSAZgQGdoCpqFqERWFkDGvyCJDLGHmXjz2mVar4TYW8Lo4MjhI6p59/HHK498//e58OC4QXY+XeZWZYUY7+f7tk1pliN3F6nxaTk+nw7mc5vpst7rNY7nfP/3DfPlhf/GHMsHw61dXM/LnnCW9jPxlYBsuoYHvTlMfLNcUBEghHlx4azSsV1d5c03YoULWglobHJSP1ffNjkspyxzEjWAWgNtPtl2SzdDRSHTNnLgfMqITLAAQwIDhoeGu1iJCF3V3WzTAtVU3qw4a4S28gXu4KxEg4cO79vbl3Ke2yvgWDvov95c30w9/ejU/neZv8aSnh1//pQx8+VmPpjfPL5ZN6q6VxetZ3bxPuOn49DCd5oWjXW7p3b1OczFzIUJmFdGQWhhK7ZZ7q6WDKax7msdkHW826IXcAnzkmYPklgMAW0saaaGd0ZrWz/P2hkhQIbclNZ3xEeRxKk/HeizLspydtfE8bXN69vkuZen6zIOkXQZCJApTP4FHaKCHW4B7tNbMfJ6LqTWr7lbmpmqHs88tQAWMXdWNGIAgSEA4LtfdB5fD0+Pjd9/+/uMfP47jpT7B9CUeH45f/ebvVtfdv/2f/Enu5flHl62t27pYtOO3d03LkEk8fffucFQdVunZpdw/2PG8CHFiAWEVacF1FphLf77zqj3OYNuHSbL2/cWO27krh4gY+ZwDhQPdcVZpnlteRdpIzjkRmroHQiFS1Xle5rnq0kAbeUsUAV4sbBGvznOtUniIDt9n5O5YawRoUHi4cTgFM2DIQGQGkTycO3V33sTaAFuAgRuEARIgQbMo5rLhfJU3ef0h3e6erZqfeLV68UefXhyv6crS4LkvYdPx7etWWveiJ45o6mbD2HcZbGlzs4uu36xz352YkAkZANxNVUlalgK0qAPD9iLnDs9zdeTx5mM478vLyTl2H44uJGLQHE81LzHU9SUPF3nohyzlNFmtCRaSVurxcDyeTM8GsXCUjqoCndVpSmxKdeEuy8XcAUJgEGJmAkB1BkChBIiREBC63AU4ozs6h1PAJQMgYi2gGqbhBoIg+HC2dyfN29Rf96uWbj9Yy8iLP253q8/+9Bfe9PnLa2t7b7+e7h/vv/5dO+uL/LEMYqW62nZzwZT0bjos5dNxdX2zXo1PmZmRCBDNrNaW+ippDjpVG4VubnoT3h/Otkk3H/8hPL07f/mtrPzZjy95JULCaKI+aIw59bnrEoZEMzcwb6pmtWqYI5ijtTALNWczMjWuFTzQWRxJi3OivMpEmJkQsaMEAWAOECwRAK4W4fFecRR1cyAIgKgFWgt3cI9MkAg0MjI0L4cpBw4OpOxFWoHTeV7m8s3LJ4Lp2WWm3PWroNAoR3NxrR6hAAYUyEhcapzOCiTD2Ft1Uw8PUEd3jNBmx8ko8+WYzUOPs3EArAFTYK6LPvxuwUzCXaKWm22rr7fDZrVejWSdl7CGpqeynNsyV2uNwoy9eFOval0gehjbxJiF+8486ln7kcf1wEKZkZhS34OHHU/upuIeUadq5gzsAcux+NIMIwJ0Waw2DMCA6Dl6Bk4DZ5jb8XhaS173I1Kyc54Z3j48Pj5Of/E33469/tm/M8jKttdQpcb0rgW5s4MsARDozChyOKtDQUoXF9vj4VzrHBrYHNUodFn07r7xNtNmgHku7/Y9GPjzgM5xVU7zq//7pB6CeQAQNTSHLsvYJ8YgM1Nt2pp7C7BwDw9zUMMIZAhAcwIDACNq6LU1O50XhdzNTIiTGhKloUJEPU3hHoIBoefFzSwkHJepatHqZhFei6vGe8KhDJU8tZDWvLlVkNaFmi6LtlywXMz7uR2rNLdXr48DnLotC6Xzm+YKq+3aRYpbUx377uoCe2F2ZE6pc05KoiQiwszIBEQExM5swi5EgohhVhFcNr1RYDVUF15dIlNt2DS2Q77adh0qaq1lmee2hC8Bzc2seq1RFB04oQE2JTNlbBwAifS8nN/th7mDUV1tejcFkqzXDlCmc3hI7hAR2gLmpjmcFi3qdiqlqkIYgJuqqZMgCXJH0nGHNmAbGduZJsVXCw7Pjh9ufzhNeLesWF3+vy93/fmPP8tJY/rutU3+/LOdrPovvq2nyZ5dbq5vuE6zltp3faOcCnCJ1HMeOHciAiyE3EXKtROPlHohgVpOierw8Y6mTjSgmhz3XhoyUk7MQszoHi2iRVQAcwvXMEVTDEBAh9CIQAoiB0TwcPW61FqmUhsGPh7QwasBOs4LIAQ4EFRTBEgQyBBqDt713BGbGKpjBABoQa3g4aEeRIHWXMMrMs6ZGjB7JnMvSiEXu97O89s3hzlPn11rHz5rmDtgEDkwAKMkAclWmqulXoYO5qUVNU7hCOagzYQssplq1eZmjmQBrTQkzZmkkoBGqPz+N0ugDPlKhq7riRIuzdHt5DAhVK3WFqgLtEIegGmJdjblzNwlNA01a63UaZnbfjr7FP702Kf8fHNJhLXuWehqNyLhdFoiYLcSITJvaHHzfDesuvsZz43IldzKEeoZz6flfCpkEBXmUpdpmRPhININu+2YguhYVj3/9KdX96/L//Z/fM922OXtpoPTbOz+QWiHSqnjnmUYKfXa1CM2Qz/mFF2CVWdLqUuJFnZcULuBSuni6YykgJGwwXE/jZ3tLpgMO52oVokkgCIMiUIYidAcXKG5a3i4o7+X8eiB5hiASISA7xNqN29u1VutrdRq7tXdOtfRMLBoZSHXTpgYARGGoUtC3mZthgFgwAEMoEVrbW1RLVoXLYsCBmC0UpdzC0FuxhlFJ6qPWb5Ow3p382y+f7LawH1ajAItMQK3wGIEqaPogrJFYh5zFmQhJOGUUiYPAiCzUAMglgTA2pyDcu6d7LQsiADSkyi3iGqSPlyDEx0jkfWCvdBBsZSYmy3WyCpZC0cDaWatQaCkTBCArbXa2lKK69nq+Vz2h2Ordj7rejXcbHcIuH86JaarnDnLWihl+eDFTTfk1/h2nhZd/DyXcBP3ty9Pj/cniqCA06mcptLMmpmramsQEB4WVP3e4OsCv9quLn7+6S/CW27Kid7u2zTS1eUKEz1ZnmaB1VW3WZ/OQ2uyGXbdyKc6zbYM6EUI8gCk9TCXpzPJ2K8vSWw+lX7oNpfPap2/fTtd7eSHP75h7bpDyEFFrWFwFswJCSMgmns19wiE96w9IiIcAgAQ3wtniHg/ifcxqLu6m5mZNtWmrTQkDI8gcAUnMAzUmE6ltTAHQJqnag2CLBCsoRrxP5JRRCTEAAhAQiK3MH+/GLyXY2iNYQk0BA/3WjwxxpiRuYaEiWdG4iBwcs6SKAkUqTwMgwubV/NqpG4AiJTJXee5sHQsAiqLU3HWyIJZcqbc5OHuTZbu2fXFapWQrFk5lDItFVgZI1rEElHC1AMBMnlV1ZkACQDdJbio1cW0WFSNalZbQTzcP0pK1A+UUqnkBn42D/3u+28A8MXH266Xr7+7O9yfd7t1P+Rmg/QMpXipKfFK+uaWzN2aW/GmbWnCMuQRSIL67bb/4Y9lXvTl29pKmx4QCsLlGqWb2kCeqRcg8rwER7cZN32Ok9BCl+sXslrv3z3s7x/tSd9ND3oDvKXz4/Lu+9fPn8enP/ysej7FIJb3dTVErJ4/x+1Z0BsGSWbJYgBmoR7mwAQE4Q6hAAH4XoRDBERgRATCey0A4fF+QMA/HjzEQECmNGZhMXcE6FYZAKbz5GZIlHJKWVKXUs45d4MQDx3MAkkMwRCLWWka0dwE3cEscer7kSihjOPI3QoMIifEQDQAQ6HM3JmzGSYHjIiwAEd2YiBGIk5d14/jiU+m6IbuCIiYKBjd0cytNXcHSUFyroTKKffkILu8pI7ybqTV+qBoFtXFEcULhceCODO7CHvT2kwNIhKSAzuoWZmbmr4vToIRhVJOaei6q/WwHq8+uQWPw+/usvDP/ugPh6H/+//3y/Nxvr7d7i7H1bhuiwkKE8cqQydxOME0W2LLfDqXw1QQG1PZrPPzqxVJwtSzpH5YL/Pp1fe/aeQfXo26aCLoMV8Ml/0w3B+XqoHVCLSWpbqatQCLkIieZCX9djrdvfzmeNprRIKUaJ1lWXXjdUR6fPVaU1pfrVnk27sYlT9KzxI1YTRGxySRuubUAjwAIDACw8PBDQMREALel2sAgAER4QEAAIDAjMSIhMSUMkkSYuGc+vUA6geMgMiZu16GMYd5SolF1tvsK0QFdIB1j0PyiCBUIU1sxEoM2AhoXA+b3YUjtWBhkSysDAgsuNlkFWqLEZBwJ9xB1Ah3DUB3NQ+FcEBwB2sIICyZU5bcSUqcBIksHIgkd4C0nAuO0F1smLgWY7PKEgRCdoZIS79r/fVxotYibMFYyM/sbXJcIBU6N2pmHhjhEAbW1GsLhzxmZAJGnqAsC/S8lSHlDqFnGp89u0WzZf0Wmh7v3tq5/+DDHQBLkqXw5dVN3w/1eNJSvMuRuHW9alRr56UG0+pitSzLeVKcOrrf7B9OX/3uWwztUu26uLqOIfW/+OPn9dz+/q/fWQjxhfCa0DCqn9yhuS0ODZ8BJ5lPy+Obtn4u/Wb12c8/e/bh1be//frLv4/Up8PDkU22z57Fsrx7/bC+jk8+59CY3jw2aPuVMrlgBAIGd85DM21qKZzQKAzcHFiBDMExAv/1c4URiIFAQIgsLImlMgsRcu4yS0JMhIklIVHKOQDaXCvgardhyUVdFYhTyr2nGuZIHMjGQiljuLfGTJKSVgVjVV5mPp9xOjqGWW5hEDtG4WHNzCxdDsuAOSABCZBpC/DmoYD6/m82dW3ggYDUjT0hjNuxGzom0qqEIl3W2pbiffNMEBSLK4BWNCKXhBeEO+puIF/Pp8d6Xm7XOCSwpUVZFFctJ4NwbEBO7GbgQV0/9msxrbUuSAQM2IdtBggh6CgN3fqGuv7hYMywfvFBlPp4Nx1x+fxi7Prx+PaplLbKLZaG0CF3QoCI3bqDdeDDyZeplzQO3X45tWZW5Ompclr9/I9+OYx88zy3cnz7/W9ma3cVArrbH36OkRr1ruzrTVh3+Oa+TgsNC2U7PH4feih1x3k1a9xPiy8llgrB29U62H1WyCYjNeSTJqm0TCUDXHZibofT5KECMAD2QD1QdgWrThBC4e5mHoDBFB7ujhhEgPD+vxCRDgDYFdAYPZH0OblxKBJJyj1LVzUkYOj7QJ7qZOGATJwCyB1Mw5qTEBIhOEJwSiyUUhVaEnJCysSdpNq4WqSONxfrcZ1218M84dtX4mbFEZG6zUCRDNgNoM/kUFWXee6kInlbTjN72JqZPaI0Q3XwACDm5KQeigEAEQCObIGtmjB2iZuSLaau8iifJ96sMXEY6RPrgfgIqZ7VlgKWRLrcHsOmksc+DblOZd4b96SDSCer7epc56dpn5hvL/Ny1rvX517g9tk1d6nVBhAMCQm7LhEEiEfy9YvV4GNOCQgKqkG4z2F1N172my03gCjnup+O5249/OCDbW00zVyrn0/3872/e1PBKzRk7AyFOPfra3Q+vFUIu30xUMqv/vp0eLrbqHY5Ji86dev1xcV2F6j1XHrioV/vZVV8pBx5FQBxLifFGC7X0MObp9PFmJ/dXnVFTu+4FZWKu8BVACE4xoIxA7ZA1YBmFB0iE0REMwpMkiCaNjDGEOKOuz5Vj4gTIw198lbCThgwDB1lsdoAAokQiYUJIigCXQZhAAoMCA1XcI3qVpqrQwQ7dKb1XOZHGaBfX2CDRmGhtZ11afNhEoztiCiskQITd2M4NzuGW9dxzhBeW521mHi0GREUhpJIqzUtDQdOIkiswYmQEoI1LYsDSZ9AfCqly8JdhrCkCA0lho+hy+hGeu5hIji3iAg2HIOBFMAXsXBIhNkxO6uzUpfzasgXXXczlL3IVIU85UgVu8RZgulIkvsUEaSVMYg3FwxRJgubuQtk8EAIb+SVIs4WVb/+6pty+GK85vGaj98e3nzxveMrh39VzefmhJlppQ5z8YvN+NEffkxCj+cGktJ2QKTOzqCWdUpS+1S73qq2pqHCSeF4fok05w9epGfP1j/88Pp2+/plO5WH9bheDVc6n0pZCJLkzhGOhVJHS3AC2aIEqYRsQhjD0Z2hCTYHbkGOAojgjq4UwEAA5MiBFEwkIjlLn2nsaKkkHaEjG7EwMVMgVSIUkQjU9r75p2cAa9FAEZ0E3FoEKnujgKKw6NOrx3ffPb34g20/bpenef/qcF7aaSrNrbh13XhxcWvIs3PHkrkjImgOwQRMQCkQAjgaRxXxlKIs7ubU3NGrntRjPQ5j34PXfkASU18cBhJ5byGQmBgtsBgWwwbEQBkJkYQyEwO0PYKRFOjsVMk9hCD3WOZqtRJB6vOiVg/n8FgP3bMPLj///MN9PdwdX6tRv7kAK2c9FhTqV5x7hkgU3aozw6dDAcftbpuFyRTCVSuoHd896tnv2vGkpXMXj2+/efv65cOro4xfy+Pbx7tX926uFjnhaqBxBx//JHMecLhMko74BM6RB0oCpBg49kBGiTAxvnixSaz/8JuH++PyfLvNq+26e8FpNzy77q92TfH1y3fW4Pb6llIqDwU0RhkBInQK5Ehd426vublvcscAgozIgbYANmRDiWKhEWtCFoQw1wYYlNg0Fq0Q3GXZbMfrF5fL/Xl6OqIPqb+0FrWhAqF0KJkgGCPn1AzC53BMY59TimkOUzMAj/PhXPb1fnq3r9OKpEN6eHi6e3p8nJzf+vE074/Te6qwQVlzzgPsbjkPXXdx4Rbz4RwuICsUBjREzBnYUAgYaXvRh68M91MBpQG7bV5fdcP1sNl2q7UZ7PdTWGzWm9a8nhtjZM7uTbUEp6DRMM0uFLIWiTDhHkjAwcy9Si4G3gzCB8FBaFZvRWVgzp1Uz9XREAFjselxiRk2vHaQcANwikAAAAnjdkZh7rlP6EnMPYSNmYzZA6stZmBC0DM14iDVADUWWY8jZ5WsHl6bASACvfhw/ad/+kwNXn6zT51tL9e569e7Wwhepo6cM1Ii4LWQoVvSBs8+21580q5+/6v98nb38WdXH3542Lf98enjm+1mu9bzcf/2aA1Wq3w6zafTlBPx2EVzLSUgJIIcSgFymvLInIQyEsV7IKDEyimKg3kWGJjQQ5vLiqgjDk2GSEAA0KycajToqTeHCkEQCICBABxOVtEbZUqGzuwITmREYszh1BSbgxNBIhRCQ9doBkTcd710lTOUmrquC8cI3F2tf/TT27u352+/eZMSos6rbbp+voWQenJ0FMBEkHsix7DkxtuPLiDT+vrb/m5ZXd+un3/4ML3cz8cPKYahP5wO0/6ccs5dR+dorYhkSh04mbVAZgAMaBoMuKSOmQTQA0OVA8GM3Z1aQHMUjhBTVAtj4Y7rtJyn0+V4dXV51Y9Da9YKtEkMwjAsXL1pqEZ1ZOKM3BXvHF36McKyQGK3lAxRLWtAd0lktlkbtZEc0Ynf7bunU+rPuZ9udOOa3rw6ffPbh/Mp3nxrgPknv3ihRc5PDcP79doN4uV9EHQpD0PqV9fg9HSo3vCqu+nW3YtPflr0cre+Hbx/ttoON3g5dB0aR0RwuLsWhEipD4Sp1PDgfoxAnA8ZffQboVhIAEECIgDMKADcyR2xBVXHjgDFHNXDiCJLM53n6XZ3e/ns0h1UTSvoIs7uWQ3CwzzUozlkYkFKNVIAcDcgaGIUDkyESFbFIniQTLFaAelALESEPcvA3YBdr33eDnkH9PqrLx7mczy8toub/OmPLqYn+/p+QY88Dl7dSyGOJND1Mq534Xx/PNYWknb9uLp+8Vmx7WYYukiXw3pNtO1yQmOACHI3dwUIkexgc2uEkboumuJ5EqEulALOxB4gmBJgABpGyPs4UYHcGJTROYIcESkosfQ5h8hMAtai1nDtBDUsykK1QGtWynw6IHitZ9HcS+eIj6UDZxwHQcmUMeHARRwEnCKoIlWkMATLlQKGKEtrEhLKtc2YZaUt391bAeBtNx3bm8O8ZrvZL2igzoAxnxVZ+w1SEulHJ2gtyqzPrrdZRI9qi+dVD1tGscPpaQGLVa9ttjK7Q2ZUt9KWEPKU3cisNkMzAyDAjBACKSHE+8YLCQ2vDS04nNGEnCA4EIGAEkuXMkhaiDEqtgUcMiOqW13sX+/UdCCKUufOVn3KFtxKFyqko7BkSQQw8CIGAgruVAlnQDNyz5UI+lLToqwYBVubMfNoLd092BwI2+58grsDzGy3+yUBNWfAOM+Gog5EItJzELYGPOv11ebyYvX2d4+naR52fV73j9PhcJpKdDD2elrsVNCl4wThSyuO2XlwwuasDm6GiAgdIEhUDQSUIIhWoVR0SoBRXL0tjkYC6A61iUNPLMzIFKGmZyCGxK0up9OTam2tmNZwMG3n5TE3CjlA5KoBSpQzd2K1NjMMYCSziHCilBMiVnQLhIAgFKTMueduHHd8+Yz7dXdxuwaC++NjXdSS8hAXOxKg8wMKICMQhIdGaNclYSJVL547hIQ8YPQQSTwhEBMhW3C8b+SA934u0BEDwUEV3BAxAKtqQkyYAVCiKCAwO0W0CqUg5AQMs2tzczQSRDcomAKYU2JGIQNtbaKcKHU1zofDg7t6tNY0DFTbNL/LxSHtIYaqAcqce+lZz6daKwYySrOi5sS573IQgVYgh1BCJu64H9Nmu279zTL2l/3FD3aHp6fff/W1a0QnvPLLK0rA9I7QIhESwHsONfRdOKNpLJHHjnviAWNE64REUIQRBdy82XtJBAGogAbkAAamYI5EAVC0AuKQBgIWxYQMmPQf2Yqa9ImE0D08AAEJCYiDArtgxhDSIA+GCAxlKBiTeSu+nK1M7fG4jCHPFgO11dDU8PR0542Jr7suMzWGApiBcBzEAetUrChKgJCdAyLACVzmUzlM745P5eFh6luneAiwm8vMSAN2qxEfvviKg9sehEVbFg33iAjgAIxyrm7Oa0rMQchZmIWBKZiByQEtAAhI3jNwBwRMEAQK6MHoCFa1EiF2QARSuUMO7IJcTd2qddylJFgrgCIFEQlwCgFKIcSRqZqYI0IlqAIzwpPFfPanV1rP9fBwumjdx5NC092mLrU+vv1tq8Lys2FMmYrGhESIKY2ZBQ51XpaFOyahtodihk7g+fS0f7e/Px3nx4dD9yCH+/7qdvP5zz9Y5fysH8tx+f4v/iqAV1fPu2FVLtacspuHO0pA+GlZ2tJ4jT0lYJKhExYGFkgSSd1YlYKAs4d6qAECdgAADTBCyBHb0mYkQAlikEkXAzByRjA3VYVARDLzaAoBhOgQzd2lp5QNYpmnjLjabN2jHqKeoxguLeaz1qXWVqbZX74+5vUKdMOOHGwWbTqVnqI2UJtLNfcRmTu8fzge7p+6cUy5u3u7f3zzaAzGcJzLXK2ZB2BrdjrOgCC/lSHJU+6j2HKs/fj/N3UuP5Zl2Vlfr73P4z7i3oiMyEdndXW1u9vuBwaDEcYCyUIMYAJihMQEMWHAiAETJkj8A4wZMUEgRjABxNBC2Fg8jLHbmDbdXdVVlZVVmZERcePe89p7PRjcbMTozI/2WWvtb32/73SXT3dN1zlEqVoVyBARPbAYFANzcAeAIAgGlEByAmcMoAg0AiN0pAA/z84R7oYAhAiAZqbmHhhAcjcf+4xFWkYotZalQiAi16o6F4gQZo1w07TK3F+U4VgPd9f71eXVTXk7TK8exlMMlYY5Dg+Llnkup7nS9CNXXMfyNCElT1aX6e7dELOPE5R6eDvOhbbYpZ4++fTN609fX+ye9qvdJx9/+erzT5vVqln1anOxYtWRaCn18WF4d3v67ON3QtSy9JJebDZPv7b68JdepLb9/OPHcZ5LAUwUiBY4KSwK1aJxoAhBTwHZiV3QMpmKIalFYQxFB3JC4wh1V0ZgQUAoxRjNgz1YGk6ZUaRhNHcwdSFuJE+OWkMyM2NYdVdkSFnKycu8MK03u/Wbt6fjm9tKtd+t66Tus/ty3m6p+fE4/o//9sfMaZ4qIUqG3ELnHdecR1SG3EnusF1jv4Gmt9TW9WV3FU+47antl/HoQzCriEhRxkwsKXeJeZ1Tl3jbN812MxQTsAo9oMzOpmA6u4MuI5QaRaIAA2RmBkQEQAiGoDDyoCAK8PdbXwiAwPMuxc+D05mvRwBEuch9m7nt1hJaDJZibWo2XX+vvEyQ+9T0sgyl1oVTtKt0utXxcEwfXT//4PpnP/78iz/63/LB5fWvfhRmZo+qc4Q6iLq+fn37z/7pv23b9nK7u7pa9xvc7KXdP6lKB19itPUe296fvBAgTsmYlw92T57G0wW7BdvDl2/isy+IjVm9hI+W2/Xq6lmf8/WmS+QNL9Lwlw8LMhq8IG4erOECy+ngtfLhwFr9BE59plVOGYLAAQUggZlXrc7GDAEQBhgQdv5K0YGqIzqCowkCIjLKcnvCVsrLNTAFECB6mFt1hwjyQA9AAEZgAEFAAEcAIkriEHMtvZYetD2LDIiItN5uvvW9X+66frNeNSlfbvbbTZtS445nLy1gQiRzrwr7/U2X8zxFrZhQlNLjgsuibc67/aVkz62RERXmpkubfZNk02cGS8ZAaCZhVOdANj6eJEMOTejoSqpoCEacEkrjCh4QyIAEiIAIeHYQwPt9L51zSDwwEAUCvFokZagMKLe/+2m37R4/uOrWEsSYyOpYZnMPh1SVsAIHNkQtQhvBhM4CKWHOinBcpr6M1/Y4xZSYnNk9ffDRR3/vH/2D3eWG4EARuTRoBo9flbGOKsXYLAHGMI5L1W9/589c71c//uOPX7/6khIh42evHx8ODxfd9uW3X3Qb2FxBK+222ZbAwRExEgeUEodHrXEapFY6PRaD+XF+yE384vOrdZZSa8yFK4E2Oa2lW82TWlhgCmQgQkJCQAyPMKUIZA5wL1qRiFMXajpMAdjG0GGR/a7JfaoeUQM4c2osTK0goSQOiKqeWBpuMVgXJUrNeuNMwzxaRN+uc2rAvO2a5x8912pW4sXXX2523K5iHou7szNqeEWrONYo5gbkhMfHEr68zScf/fbL0/3bqetz20kC2Xbdqu82qy41nskTJHLhAD47hiCQhFJmBI+mKqmxuQGFhJIuiKrzYnMlkdR1nBMKIztyEAex43nLiwCAABRA8fNKBYAB5PC+PWIAq7KC/Nqvf1CJvnScj4b9RYNS/XGap9R0K26GOtRp2e23+3W/zHx8O0m3ufmFK8v68auflWrfePntfBFl9icvnv6VX/kTHF1e9heXuWvfLEv5P598bjNslyfiqUUJ4LdzXRwxty748Q/f3X95/yP8JIM/PDwMw/j1l0+eP9ttLzfPPnzWpNSkvOgynCYzPy2LM0QGFISWGWnTrKkX6nca9HBcai3L8Q4taLxX94fbQ5nixbrfvrxRTA5MEUyei7U616oQEEhB7ISOZKEKxRGCxZAWOJeYTMFpnLKSgFcIdnN3BCRkNHMNBQxiiGJqisSScyluZiJt7luA0+k0OdL2yR67SrKQNJIze06WwODxzVG9xhhQQGcNQE4pkBTdMAjNAXIn/bbNZuLeX1xI164u1rlvUpdzlwkJEJFZIAEKKBNHSCABnNsVIiA6OGA0LaQEyQXN2oQpor3c0IKy6jAnDMYgIiQ61ydAIEQGUEB4LxBAwPszBQDggAjhQR4ERmAkb378uafsH/ScUkUP8GVcNOambyWxnZZlnihRs1nP89FjXnfbi5vNu7fHTz+9a/Lmo1/73mLTqTxUt/svZ6gLD4/k/sX/LF2Tv/biOTPPiyvatJEQjqYCetXHAP/Orzxt0kvUjM5tm3JmL4+mJwWsCGWJ46xNm9arVRj5woFmsniY2RKB1dm1DIdbYrq+bJJAvlwJ9pttzyltf7DWaPqr59b3ZEABUSpVEhesGT2QADEiFgAXKAGBfu6ADoQg6MDqUSx5WTuIuEZQ8M9bnQdAIARBBIYjBCEEUAQhsQgLIyMwIpNITk3fgkLlQtUiFgzkBtFCnIQa4ZaYSaoh2rk2/Hy1jgB9L32bQ3M4d21usizTVGfyQHBACiT4eYcCRIBzLMXZTBmgChagGuxmVSUQiZEhKAVnyWukFnMOJGakACd0QEQmyGdrGvw86sL/3yE9uyN//jAEA1IQBZFmvQORFsO9etVaPMmasQMtZkMjjP0qNJ2OmHPfXbcsrKfTpmlXL79uIIYph6w2K4rIEcLS5pYptXllEYd5sIjkyB7DXM2dmJm5b0QQNg1mqUtUBViGWB7BbXRbTBrktsucOFUbh4cHcmbPgBGkDm4earjMHIEBFOB3x4Ex1s1KEh9mohbyk5V06xQtu7QJW8IDS8XKskoNUj0CHIkjtb6E1cUMMJwBgMIwAmMJpMI8CR9SUyWJMiNTAsMwcqNwAAZE9yVCCVGYAsAsciNNphCIAGHhJDVwcWJACGSABoKZm6ZhTqnt0AxsDvMgDPdAD3QKRwMMQARbvGpUQw2AxaMGhAb4mUFyjzMV4FXjbMPFOBv8CSiC7D3XTBjghgCgKgFiCyMSVYLEZyEHGd8XKSIkQUyETHieEgDO7hE8Qzv/f8mKs1vTkYxYPk+WyJ/7Q3InHyhqxVxJbPRQzV1uc3L02ct6vV/tt+rhFgRBAezOZvC+s56JAX94PFjg4veE0HAAxKjVPcCUPGycw+zhtET1qmEBslpxzmzADqkBSbyoFhupGhWjbNyqI84IBJhAkuB+RQhkrQCCCQECYANOOrUaTAuSUbwFTlWhCEL3MuUds+RmhXQyd2847Rp5NFoqRLBy4w7uEMZQcwRAQxABuqCwJEqZZUYyDEBFcASDMEcMIAs4K4LnFx8UKMxNBg1DPx/6AGPHADj7rTVAI6pZ9RhrMGLKCBBaa7jz+V5fS1T1pUb1WlEdnJSc8nsmAADBKpi6F8VZBYJyOIbSezEAAjnwnAAWhCgYhCAczmEpjIAwgMAgwN3dwK2EagAiCRMxIjOyEDESAAWEEwUGgP/89nf2AAe6YRhjMIKMsG0xpJkbrABoDhXJmFkShoWBzSZ7btdN6hKmlCgyh0VYBFYkQzNXjeo+aQBiSpndwRzcfBjCPKYID4cK4THPFLHbX+bcuLSB/O50OyyD5NQiV5+nqSDnnDIHcICxFzcL0GCgRGmlS313PIhIv70IoUoOhDkLE7YdITIwI2GXQMhzdQqfZp3fRL+ippWm1W4VaJNPTcIupYIwV6/kKrgEWsASIBVSeCRdWqW1lhWTGCTHQK6EFgAR6O/faSCdvdNBiJKYmImJ4BwRERYOSoAOgBHhDqpBHHLOAAsAj6jq6rGcvbUaYF4Vz9csIpEEnJAioAYgIJjXoosA4PshmiJczRzQvTqQu4GpLsUtUjUAsBToCBEIwQmIIASRSDiEXCDIvZqbYdMSBBKRCDMxgSAKcQKrgQDohOpogPY+EQSAwjg8h+cwYUyE4dAooIe4K9iIGGIPbDPZOqBJ0HSy2jabfbe1pagXAzUIJa2+IAATSHhicPfpVN2szgu6ZS+uUMasFkVH9TLYomrDH3+us/arfU5texGphSUcIwzQACJKxFGMkrILWEZhbNNoEZN7Etz0oiFfvVOUtNqt5SwrE1ljzmz9KliMJyLsKRLmgBYwLfP7ZtF2aAvXRRAa9RZUkxNFEM3GviQ1oSrERg2gQKzE18mFkAk9gB3O9yoCL2BGURlqmIUDASfOSXKWXKsHKCI6gGEo+HuNAc+KYVg1UztDph5mhqahGksp1cvgZdF6e/tuPk4Xa23a7gl3REm1mllwAmRztzAxTsZh6EGNQELwsFqLg6xp5ebTgqTelo4MHBWJPAglLJ3pXSeElCoSICQE1vfNJ5iBBEkYhIMEkTgQIRAtyI3DOIwQESiCIRJ5ZpeLLgl5qe4B0uzaaB/H12rj9WW/avtXP4vDfbnmNl1dYrdSTOqmapWsoFX3BQJdaamqNk/qERXAI9TC3U+6qPpxGVXV/MGijDpV980H/RbW10+u+q6DquGuNbR4cAEmZOAEFAQBQepSJ6hjnVlS3vaIdpxPjM1mtQWQYShEEm2fhFmdQn02YMQOUKBa8VBEIrSA5MpEjuiR2PsGw6SWZuE+vEDMBBPgMQkjt9WbRXencQe+wXHNJk0iBjBHcGZpIaEX11KTrLsuqY6nUZ0krXpMyZEcyJ3P0rtGKASGo1VVt6oGYAznbFnzmEyr2WhqpuCzRyk6WXi/3uam2dx0q74d78ZlUI9wh/PMJULEeOYEgi24qC1FT4k64g48pqVkxr5HD6yTIUHNiI7mDhChDuepO9BdI4ioOiEbIDoAEEcQRhIUZmJGSgAKUQkqYCHKgOKR1btSO+WMmollhYrhaDOE9q0HxRfHh+F4l76xX692x/nL13e3q+bP/8Kz3WSwWBiE1wA3jAJL2IxgAB7mZqoeplVNtUyLn/kp86qlLmW6e9BlenwczHzpppxzN6huu7u7YRyXq93N/sl+XoayTBkpIU+nejgMKWvTFR3i8I7VotbR7aTlsy63X7++b/rV+sVzbpqTggQDtIkEsQKHAhNjw8QULhXZiTSQjJEIwTwTd0gbRGJYBAKlYGvVk/vK7Gvzw2qcn5dhb9gnaXIjDTigo1cIzYIRYctUTgOh5NQvdXkc77LE9bZ/M5dhro7gGmd6O2p4OU+y4R7h5q7mi6nVWiI8MPwsoWqdj1MZxvFu0GLRek1pXDWkerwfTnO53D/r1mv3amUWoIQ8lGV+nKHVNqofaHpD0+SPD0ux01Ber7umndJ6f9He7DHD4qgorSYn4mpnhYGIRAIZEQwilBzovLjECGKkjNgiFMT3DHpImHPURnW3zJsyP7Fl600mFhYZ2zWCJp4FCVWxQLtdFS3LEoeHGUX6i1VuEhESOYs+zo8P9/eIE+JYZj0N1VEDihfXk3uYYTGNeSCLqFjNay2ncF2vLpVWb786DMPpOJ2YCLu8OeLq+fX2a6vM7XycY+Fk61BbwEwTwHY6nYaH4f5wevX6rqovM3T54sPL39js8cX359QnpdHVW+8RBM0RFXiBOOcMcFSLSuEJhKugMTIyE7mTBXp4YsDM2jU2uQ/ezsvNeNwv8/OHh77qFubeExwmV5RFGiLhJjkFLIoIuW+bua81xqEic9O3nAgjCJ1I5zrenQ6d1F4WXco8zY5mZLGEThhnoVxhWcgcFzpTnwu6t81ao1XzcZnVCyB0dzemq903Ly6fXsdhquOCShKt2qyg5oKQ52U6Herd4+n28MrczDTLt59svndx6fsPfgrJj6fiTuCEwGAOGKEM6OGIcObpKBDBIQD9TLIEm4c7RQQzgpDl5MsS1XOtV8uwn8bL8V1r0SE1UWAoESJfHS1n+MazXZvq4dUnXofN0916sxYVvdfnsNt2zR/95z/4/ONPN9980b+8GYZZE59qGYa6WJizAaiCF9diAAY8Ww0rYGGAE3qlYq5+nA61WLfecu6evni+2qw/+OBr24tN2nXSJUTBdgURGDB4GkI2Teo26TQsceBevvmy/XN3r1//+Hf/e173+YNia/3iNDFj9q1gttmQ6izIiBgAxlyBkAOBAbAYMKAHcDAxEREIg4SbgSNggmblkyz1cpm/tTx2de5MKW3K0+/HZn/cfMRNK3eDd0G82eRW7z6vVcfry227k/LJoz6Wa9zcNOvf+58//uS3X//SX/q1j9Iv0yScUp1iOWkgGNK5ZFkNrYFhRMXVrbqHAS7oitVBbZimWr3p1t06ffu7f+r66c3XP9ptdu3heJjmmbChTECOGFFxUeBVI9bQcJha3jx5+fSj3/jZH/6vz374k9Q38rR6KrfjLCg3TWbKtjiyFgZCBEdEJ0XCAGRBwnC0AHfgIFIkatAJIdwcHIEEkjitij4ty4d1IC3u5tLVm+/65nJcfY2SiAyDoAhtOCdfXyhAhrZzrOloaNvdRZvabzRjd0pNtXeffqonrieWiAxhqlrKOeHZ1b3WwAo4ObjymSeNQARLCGl1veIkz57v+77dXmya7HM5+buJmNZN7wTegkM4eqq+VuDKVMSsmTf9fk8vnp+o5Ie/8AMC0uUNO+76a0EWZUIA8QAIk0AMd8AIwgCrEB7MwYTkFIFBAAhoyosyhAZUnMt2VD/O9vDIdSizmsshP5m7Z7e7jypsh9/PbigyjiJZKHESW18YUQLqLI4JHb3fr3frveW6P7Zflvntp5+dHmk40Hbd7bYrm+Z6HIiIhSHcw4Kq0xgQRu8lH3ACS0S0frLrdt2v/Plv7farw939Mi3Tm9M0+tXVVd92JYdGFHCPyApkRDMggEMu0F/u8fnzU5eyTT843j28/smP0dvd7psMAoMjAKIBQjiEn4105yhXqu4OBMABZAxGQBHoAQvAhIRBCDzV7ah6mpeHA9tU3CbKXzVXh+7ZT3cfPR7bj394KieTHxzeCPSr5UO0Bvsr536oE2qhm1XbwJi4oh4zzX1uV3zTdb3AkEEYkSol554YiInd0asDSUgHARiEARREiVbcMnO/a1PPhzeH+XEgzAT9ei3YkTSNg6hHjUDyhkJByQDN0a23Lvxl+cJ/eP/xNMXdnWmpq/aKUeykAcYRQGQJnRwV0c9yAoI7UESIA1YKRPdw5yB0QkfNCGJFvehyOOntXZqHrutyu5b9B0CrhZ7a9nn/pCkkZlwLyq/ev/ZYD5POyrC68U6Pw5tahs3Xts2VnB5omao2ZNT0F3K54aHzce1zmcZ5pOyJkIDEWQ3UMFhA8pndx0ABTij7iydNku1VINvdq7fm+vTZN1b9ZrPdptTUeVLV6rF4tBQNBUUhRTRHq+yrxp588cWrP/jR70Vi2vZt215dXoOBHmbEwB6RMBIgsc2AwAmIGLFGYDAAIBpHoEc1QCM0AmcSJvZF/VHHN8fHT1/tGt9v+uZ6z9/9BcD1bM+t2/TPuyVQNZXZ5dnjT5x3sw6jbz4xmjyRrAg5mseI0q2oFRybddEV5FKiIkKWIMopoVoUDTIUJfHIuXFG7wQA+Hz3SpmBu0iJqc/IIvnyWSBs+k1KjVcrOgUCCTcY4pBiEa0eqmQu4C0v1U/TEok/ePlM2ZdsQDjZAIbvNwkIAFCrAkWDGQHCPSAMEQEsaoQ7QJy/O4AA8qCiajbAZDGadP3NN7++WfP2Wni9np88VWubsWtyukF90mL5iJcrkm/c/m7AjZeHo+7/oK6OwZL2kjXKndO8EWoU7203WFeXd3N5ENJOHFNDaTUqHitSdZ6dEQQhhK0VAshuiWm37gjQhsCATUs5Sb+95JTNzNwPx2Eptdn20uTeggygTFBmi1LItMHapMOgb0+niz5/97vfnGK6rbfDXL68uwdPLV8KUUMRGGMpQCSpRyRwCwdHAkK0yqEG6IwZUIDCxIxOp+V0OqETGT2/2X3jw693V932w+0CcrBmmbB9G73IR1RixV//k0lnEKkz6DHg4x79xfwN0ZWvOJgN1kGGsSTXtGiqRZAj9R4aphFUjc3BIYghtYEeZBaBUZHAWRURBg9CxIqEOCLPxQadiY0EECMAUmaIalWtIiiQA2EqDrNTEDhj6nhzKR0vCAP73KgB0uVm7S5Q5IywAgRTCkRTBXBCIETnBEAEEYAK5IGgbBbuFu7c0Kbt+5TWOW/WIhukLoBcwnuIFqGXyK7t29kGyvdCC0izHKE44X/N8Op7j92L5elPcXtocsGr4J7iq0aP7VBs1LQVWe8G0FG1Oi0LFzALTYxNx1A0hjksQJ08ZFk87N4tELs2E9E4pQAeC3vI9kKaBi8vuGu56Ki1LBNpoabJKfdj1VM1ziHs3QWuGqLpFg4PXOt6qn3O2+t9dTqcwjV8tgBIxAGh82wR55x1p3NaRyBCDXanMgMt4OERvnu63t2snl32L6/Xi85TGaSxoCIel5ESYd8EHsN/Oi2P2H6atJ4hPgSSkdPDxv43lDe78j3A3ZvAKaRyZ9kl1S5ZYLi7ASqLA4C7WGltkGo2FayAMwITtUJo2AYCScqBYAgByIwImLB4KFECwNOg0+xABhg1RBHc6rJ4WTQWjVpsLrB4TIHLI4+zW4RJVIzThIAtkBFaThFISACACSACGR3QLIcJshE5YxBZziwMSSgxt6topEIdp0dTq6oLh3OfxKN1EsfWAQm951jAx2ITSCAjA/UP1C039acXY2Pt39naL34l9EDN0OxXedXquzUeH0lP1QukOSWAilYae9zMX+p4nB/ecHQSl7Rqeb1HARCgnFZXlwYwHI4Q3mURxDQMYMGYIfCrN7fzPG13F23XqrQqoMtixXkpslSvR68PZSzz44gRAs7c5ryLpdjdW0y42bchuTRXEWIFAYD7JhBOTtWpjl0oc5qJa5LCbJuWO+Grbb5Yp9l08ZOd9M1bRUJEkn3XbKgJWussSp0RcqZnewGzu2M5mLz251Ll5l2fuiw9BacePq8lerzqoJtqeWe2rVPnoypbsIV6CNWRyzHrw8puHeeuK4AtSRddp6seMMw4gusEDlAKguOoM4PjOIIamoTTsmg1Og46lVKgaASYhpssVZaKdqL66FXRKxIHJWNaWJBCKJMESQR7EouI7AERwhEEKiRADSaotEbJyASEbp2lDBSnsixTRTAMUqRKTChMokClEiUWwqnoV4/kLUuWCS/IWwn5rfrrq1P8+u/Z7h2kP7OSDTz5o//YP8wv4Dc8f/jVAT4e40N9e+2HeZZSpQBX5Ka+zfX11h+e+BtpcnO1tpzK+vmU+tvVrhZf3p3q4g+Pbu5oDO6Pyzu0OS33pFWPEUawexnN5s2bZV7m+XhbpmPf1rYxKspVJeYEU5/losuRVtauKjUTN62k614QasAAqDmNBNjQTGEsS7A3l6wizUhSN5fjtq2NejV1Vw2w8dXrw/EtrVe07pu06ppNy9gLNhPQceSul93Wvzqcfuf3BHq5gWZqv5VzrFHe/NK3mlR//+1nF6V864mv9iF1ani4sNtpaZdYIec2VMBaAkFHQAZIMDQ+tl6SwqJwe3LNPm98luW+ufOqdncKM6vVPTw8wswKhJXiaAazh4LSwaQMU1mKxjhwmZNYm+z9b56ajDlFIk0MeQXdKrBz6kzC2oSgbghE3K4AwInALZWM7ms9BcztdCvzEe4Oy5QU2AMH8BnchyUmAjf02YQjiRMSg80YDrFv1tsMeSVPr3mhWE64zElyOOLf+M1X9e3DJ//kn/evX//j78MPri3/+iu8md4erk5l/VX//cf8XOYHrgPPyoupV/USy72Pb1OhZqI/fA3/7n/5zDfj6nuGU+XPsi/7+dCjftAUQhypU8rL+oVxqngIqF2t7Pb28X4sExIi4XVuL1K+usDdBu9DHkLa68v++Q1ohTJzWuX+SYU8+ioRbjJghNWCQumyI4Q8DjLH/mdNU8p+/18aul19+hoP4w9/pG/vIvLT4O1Pgr8Efrm6uekuax40DxwpRdMFbDw4JWnam2+/+N5f/dUmU0cOX7y1f/9beJxlAHCQ6Xq9gD1eP5vn+Oz0du3LzavSlnl+fFxKWda3S8PzMrjOsqgUVSvqpS6PdRqpMM/pi/t492j1IvRq16Tuppnzcly/vV9Tfb6fBeLxWCu0xwRF5C46hUzZOUyWYwrYXXRdm/hYdBo8SzA7JeN2KSsft2E1asPaZhcDKh4VA9ghwCsHA2glhFQyLz7dDnmZpuXUp/FbHa9TXv/oNE2L7J7htrs/Lcs8d1AlzN3cDJ1c1SPcwoovM9zfjq9+dtis2q/tNjjn0AAherlGJjlehnWr5m//dXj98G/+9b/4jz+5/8uf3r2ghy/j3RHoy/buIKsT0ATEamherVStjzodyqQu1dNQ4N3ozS99uPu7f+E7++ZvPQt587PH//Ave77/wS8vUsr9bz6MQ/fJ9ffv0/a3x+v74PWTdpWhe5VivP2Lf/bb3/zg6t//q9/87//ph3jXQ9sdt5tx+/R4uHn46QtMSBnJF9GBQRMdUSssp4jksa9W76avHFNa/yJYnT/5nZjeXOTX+439w7//K9/59gV98p+GL17v/9J3+j/9Jz79r7//9sc/u9fTo/KSbJHwGVyxcU+mg5bbcvr0fvqdPzx9uLv+a7/4y71pLiu57pq/+ef4ohNn8ES438Ycj8BYYpyshC7gC9K8DLPEiGlEJjUyL1aLlqOWh1o1YnEoBmqeBHHf5yf91Q2L3cNKeqHdDmUByybF+oxzYioJQqhpuYXUZLC03XaX+3US0lqsZCM1BTepmuYq1BACs7kWEARAB7WYagQ6RNEYjsUxEmA4noYpppMtCxBEm9NF3wg5xHqVV/v+YiUlwRw+uDE6/9xkTXFOP3M1m2s9nMZTzHp0xwgnEKHdCi9X/xdoVa6JCmVuZHN0cmVhbQplbmRvYmoKNjIgMCBvYmoKMTg4MDAKZW5kb2JqCjE4IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDggL0NvbG9yU3BhY2UgL0RldmljZVJHQgovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAzIC9Db2x1bW5zIDk5IC9QcmVkaWN0b3IgMTAgPj4gL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0hlaWdodCA5OSAvTGVuZ3RoIDYzIDAgUiAvU3VidHlwZSAvSW1hZ2UgL1R5cGUgL1hPYmplY3QgL1dpZHRoIDk5ID4+CnN0cmVhbQp4nDS6y6tuSXrm994iYq3vtm/nmpVZWVmlkkotlSUZjN3QA4Ohu2mDsQcGYzAGg/8O/yH2xOCJe2B8wZeB8aCNMA1utaQuVatKUlZWVubJc87eZ1++71uXiHgvHpwyrOkKIuDhed7fw4t/+n/+11XpF+82D1P62dcXT5PAU+Xa/mD5+fP+/kfnXz6v769/x/efBP9Q+DOBi0s8XAY8c3yh9qrZF6vno4/Hvn67PMz14e7pl72t9XjuYU+oHXVNZydzVsAoSYmDNoRMWxwLpBchh+AXtr30AekLpE+Pw+FU9g8itykpceNUGHYJ9Hyq373d3T18/pd/N56mm3fvUK0FdBk/PPuDuRy+uvjeKtm0sbU/evzyWX14dfpyVx+LPokteJVgK+3ZZ+3qVbv5e/36988NjmvM57en+7+7SXdfbL8a8GkPb0gbr7NPsX7NDYb7y8+Mkzw9cFU4PtbTom0dvUMmy8mLxyiQOYkNfGG4dUwcQdgRFg9oAAv4Gf0RcSRABi1JPPJm2HQkKp1dm4MgAiVDMsCA4EB0R0MCZBQGQRwAk9G20Rg4BqYleFasDmYeCEQBaI4a0xmOE5zXaBYWAQQIyIgiiEbYM3dnVHJ2sJIalNq2Akpk6IQQYOHdorZYl1gncCESYqSUHdNaGYE3yBgEAYBIEhQu3jAC/4v/6J9WXX/14RertXT4YR52v/99eLaLP0m/fi3HZ5+13aWm3SKl+VxjaTEHzADmoO5cLI1t+3K++V3bPdMXPzKwRc+9no+3X/W2nk/nbv1Rzy385KgRVRcLA26IccGXI47bwyelXGK+wbQ/+m6KzfkU0zGwdlpbsbqxCc4P8eEbmOe4f9oZfE95CLiOYKF0GEzwUbBnWT95peM4Hy6Vkz8qrnZ5WsbaP6m3F3qi93+DxzcwFCyl7l/X/St//Zl//sWk/anW9u67+a//6hk8/iR9M5b5cH1HodTUK9ZbCUX5zTem4R9WV/SXl77JdrG1671dFj0kG685XxOxAYWfwheIk8PR0BrZjDJRYQrg4ZpExLozSdl09BjGjsirNmQ1q+HdqXmoUriBJcJIaZ9oQ3EVeNXwWmF39HK0tKx9mXpZdJgr6iztGMdHf3+Ha6XjWZBBNkGsLMAiZQABxgU4UBZPgOO2Jz5r7gkXGLz4UmHQgU/f0VJYkElBJ5gffD1ondSxAy+Wn+o2RX+qW7UYtpIwBDuhAyog4Bef/1eyH178o59evNr9e5/D643e6M82dnfdbjc68YcPNE12Rlux6bNuVwwD45D5rshbLCuOk1pZ+35OF3e7T+Pign74OWBEPbtFr1C7fXM/z93fnagaVhNHHHZJMr/YP9uUEcohpDzNaapyOsV0jrTOaZl3/XTRn7id0vqQrY9aE/rICgGgDsHghXLevLqChCZTiPOBMLMfLiKVGhcaZZkHVb7AdcR+6X+787ebvY3bWN615V3/8o7/9TtZ027OV5xKGXc+Tf27d8/87o/hZ5cw/YDu8mj8hWMGwaKyhcvvP3/26cWnnzx+kqfdw5zW46ATwxynk92f+lO2WRpiw4Fly7LFNEkkwsqiUJ3OPbi1M0Fb+cU1EpE6BIIKKHs3r+GNXCmiAAr5wCCE14SjebEufYY6hz6qn4zbWto82DToCdtE6ywQBTEzbYpERKPwwK5EQpqEEmIWYktkhIHRwCGLGiV3BGXH0lF8vISssFliqDFp3Lfa7Hini7RzhuHyiq6eLxVvvbaun7ULCFziwT02HJgC/9v/8Z+T0PDqirENf/2/yeM3l2+/KvNJlk7dCYMAbHjm6XD2Z7NfqWXzPMKbLf460bHILbIg58q7U3ph44U+/4EGzzO0jh+WXI3uvCiwpyGIjXIgp33ixJlHRl5n1xb61HzqWCdsc9bHbE+sjbS6s5uQGZsJrBs8lswXl1tAchBKaXt9yQlTXjnF7iIxEzVAYL68wTTWvjGV+sF08t2PfHhlH37xL55+9Vf9celPa08vW/7etx/WX357Hm/211+8PNb09f1mz/TjTdqcvr356//l0o8/3Z0HcvmTP3odEd2azcvTh2/13Vfx9jbmVVdAQ94NNGTnrY+HbmOz1Dq3jh4EwTnIlZhIEgeRCAFAX9QN2kRrx/OMNbjK6CxJRmJhEiBiSchkzuZUZ+2L0mmluWU9i53Fn5I9urmrGxSFAYAwQBzDNRgPwkSEAJSAyRkxUQjBICJMvCi6ZzcGNVJnODVdpyiwkZLXM9x/c7S1+lLHG7+6GO9P1eoEHdlHgI3KWPP4dHi1BhgdWtWnd3PzkNv/5n9atf3V269aPf1k+vbSl7T1lJJejEay0E6pnE6yHpfABfBdIAbiJPOpLETEfM0ucsqBW6PLhsPTQyhBLUOkTJ9eZU4H2lhgm8MVbNYIgO7IaIt7jzivXJXnidbqtnRfanR3Atw4jWERGtvC15eZnKi1xNSUMDx6FUaIBgSrrSRU+k2kLCeWDuntW8bIz7cwZPl26rcNX/wQDi/tuD/Nr1Ka5HJygn66Ox7v3zy9fT3cfLFetfku3X4JZX+mL4Zd/r3/9D/R+/f/+//8P9TjUZZ/+ddTW7/5+q9qm37nQnggzokLa8mecrVN9eHU7Fw1c03UUIIEmtjKBkQgG2qcagIYAIcV8wOAZfSciEreb1lSpmKKfW0R7s3BIhCA0c7dmuG8Ymu0zNRW92reepgCASegTUQHr0A0bgTNggsFmBG4Q1c2wBoAoXUlZj+oZ8FFqANNE3nljRIlnJ7SU7XzK588auq65wxY3CP6Oq3rdFqnm7YVtdQXmb9DP/dlC5cvrv7ev3F8f/Wr4XCculz85l8cEvyT3yfcHp4/SyVRzF01KkY3P2qbDKLkYVMGrzk6YANsXaOdo+Om0ahr6ucxaMSSeDeWT5/LkNPVNogrqHY7Pc3WwCYChdIRA2CpgO7rGXsLXcFVoQb2YAtywwjEnC2XJdYl7JyCrSbioEFcaV45oVxsc6YYslI4G5FwzvsyDmW3TQ7p7T23Si+BbgjffOfTyW6ztdOzh17z9yZ6nHx8OB6Pj+9un2Zh69Hv1tncXu8vHCCefq3w4Zd/sbDIv/0f/EPwkM3Tb3ibvnj9SXpW9HkxwenX3k9mERq+mM6Gw5BT4dQhm0c0jwUM1aBBmZHrKucpQ0pIMlIernayyeVq9ID1qav5eqrWANdMTgwigObqoNRn0NW9RqhDd7SACITgAAJOVnIPrU6TgLhmRMYiHtSCCSlnKewiC4WFIItIKpxH2W0Fgp+QQPkAeAmwf6LtA0xvYYptvbjmg6Ifw8/r6d3D8bwqczjYWVsC2JfBtNb5wXF6/63tr69/8sd/v4wbef4fbpAw745AU/26dOV53jQdVkgKJBEbaDR1nHDuy1nrCl6RZ0jnKB3G5hJRUtrki93+s2dpn/PGHOf7u1Mo+MyguHEKJCLGoJhdzQ1bQNe6mi2hNbyDITq4N/cO5ECOkIRKYigXB1Dtc40h580IKaVDyYmHi5zYLIMzcj5wSvxsx5mxOFiHN3OsU+SCW8I/VPxU8c+/wi+/yfFsE9fB6cy560bSs9c7+uxTakyLLqvGsdou8WevXznG+XGd/Xy8f8xjlcO/lUHD3i82h961Oqc17TuVDmyARJrRYu3RtaqtameMCalhbjyaFzUhSSmXYTNevtzjSFCsdj0fz9Ax1wGdcwwISEgAVFu3bk7doVtrZi28giuFYDCYhlUgQ1SiwgJF8n4c27Kcz2diARDixHmQLHlfWNTKionl8oZz5h2RBHJD1eCKsIJQFMbPLF47/uIWT4vQXGgGer7SM7OB5XC5T69eDLfr8rdPT129Nxvy5ubqsvf+9O59g3U+T2om+qcTOPSjmaLRPrDUkNXF1D1coTuo9e5mU8QEcAY5gfTYVbuA4IA8yLjZbzBLm5do0adujlQzmiQdQ6nOHIbSFA2wL2wKNCF2pYZgLAxAvZr2PmTa8YBkRMYKNjXalmG/CQ2krIHHZUFRLigVl9vJod/5A+X86nuvBrF0/ib7wsPRvcXfHeEJ0pj568JfXNA1xH6Fl1Muyy49XczpZpYPCkfYL80ejnW2xqFpSOX6MBK+PT8y4PXFRcojva/OLvbnawRoDSP2T8U3pYWsQaEeFubq0NRV3RakGfEMco7SYKyxJ0AOSjLIdqREvVZbddU1MBNtCDLrEIa2uCtQNXInWyN6wArUkRTBSYiIarcWuhPeDsJsQt5OrS0NByh50GqIST1aW8VtSNI16kmrtjfLI5VhPwaQ519/Z/Wp7O4Cm/0mx5kdM78ZysUWriI2d3DtaVtpPO9uy2UvZ94a7ledj9NcoRPYUIarF3uv7e7uw4bL59cvExS4bxEqthEggBcJRGxXlJNqqGugB3pF6E4VuTOdnCbHs/HZqINVn0qSzVCCTdk9QBd0IMUNAGMAhXFfwZFYEJEIIMLVIrRRV+i1V1MdOxNhCSVxb+upakmUhaIHIfVuj09TbwtyHwodLrKUNFxsUlV+tybx65tRhs3ldRrM4Hhr053eLLjj5dlPW7z4668vHu7zH95/eH11lrsz334gIbrAw6fl08+2/dvy+CtKZRzG3GISd8kkvnhoZhRyqzOTjiyEJDYyJILXI+RkmrtLn0PDAj0wVoAKOBNXhCloNjx3PndS1+YT4YDMIdbJwCEWAuKQAoBowa5cDYEoETBhAoCIrhZarXfvTZutfSAmpCyektfzvC6T5Qw5UySm1Ls9PU0IlUiHkq4uWMY03oxwbv5egfzqepO3m4srSYtNx1s7vrVMcL2Zf/f3pvH3/u9/OvzN1wz3D3x13tz9Ir//5XhDQ8bDyzy+2MxF3j+ylJI3WSMVXQLcfXHwEOBwq4uz5n1iYrGX+yDSvDNKa+ybJyBiRhcLdGTCcPPoHufmT2ssiqsBMqdUUsl5zCTU1RAAgSMC0BGI0JGQC0JEgxaBbgAerTePBhxEOAwFWHBtqr2MKQ2JdCRzoQQuCIQQhC7Yc6btdk8JvYFLhDsgRBmIYNyPeTOkTNj9oVatOl5/r7y6ep+2H5Tf3P/yu7fHnz+91mX/nK8uts/Wd2u9n17/dH2976FKhOBJuyH7dty0dT09Hjlij8gesc6RhRJzItFPLyNoaQe1vMamOQM5Y4BroBMGYlj15n6s/e6kGqAQw8glD3nIZZcDuTVFBGGAiIggcslBSIwMAdqqR2BHMG+1erTYOAmWzcAOvTXtdZfKbjegGiqQMRghOpIRWMK2HYfnz3fd9DwvLhFugBDDSIm3F4cy5jSQVn+/1lr7y+ev5dPXb+zwm5l+ffevvv7myz97+PffnT/5Ed+82r/89lffvPvm9A/G+dkPWvRgMo/cVhs2uN/sztU+PEwD0+VFgYg6VXemElxYTk/FgxctFmntYOHIQQgB7EYRHxMQu1MQkPBYCpWh5FyGJJlVPdCBgRACAikIjQAB0TE6CgACAyKlQdADIruhew01AWRAIw4RD2waDghMjJAwEJzQA6wbqoW5aI91RvaAhyaBhVN4HL87piHvcKOTLiGTyi//8hHf4s+Wv3iz7I7v/tb1zenXP7/D+orOuj/U4WKV9XjO97+x6UNAj0APdjNoK3q3HDagb0kMbbVKNGxfvsjbIh/ebx1oiY0he9Jgk4IsAMzo6F3VsAOsHk7MJfZXh93VnhmZwC1qM2RBREGMjwM2GQICYmCs6AAUTMRYNoUCONR7095DNSUgBBOBlNVxbW4BkEg8BvYId9cIb+pdR7NUVzg/EmXvtpYs43arvd9++V5ELmQfvZ6jPGj+6v96P9P9n3345m6F0/R3rsf7n3H91Zff/zd37UfX67bOg9/fl29/3qaO0BGSO5l2qJPb2gfQLeIF94b62CakfPHFD8arndg+BbJIERLaAlC4ruHWu3eFbtCNFDgY80a2A+ftQCWFaq8KQAiMjmgBGIAAAUAEhuiEREwEiGGGAdZWdwAIIgLnMAZhJCASFmckcggA+JiQbsTEaYBACAyIdV3UPA2MAo4aCJE9CGAQRbo9LaHdL64IsNZ51UbQC8Z2MzDQWGqmu5imp9uyKfH596/3O1EIGfnikBrSgoGu0VuKNhYcyWFZJODZy3F4vsv5wLwXfTUS8bjdckrj9UAM529u22k5n3ttvqjMzh0GlzRutptxgxIoUY/TelpSGkouAATq8PGZjIgJAdGIkJgEISIamLe6gEORjEzh4gqQERA5OQEzOFtggCNEaLVW8rZsD+AO7o5xOj0hy2Y/GHqj1cRsM7oFXJSm8asPT2burz9N19frl/96audMyyH559ubQxosPgTcxgd5N/EPP/+dT3/8/Tif6nTaXZTDs3FSf6qqU60fjmO053vE5v54zrvyxY+fp5ubYXxJvJfx+RUi5bQj4qhNXeu510nV2VkiBJCFhhwF84BJzNWqhSJhgqAIAA8ACyDEwAAgRCAMBsUAhwgyAgdQggAUJkIMAHeiJEwgZIEQEe7MLJId3cOByCMiHLxFIAAxIocBBgB4ROsaCGVD0P201q4eFCa0GRJYOtWZQm/27WbEee29GybGBAV7tmWty3pexpHZBglLZMTBQiPSgAyhSsAllRevcHt9vm1Bi1z95AsMpCbR9Py3X7Wn0+m787Jo217qMEQTMC5ySDRGoUg0neZ2UjBiGgnRDQIt3AiBKIgBmZCYNENEnxtBjCIQARUigIfChOgB6sKSc4JQYIs1vGvZpWEc2sKdCFG6elhznYi4R0oQwhwAIaAR07Jw4v11yg2+uZ2WqpEJU9xcjtfF1vVxxvajV6dPr9a379fTSXFXYJQ9Lnm9Oz2cHt+dt+LpqmT2wk7J00YGigMnE5vPWA673e//tOn2239+avNZ3v3qBB6xenTVdydfVoWEOTsXpaSUzBkkkxQjcAgIQHd3j3APiHAAAEAHc1cwgmbAgCkAHE0BAUkwiBgjANDjIy4zuqlqIEcibhU1wB0jCIAQCQI9AhEkMSABQUCoKzJxEiBoTVM4GgrEbkQmPPfm1gEVyJACwE9zv2N/WmxusbUYAairL1Xct4yZAMGYIRdkgFwjm0HtZJE3hXNuayxVH6doS8j/89//jbtN01O4Xm9wzPz8i++Xy113XoNWHRZKuezSMHbVpuoOH5mwuyI4ggEyUsIAxRWaYaeU0uYgCO69EiHLgETiHOHAPTAoATvVNjXz3cVYhlKXWjVSR2kcxoTJPMwsZxrGwQE0wt3Xvkoq28PeVM93T0ngYvTC+NnztFT8m68/LMuiMQdXIA3wX347f/nxX8Afj/5sDD5Xm2LneLErmwKENQ9CVznNVszg2OLuTEX2L698u334Zjou7asPuqwg759WCMfWhWI8HLbbjDkZUnOsjo6MLMiCzNE1LMCDwsEdPAIAECDC3RjZxRECARACIxACwiPQLBACMSDCVRFcEJm5B4YCITITEyEjIEIgMSOJV/XePyqQCJNwaHhzEkklEVPKSTCiOQiOOSHiQOIoQhIsuyLsAlXRnJiQKCMLCCio21BSHoQSdjASyRsRtNwADCwDZoScjNK8wtIACjKC/PntsRD87hYP2/K7/87vXr44fPvN6XTuj5XOHXAsPIycC0sGq7Y0rI2tkwHYx+eTmWvvmEi3LhQiKIwcHmHh7o7r6kgg4BjW5zO47fNGxnQ8W1MVSCWlXCSXxCJAkgqlnO3h2E8rcVIvZRy2Vwdtthxr2ZXd1QHMS2DUpo9HELr64mAB98M69aGTuacfvZih89Pt3OY+jCUluUnb0Te26lp93PH29diyH2HdjcP1q13qOFyf/Q61klFum/0MmzePVIF2ryUQ5GK/GxI+f8XXhzRskElr03kxjRKckBmEACHcwQ3MIBwhAtADMCIiIAIjANzRHT0wHELdIMzDARHAEZAIIdAcw5GQmBiDwRwMQ4FIJGdECvcAQCZkQsJANEAHBEQACA83t6YYLoJhCPHR2wIQSxLLyVYJkCyJMNdUMfmYJecsxBjESMHOI/MhERsko4GliBCxOg5hIyJzbEpEARkIhEMDQv7J3//jcUs//Qfb7c7PX/5qef/2zW/w/RPn7z1PhwsXckZV8+5Wa/QFQVHAPWoAh3J0AkhMxG6ogNxRPRxqh4iwTkwDd+HILODUoYQb4cAk7I00dIKKIWm7u97qaerTSjkxJkhZNhtgqs7QIa1NV61zde2P2HOh/SERaKTKBNAWJL68HEtJ69tJO6S8T5Bs5wPX3WFfhsIrQ4dSKG3T5ntj+fE+wAy03GzHw4bWmb3C3uilmIx6cUN8dcGftuqPv3lj3eTlMy4bvNh7GexxXpanpfe9xiBUUEqQB8Rvh6Zw/KihjyMNQgBCfIyyIIgIBwgiwAgzwwgMx0AKw0AwBEcKhGAMxAACZEBwCHNKmbMYru7x8UhACsJAgHCHCATA33qfq5ugQwAiCSFCaAfynMSDmZmIkQRRJCVwF/mtEyIGZ0oj0EiRCSEomBMxA1IAWoSphyHBuAUaESRaa7VabfIHf/SWwIfHky7tzZ89fHiPcfGTzeWrvt33IUOdoDdWQAcCIuKm3FQUgAQ4QNwYIqGHu1fj7Pstgfk6nyFgyJkjuDZC1QYQWDwjEnUN1YEjFZJwblEOJe23emqzLYBJ0gC09Ojh4RhCyMOeMGCLyAw5G9PJSEJ2u0tw7acjEu4unw0hDw8FwQm2HpL3kTadncCQySTH+GrcvCpwneYwwhiIMnqiFtCi1zb1hzcNb1L+vR+il+W2nh6Ob778VZsX2Q4nUPP7p3bU6QTnRfR6G2VvXBSYg+gjqHgAIBABcgQhojCSOQQiAjM7UgB9TK8IC+sIACEQ+NF6IBAdCIAQwt0xiBATAZi7IyAzExEgIxICAiEJOkTAxxsgIBAHcgBDEKg7IECSsLCqFJHIAEEkhIEAMSgSI7m3APdEgeSYADI5gNdIAiLI7tgrWHcPN+yd0ZLQqCZ1ntrSIQARpJz+lU5w+8/i6T5/U396V571i+/bxc2Ci7V+ZVECwqyZOwqmLfVg0JwT59Tn87IsMuTtYWPBqyZAmqYFrKmeCYDZKMQYhWU/7hjZVwXTqg4QwyZzSvNybMsq/SJrUBLZDSBkqmmUfblota7zjIA6K7gCdUhOYwuE2t2F/HIE83ZeSTXDPSGX/ORDJe4ItrZQjUVXb502nApV1D4pLAq3enmR9lep4GzxHqyD5u585hHgeZ23p6N+/bMH9P6DH/9QBATPxzjT6UN5esjn3cVUbixvQrLi6hHhgR8bAEQgwgBiZpbEIiJBjEBIxCIRjMEQ4KrgCq6AEK6/naMAkJAQ4WM+ugUAMKCgg1vYb72IiJMghpsDo+RkpogIAaaAAYiIBEAREa7qyB9Nr0NQuIciOJESG6IDOHAEhJMpmgtiRqNwDzKgAFJIQGQGyxoQAckhN94hbtClNjsfVwHjFzkllP6n07mXP5s/+y49//oHfzIfPoFMiHHAPkIlnbzNst1x2fS5wdLzdsObBG5hRiJRtikzJEQHDmDzXDt4D1NEkLaSRNkIU4quBsqxMHowOaIlgxyYVUCDukaTIW34oPN5ephwCNiwNtbGVQW7SOa8SUzB3aJrHHsMDi/BiU40gEtpiQmDCyacnqbeVtkZFZedYu58SbChIHTEscguD/sDDztGo5jDZKPD9Zx2D7sXsrm+SpvV13e372xZT++REURvvQZ8gIvbfHPaXtfdFfvM0Qg0RcdQCEMmyoJVAUGYM6O1ZqaElCSxIBAAADGQB7qiaYR/xDxEJgAKhHCIIHBEQwAA+ihXpCAKAA93ZGJkXcg0yAAdIwiD3LF3AKbMJchczTWi2UcRB0YPjMDaQQgcMAi7Wu+K4EyBEgQBKSJHeHgEEeZEQkgQEeAdDXOHQ6NDTVeRDkGCTCTQwx7vVwyX28fDY75++4N/9G7z/cfy0jTdWB9j2fbbrT8SDlA2kQdPxUFDm2zzZsvHBz+e55LSxbPRsXWYWagM2aZ1XY7sfcMtwlsN4l5GxZRYmBEFCQGqQYT3qUFFBhBJHA7agDPmJGMB27l0g5aHVNK2zn56fNznYXd5qa2dPtToFdoETEtFCzstZ63azrMgpKIApuSd0d3IDMhQooVRh2gr9PBIxMkfbDmZBfa4bLvXk/zBhxhO2/12V3gnr3/4/D/+L//h3Tfv/o//7n89P57k3PZnvpgP318OnzdDN2e3HC31Odk5hgIpAUkgAxB+3C8QDsDWPScpQ+nuTYMRUxJkXKyjd2L9aCUfUwowiIEQED5+AQGuDoEiSEQYEWYogYQkwikHegAwUZLUW+taLVgSukZrGl1FuxtoFwtvvWnTaMAAOw5mdwjHjw1qIAEhGLg5glp0DVUwNdW+dsWh8bi2/WTXC+SeiokExrBNn3zy6WYgGSnOJn95+Z/P2830+Wvb5PirBz6v339x92I41ft3Pj3uf/iqPHs+t6hNtzmVi715nR6X+VjXWYecWKRX1hnSJu2GQ+/U80gGCRYADVQCTLom5pwTMerS3TpxyokgETCiemi31oEalZKScAkL0qXVY4UBhy0hdLdjX9bTnbW1Tvf3FH1HSwCsb2YLt6fFakAlR/CElCMUw0QGkTG0gikEUsRHALPa23mtTJlp08fruv/kxBfvJ3bEfUao06/++uuri/HZH36xf777x//Zv1vXVd6Nf7RupO93MTK2StN0CfMzmd+3eZnnlHiz39bHJWrPxNuBz3NbFtVq1j3iI85hKKJzlgLShRNFI3cAT6gEyq7kygzE2MLcjYSB8KNMPTzMw8zNCIAZQRgSwozWLRIDIISDN1OvM7e19jpLKOQGGnoKi4hVoYdVBsToGPQRKJCYOaOZQPQAdIePoKoeTQ2FEEvnfRuenX147JgYDhKttcfjPfuuqaYhffHTH4SrfPiTm05oH5pYf1G/HfHxCh82uE497lt5ud9fvLw8L2BPLmPejtLMlrlt0o43si05SYo87jZ7SUOtbkoyXEDFerpj9wKEEev0QL1tbi6YRTA7In5k7r4GBrFjIhIlXEMXXRkdBKFk2GwSoJ6mabUOm9Qo7k4TRIedExhjQ7d2XwNgQ4MnPM3NASiVVIhmoEBaGYm2acBCy4d6Pumm8JCyD/u+v1r6eG4bij3n7dKg95mqxbEnb5fqdr/+s//312WbPvl0lFTk/NnOusebM03zQR/28DDCOUNrBmdNWIbhsCGZQolF8lAkJQQpBDlREWEWES9lRBZV90CWIbR2BXBIjACx1JkAAQCREJnQMfwjPwc6CaIgkSH28Ba9CRIhCUPO3LWvrXU3SKyhulZiy8V/W6i66rwCYN4XJ4zQiEDOyECIGAEdsVIuSQqeu06nnoiHklyKle1sw6MNGcrAuWN3q95qzGeGGDkm63/79f1wGDYvN4OIHC8qTKu8+fl4PP5k9/Z6u3D34ykqXdmYMG9ZGDv44jA6Fs9OG5IkUnIES3hKw2ZzuLDW2mlisM1lWaf85hYiaBj2iFQXh+ikKyqy9bDu7gHBYkweGhG/TQuOIAoOJ4iMBujKkJAnh2qrWqttYXGg7t7v5wm7wlwJCfISSOrdAu6Oc6oMMbAkWMgrBgooEg4y8vjs2f75pcH2aGXiYR03zkg6tV5bO7dpPt/dD5mvb7aVcoddV/75feNismw6tjU//GZ8uP/0cn228ffKp8ZK28hbkIGYwAFqQA/UEIeCPDLuhBrJEkkSl6vUTmd/OGaKi21iE4tAwJQ3BCjrBGBoHVXINdw8HMAJHSHMHCDABZwJXDAQgDwEAtGZgIiUgryFNm2rh7Opa2/LSt2kdSbKvQWRhanDaQ5W3uUxsUQFd4iBgZAgS+G83483N6dJlplXTC1nYlRbVVfVqdfz8nS/3ebdM+nEGtwNp7NGdYFvH/l8Psy3h/64Gy6GbTq9t7sFXFIuiTlQO/VKfSELDM/ScXRezI/aNS1QNmU7XO28tz53SZG2UgR2KaG51k6I+WO/0i1QiwgyL03NjULRLAJcgcWRNbRq48SJWdRba5Nbd19pnUY7k1ZdJzJIGc1s7kGBu7E4wGNTAAQSlo/LFAApUMJ6uIERe0r714dtSXncLyqnJR5OCmMMW2Fv+ni2plFXR/DLlzXjB8Wuq9mbLNvvPbtJYxG8PdJ02q0PB33alJsyjFNdHs/ul5K2iQjAjLSxruiIgFk0FXdvdl575FVg8E3Zb9rTWVf1CEHODBuRCNXeCTAhIRB0C7RUhBG6QgSiG+L/XzCoU1LTZkpCQMQRXfsSWqMv1OfiS2iVNlFQatndVwsC3AwpAua5RcBmSMzUPtZYEpjCMALASJxl8+yyXG/XmetKU9WnyTYZdoWjLjY9mLp3Dxh9f91Rn/Rs0aw9jtv+6VUZdxu5+uaY2nzN+TBuQ6QRdxQFzwVpQO5rnE79+NCe7tZhPHORFtzh6en08PCY04vD9tVYNhjIICNusjWfZlzrLqcgGpAJiVIO4qoVwwceich1deuUHTkgNCCQiYgMzaMDJpRIhYZt6as1A8m8zwOzL5NHuM4RAAkFEasLAoA4ASAxEksCTCQiSVgGQIG8yTxmlAJQ6lRPDwvx9ubloRwOm8vddN+eFpvV5mbV8FSfMDTDWZLsD1fSNr/4l99hSnL57TFFu6K8KxCSKnMHVsRNpjwi9+pn1ONDe7pbhnHiMvQ0qBwfH3/z8PbV1eHl9lDKAEEcMuAmefh0j1p3OYGwABCRjMWQTnN17YecRNht9d6gEDBCKIQjCTEAuocCGXJI4SEKQKtrJKahDBA9cah5X8yJchkcqboARBJBAGRGZk5EiURYhGhAckxjkbGQFICyzvPxw7R7fTi8vE7bbdnt6vk8L7aozV2X6o8nQ1ex8367/eTq897oF3/xrpnL6+mRyXb7XRmjDbuQpGSOuh3SdiO8rNabrMsYfbAYtMEMdY6H6f3X9Ttqz15pW49++s0aH47Qz4hnaCewHurh0dw4pWG7RUrQNAyJRybONBMbhaMHfuzp1KEpATA4VDEktw4AHqjAar7OuCpHGdBUugYRJ3bg6gIAmYAJShJiwiFjIgjUFvLxcBLiYpp9lTweLl+Om5vr8Wo313j//vjh7nz/uCyuJ1NVhm5gPerSOt99NVeL24f3zUw+O91h4fTpJR5yG/ctUePmhPsxX+9yOs66VJnmjbfR2qBRp7re17vj2y/Xb4b6+ket6eOynuswny/7EfAc8RjmruQeql2IZX9gKXBaPIBow8yZjxwtwMH94wIWNAMEQhckWFEtkAwJAkhDmvra0E18GNG64IzElMSCrWdEGBIJwVCYhWhbMHHM3rp/3GZAysSjajZLZbsZL9JwvR+uDsdvnr777vH+/fHd/bmHrdDBBb1DVz8vq9Pb22lp7e3tV9WabArAQHG18cNwirw2NEjMUZhGxHae6uNJAi522xFOsszYVrH1EvpzkesSh12dej3PR2h1EGPrdZkgMNPeIpq7uwMTCucxIUdvKzYIWynax6mKAIOQCAjDwdGdQjkMXNFVwjJjBDfOQGGyAa/MDQIdFCCyZEQsSZgxMSBir927sTMRp3GXU8nDLqURrIAlUkHk5djm+jB9OOtxSu6XF7vVDaxr9XZS6ApqYevS3jZM6fUPCFAuRvQNzy/39bB5OOO5hmHhhCPLlvD28en87e3VsLu6ukz1KOcHXFfU5QX2z3P6ZBs3lzM8nr47vgXAfSZd2/H0JJgP2xslP7mZazBRlnEPUr3ennprI09CLQw9kFiAiBmIg8DCnZw5BK2jt+w2JgJM1VlJUJB84b6Gmc4dwEtyJhmHzISCGuDnufaIzbCjxOXyerM9jNtNygmWBMqAjMHH03ys8+lx7fdzzvTy+dVZNWqfj/N8d+9do7nqNM1PsL0Zf/SPoexkubjxMfVh11Opa22zDchDEm7qk3tTdwuMIKw9ltlTc7FIAFeJh177/Xs7r7RMgaRJvDf0AHL0Sg4JCIFs1UDNJTED5koeiZJgAAICKFAEQgREgGuAurMbY3TyRt6zNlPPZuGuYQChSEiBgxNgQiAIg/AADQxgEs6Mm90+5yIkod6n5qsBSyoMQ8GchAxCuXgaTK3/fz28ydIkyZKdd3QwM3ePiH/IzMrMqrpDAX3JbnaToHDCgiuuCBEuKMItXoHPgGfCjiJYU0gBFhQhCFLYxO2+vEPdqsyqzH+IP3wyM1XlIrL5Ai7hHiaqpnq+c+aXbW5tXvd9rQailPOrKTOPKfHpfvybGyqTPn3zHYrEzX1LvLzs63N/RTIOlJatV+vr1rsZ4ELz7stTn8JGt0L0bdFpu2x//Pu2O7/UENlzRl/JicOpzQwuxHCuL7uYTl/dEIufG4gHrxLMcKOIgBMoHOHhu0d1ih4u6ISmfZvaQt3b3o2oihp5T6pKp9GFaPBAxLa5OzdjYj4chlzS/Zs3Qxl8I99sa0sYpvfjcJP5dOBpvCQSuBoPnZ8fnh8+ni/7/jDPBnZKeRqmt2/Kabr99dt8d7z9T97KkHW9OSJxhPYWsKq+H4Y4qFPd+141bEgg9N6bhTofekgnjjD2ju7tsqDH4J7gvQesG4hA3RogDAHg1UiNAWYCO8jIDe4sDCJWMIM4wAEC4AFzdIQhgj3EPUc/UAXxwtQ4VklfeLWAXRfDYCYuJRNzySWpoJl5jaYwzsPImsbTIZ/GGAQaOdMwKjzgcHKjGHtLdTUiI5GUhsMoQ2KBW3/5+QFJ9fHbt0B4b9Eqt2Xwy1dTvi10/nDeL/MQdZzIom6bV89dv6rYEJthYZ9tt+3TA7HciRLR3iXQHeKBWjcmSWkKir42RzsCwoD0kIa1oleZJpHUMrmCE6AgBMGcmxOxIyyyebGevU6Yj6w5xSryUA4Bg0uYt9kpXIqwpnI6iuo0ZiXyl3W3WfnIkk/v78ZX9+X1TTpOm9VqbZoYPGxjXm+mO7/72n9R2RZtRtEQvdk2b90wt7bN7fO/fbSAFqFwrKt5bZm6qCk1Bnrre7UxkYj23Xq3FtSoXEV3kZ6lMkF7JRFmD3C4EwWzSvhVvxIOEPyqQZiHBSkjM5QRREy4kkBEIGFyOCGc4EAnBzngBjfyztHZXXuoKxOcwsgIIRkAqASLC3elYDNiEm0kkYqLEmUER2vd1rr1uvdmHkKaFA444EFEbsI9jNAFjkLNyTSxxRhuEfpG0N3XT4ut6y3XYWqFd5iv6/Zy6cN9zoWX5XmZl6XfrHIiJKL0iuiOgvvC+0WCM2snWUlJkuqI6FE3wLMG2K1v1NjWjhAeE2lQT1QdmSABlgATJ2bmTtSNKJgbO4kxtd37Rr6TrQJPe3QWSYMztyIknO+SMFRdqOe4CCC1McV0klQk39/IwCHWrF4eo8e69V67D8dxOI6iUka18BbObuaiXqVvLlYOMJJJDi0wtM0j9LBvrZpu1WvLRZIkj7V7u4qZQRLEFtQdIFbVcEJ4eDfbou/eN4GouJMYnIOQiL7AGXSlhZSc4OSdXImZklAWQChJiLAmYWEBKMAM+rISJQfcw90jGCFwDZ9gHH7nVIkzKZiTEHOoVAFnJwUyd6HIKYmC2IKse3e0VqMZ77Vv3br5unewQtQBo7iKlA4LEIjoCoGIIKKYeIR+8+Hj1v3z07K6H94c8zDWT5d9XYkkpwSSDt5dN5Oc85AH319sn1Ef58sH9D3qepv0NQYLXk0lHVTvmIhpJEKYC/qhGHGnuhJFnpg4Rx+iEeVMoiUdk+bWXswWRAYyxXXQ8ajuZjUiu6vHQPaK9qD4JtYOvqh2lVkHZybZBXSDSMA4MithGiNhxdaa1n7pjrpw2+my7vPW5t3m3YiVJaUkOStUkBIX1hslJR6JNGUkvcI24arzmhwDIZSIOSi6u3cjEhU2oJobKEjAEPKITr5r1EIdMMAzXGEJSOEcHmYuRCxB8AiKUBjBYB3W0IUkggNKSEKikpRY3Tj82gNZvIt3iuC44hsQQCI0IsNASBQWxBEtDE7XjQQTZ4YCwkrEBnig9WgUtXv33jp3535l5siNg8nDG5lz9ytswsS+EWswOedIha6MPYNV//wJou/evNqKXqiuvW+1Wd2HlDPT0vtL9S3YcyEJphV29u3zEcsvBxADgZL8kEwDRlrJL3UlTchjUKxRxcG2iwXXF6BGD+cI7aHBh4HzSF7gSqLiAmfqlFrXPmtEpnB2B2lQdiTzsXZRz4MFoTfqQTOtJtwkBV2ZBjYUD11bNOez0R6xW+teAwqSnt0V5aaoJu/mzWDhvTq6mdlCbSMW0kRljNcCUWLWoFAYiFGyRtEX27t5BBEzURB5hLs5QCxCiOssBjcKIzhwvVzj6uNQgnMIHHAigK5wGPkXQTQonK5mNEEIsQqrwgXO0UEcjggPCRd3RQicI8xdPDiuRFEwghEIoAcFZTJzR0MwRwAkRmFA7VJdurMFm9OVXwPBiZzgjGAP8iALCiAs0KNbUDdmIxgLWZ2rFJEjiEl7OURJxzennPnHHx/XbZl01KPY49r6HgZ2GlShmfct9pXaLua722dr0Xp0L8BxZxLWRMwgdVdvZGASYWJuSS1pFoFqvs2aCFLBzoeB0sBIFGRwj31Ha73BDAiFaZg3o61LNHEXDj4wCEYeHv3iQSQ5iMnmcKY9wyReDtI0P+1TpQOlE2TkUCA6kbHs3ZdGvW49Wri5dSAFipm13kBMpOJEndcX254+ltv87X/+Ko2iNhQUIRFmoh7UQooIawMsHOBrLwpChLnVCCciB1UQgAAxqAU4oEAQmK5nyoOu4gFcGMJOII4rCQQhYuYknJSDKAAyQlP0K5HhFNdDyRSAM/zKShoRgSzIA80pCG5wR48wRgO6onZuxM25EfOV5g1zhF2lDgOcwiPC3C0irmikEZyudiaPIDjc0a1RRm09NHT/zesIih222LQLt6SaKaiGbtFTzkpa19r2Vve57ecBVsqhdb/0lkgL1IU3lgBHCzLj2AEnlmBeIgAtA3EmH5po7GFhpFkkid4MMk5YLlE3jie0z4oLtBosggFysChyvvrmenNbVmpEF4hJ1MJOaBb4wouyBbvJntRMm8LZt/ps8WJQB5ufPEawFhIlNiKT3BPX4C2YEueR0S22ysQQDY9e6XKOv/vbT5RI7VDCEGe3GhpcSCLk6l81YmUmJkeYdfNuYVcYw0W7X+GVCOLOV/KH/qE0Ba48LACCM4jhFMTu8AARJxJlFVYJDsCuzn8WFw0HUTBwrUYGR3RERHdshp3oTNw5doYjGgJAiquBhMO5dXJ8eUBE92AHHGy9d+vCREz4B9QyggLkgHypq9c/6DpXBTE8Ypt7KOl+GKN6+2HGaocyouhjbXs1oxKJHGFhra77OieJYRqs9aX1LFMRVjcMrYfvsCR6zBkkwTlUWsnBIlLoC7MbKVxDkiRNWg53WkqSkSHuFlHpptDxrl3QF6eu6B7ObrxfXrbL3Dfbn61SXIRXoZ8LduC5wxkoRIQEYaKRBoHQTExxvPFSfHg1YkiNxYg/f7T18dIu3DfixJy5sVXpSIxBHGEwZnAi4oCGggqyQ9Yo0Un79eLjgKOwEAcqeVBcOeewiHDv7p0lkoqbW7CROmUXM5CH9+giAk1gAWuIuEiwQBKYcMUWr+Q0C4uKFkmDkP7/Z4ezEhXv6i7ciDjQ2cEGbj16i7XFTpjBC3AJ2gLPRg5cL/UaLOAIVYgaCRDm5P/w5klMREtIiX311oMpCVEjb+wMiCLgET2EoApGCIKgTB6cmniwPn6qHLi7K3pSrJtZhzKRUGcERW/ujcmSoAiPQhZ1s9YAQ97JZ4gK5YxGsXgwaxoGUomxAEymTKKakVWGG0mZ0sCa8+E+TyNXoR2hUygCPeBWh9b2UE6j1K31pW/EL8YtdOVh8fi8RBNsnTuDmIjJMoOpiTIxaUksN5SZ5PK4zrTTajTmu19/fXh1e/NX96zHH/9w/vTjy7z0ee3uzc2xN/JOcI9AyqASoO49C2Rsorg5ETFpa64ELqKBXhEWV/j1Ov0AEXEdWcEMpqsnIwLskApvQAGpsIVbdCUOVVYhEQKTCb4kSSVIhmTiTJJEs2qhzdA8VMDJQh3irHYlOkjREGQNtDtq0EqyRFzMPWDERl++FEKCyVWCuZEgJFQC1JqFO+lOPbwFhRyPh+l0v1xi3bzRtrSgbuSgcPR2xXaDwzt7oDeHuokxsaqxhH77mxHm8rjF3pEDQFi4h4KuOxDgaglOO6x1q0RIOuTxkA9b2+a6mKALEYE1U1IuAwmrSjiZCZCgr110nlkVd69LOmYJo22NDy9x2XHPmKhZNPe9DbuygBlsjl63vfJL183wgljJZ/YWsW7OREWZidQIQmABMRo6x0yRhA/3kyZxTgH++LtPP/7u6d13dvtuz+nwq9/88vD5ZXi81HXdlrl73U06pFFujdezCDCBBbYvn2vyuRoEerrXaL5fwrtBAgIwQKDAl+6BYCJnMfd2tQyJaMrDMBhF9OocTsSCq/8CmkiIhBDXOD0FDaBUa/UAKUtm8k5m/nKJ5w3DSCl5825hlIwFAAV5qHfqRtVod17BG1AJNXwzCCEDzJAvzZYiqDlFUAsE6DAoDwkm4bR+2tbFxuNZ83h8d5rujrv5br5rCLWtozVjaNBoHq06Xde14WZLpNbKCnFNSRzYklmzrjAnzpSY2kIeTJLA3rS5GRMxJycL6TXo87IAGIcDk4U0V0AJKl2TMDM4mKEFrL02MUs+J3jBnhvsbz/G84qFYUzT16E33rcwk6nkksmdLIh28gLP7mlp/nFuhjBCEHISBJYgNhpImAgdCKRBSQSh1vn5aVft91+dxqnc3r8hKmvnx0+Pa8/ljL7ved9a3d2bCzwXDwmTAXa8sRLt3i8R+2ZPetK7f/JOBtXrgAeJEHeGM1ivWCEhiEiIFOzBTlAOEDiYW7O1tpLSmAroamilEHIRZyViJwYEkoLEu3F0plXDJHYxix/+3j4+cbohHbBNqAm9hTlPmtLo3SKMkCgUoRHavL40A4GVGKTCHth7MJCuATQWTCgszHqd6LbVmO3VO8qj3pxuczn9+cen88PSadnbkNAVnc0QFspRUhiDKAVOgw1e7/rFoobMeZq++vaYDkX/9n991Iz3303DTfnpPO+9SUlc9PLcTBysxMEeyliXum/1MJbDMNKyRp+VIaKGaMQspFl5GMbbWzj63OO6E3Oj/RNLvzs+jbIPfz6n2Pnnn+i80etnKsU7x3wW3CmmQApJIRxFbB94n6R3Pa/HrN9ovOz7h/NFiCYVFh5LBnEjJibWBOG1h4QfhqTCIkxMD4/Lw2V/976cbuzu67s3333bem6Wo3avPSXWzIMaJePWkp8n2d6UJ+679mcf5ObrG7q50fIGMuif//YynuTbv3w9HMk5mvdBMwtB1ZhJlSmQjOEdvvQ28pjH0XvrHExEJCAz8BUU4JzKYfIW+7zCQ0CAob2w7wd+mGhLD3+Wuuh548X49QpN3Sbbu8jIfAMIWEIo2GVMPBWeigzToHgltSPW5kLIoEScVYN5dQRTEnFm8xD4SShlyZqI6Kd5WbuVw8xZv/32m1dfv7+cbblYXaSSqEA0wI11L2EHupxkfp8+R+w7XiJP/v6tH4813wQPWudH5nQ+T400naZJxPbaquVhAGSv3npnJREaq4SlpDBrQphKApOjOzPpUUcZbkrWxN29dptn8jiKJrHTUEuqh3EZsOTPq85bisri1ANbAz5TqpruTW9du8NgNaxqxvDmqOveESGi43gr/BulWtv6sgVzDydQKgksmhIREzMzW4vqlqdBUnr7+uSiHHx+qOX02AJluD/e3MzUWzSfe6t9yNvElynOt/XD6NuNvRgCh7SO40e8aX637SfXon19aZoul3tPRaeiSV5+br15ykUkV5t7paKUhIdBYKIMt84UKUkHKnpwQpq4aDkMiYg80HpfV0WUKQ9ip7GX3Ma8Fl/TuullT95ZIrphp8ATpSplFm2QHrDwClslp+E4yudsAJhF87FoOebLvP1p7V/M4AhJyiJ8XbiJEMi6wzxGFco3t6/TOHz6/DxftvRw7rB335wOx7Fao6axLr111XrPy4Tzq/4pWzv43kTrOC1leMDd6ndrO7hn/eW0U4r1qTbn21PWIUm6uAJuFpFTDj9omHgtmZVSeInIhuSUjSiIOadhnIZJxlHZDJdVvN5OpMA49CTdbavr+vx5SfsSP/Q8O2qkcDhjhL24DV7d9tx94kDu22pr8wExctby5v1X87p8Pj8aURdQodu3r8IDESByUWLOTCxI+eoQZAK3IG8u2x6I43E4nkYqxU3bjm2xfa77ZRPbb4vfar2heaBtIJMsrje7Hh7K+/N0vx2+tXIYxhGs+otxbxp/fqq96elm4IElcSjQndyzZkC4ztR9yIyS95r3OgSFiwfDBZpzORzKSMPI2Dfru0S/GVnhYzFCN9u8ruc/LjIv8nMbquVwpqAI7PCL22SNbIfBiJDbjnZu6ARoTvnNuzfx+enD57MxdWUuelsG92hbc49qQYgsIYySmURCS5C0jWr1vO4Ufvf2fjxNl4atU9tpW32b635ZhOpN8RutNzRnWgsZUvHj7S53j+UvXqa77fANSrkZCjOpPvwBeSpf/YIgL5UWJi4jiJRf0Ho19mBON8wZ1AHrniSSB0WQZuhAOek45MRdtt23zdc5em/bRm7LeUc0q0/U9zS3tPsAAnNlMAeOiqPM46s93V3S+y2/Ext5tjAlndzJ14gOTTQM+ebmtsF27d1t2Tc4SsoEjMxf7KhE4ASSpBOxDiIIzplYyIl6QFIpKSklbpDW0r6wzKov7Gtr3arscmpye0m/epbbP8u3O8beRcLQnkDQ9NNvabwd/tF/gdCnnR10Nx7KmBItvEet6sbCdxxAbBFVvyTQS5DmAx9uuAiOClSPly3WxZaL1bavi/W+zxe3VrdHeBtrG9xvQSR0VGYFblPcpufp7Zzfb+UXtXyTekuXLpFUT2a11woJTTxO5f7u1e59xr7u+8u8M9GYkwinkgKxdvO4yiiS00E1F81MbNiCzEEtIHnQdEicuUP3mrZZ0znHs/jcrJlLlbuLvvuQ/6Mz3/xJ3hPxoRm1ivpA0fVYHzv1l49/R/sFb/7SytHCtiCRwtrSICC2JmHsLhFJhaeRgjlEUvZSQnuNdfF1bk+f+7bVZe2tb1t1MzeEIxEL85RlCFBxJ15GbpnXd9/Um5sPp786l/eHw9vhMOpe0eZwNzMHnJMUlom5ofcLCGMehCliDDNqxgFWBVPKdE3oI1BikusP5OAs1zDDYNdMuQi12tYe/cJ0YdpA5qI7nyrlGdOcv3opdxsGcQzRv7bLgO3WnyW6vtp/av18+f3/lu7ep7/5ro9vzpVab0XHFFYmzpnntex7Mhvc6zjyMBIpcSJC49ji0uL80C/n9eOPrbV13bvZsu+ISA4GjSwJcXel5zK6xvk+0Zg//PqvX26//T39zQPe/9UtfXuL/PiAdjaDNTLNkQYeU7kfZLVad8n5OJyC8vHY67Y/fTwjIDlRStAMkDSjCA1mChVngRwTZepCzpYLH46pPix1XqM/CD0x7UTNOO96WuT4UN7Mev9Q3rpR3nDj9Tf984T15D9zdB3fe0J7hc+b4+nx455KPhyQC9nBmcg3RkulgCUoB0lOnjSIDOjRNqtLLIsvi+17XKN+mASUE0cEWzCYOIOkK7P4OnrLhFf3Ph0+Tb88p2+WfnAn8ZfB1uI/lfjYkDuS+VQ7czCE85Tv3hy7odVK4joegDweOECMRNAyZBAFdngMmpiZNEEYWVA450SiAavLZVvO9TLD5xDr4Oalo1SbNgy1ZTcqtorbYV9veb73P5VYS32iMD39dUSr5fs/VH/A97+dX3r767+R00R8733S+CC0DAklhIZMhbjt3PboLdratrk/P9nlbM+P3ircQeBEFCyiHtHNAKI0QdCKucJumYa0vf8P2vTqj/k/fea30R3dS//p1D8U/33GD0vc9ritVi892OWYZLwbv/7Hb86Py/e/+6xDPr261wLy3cxrqxx8dziwYA2D+fEwqmilZMR9Ei80Hg455+35fHk5r48P++NzHpFGapF2S9WnJY7dhq0PAA7xdPL1l/3jCc/f8L8X221ew139MQLQm4D0Y/nArPP+C1sGCEXKehzT6N7UuyMDyvBrOndHr9x36RtFI3JnUFYKt0CER9B13CYKSUFCVjiU6HakIdd8X+XWdsC3wz6Xvh2XH4v8UNpDiktrVBfP4zAcByRdu4EoHYaxx93rozN7EEBlnNw6yDhRGYWVwgZ4lHFk1rojHCSZVbqFbXVb1nZ56V6pwJSDuCG1GIwzODEoR1P0jHbEMsXzyC85d3ELj4jQ9tugkdI/Rb5p7/zfbfT9fP6l76W/O8UwlvvXo57issZWW5CBInp0C6u+zrpfqL2Eb6YWAsu5IyIkKK4+e00OgRUK5p4naI7XX1Eel3i3x2ifGy+f3+P7N/Twlv6f0/p9ll1l9/mlfR74V3f53f1G9HmtU5b7V7f5MI2HYVn6jz9vLHJ7dxPe5GXnhNN95iRlKnAqeqCQ+ee5d1OduJTL/Fy3df30qT0/DQcpt9IgFdJj7DhCMqdBzaZ+GcjvycZ4uffvR9mnU1NyPoKC9N+8IPf4zceYNserPY3b6bjRWNfBeopgasySWIK8R5iZd7ce1tE73IUQzNDsEea4hmUEuTNA0YUgiCQQ1ekGWoKPFqUt3tpOS9fVkj4nfuFlibZjqFK67DVdgusmvCMNlidm39wILiq50OEQzFKKhIUX5URpGCQnEgpnpQnOmqHeKTQMbdm3ZbHWgqK5u6GCG65ADVEEeydv4ruQga17n0MNfMRErbaPn6Kb/ouPeCP4H5/9uxv76p+tw1f6619f+t35o4+X0BmxBO4GGYYU8xrr3qzWvfK+0r6LmbJEKp1Sc1hHh5vsDuvYg9y5Q0jLKGU4vv6OdLqsua40//C8XXbdH4ut4/Qw5Bkvj60t5XWXu14edvtAePeZ6Od2+vbw9pvL/PzzTz8MQa+yTol/MZ0QRBZuNPBEWU53b6iUjiFCsKdoNG2LpLb50ua6fHp+efqkqUmKF2/7Gh1sIA1KAfGqtiWqhWbmqMlWxM9xO8RY+y/s6eXD//Kv+2XR+v6vN8Rz3p+K3cwrP3Z8/kl6KYeDpdwYwXqNuzB3t07RBc5MrMowMo2IoHCGC4GMFEQmQuCAEinr8chaIgZvaXnxbfX9Utuyq1dG64Et5FzZV5IjjZXIIoX180v/449EN8O34sN4urmX1mPdCJBwArGQgzpnogQZWIesU4TsG7fu8znWl77w0rAsz+s21zSahFdGu2pquOaBdI5QD4Zffco1opI+86SY9u22r/zzdrJd9P6/+xeT1z+ef7/Xh+H7f3X3h5/GP/3Pcjoe/8v/Yfz6L/Pxbi/DPNu5tdgbtlncJ3UZROjG1t1cOmK36EyWxMWkVFWXg3OSfLzlVPL4yl0efqjLpX//d5/nyxbbTF6HQ+Vkzz7OPnx8eZTn+Z+k/SShvaccz7/9w/l///H03/L9f/Zf3x3ffv31P54fP/30u/+b9pa3VZjLNBpJjbuIEvIGeTzd3EbI+af55XH//b9bHz88vdj/W+MpdAFXvgkeESVH0kF45JC2694Sp0EyR4R7S9gTn+X4+/wXa58ePn7Vny57/dn7qre/ep3r/rg9UK2LHyYf0vOG3eqffuj7WF95ne5Wa6sHt2CP3BrvDVvQBq6GThKizGDWpC7mSUhDxImU+hGeWsu9Y3lqy6X2bfdaFc5EQiTMxuwEyJF0n/vLOlvxKMV1sbyu/Omz/e4P/Oor+eakrFomio23KgxRcqe6ijeJXTRJ7uwWHz48PH64PHx+uDyfK63OlYagxBFkAIUAQg6GX3fYHOAgDhIQQEYkrKQZUuxUWOLtX3wtddf/+J9N+4P8n/9e+TH9o8MvBxrx49/p/PnD//U/XTBt3/037c1/+Pyr0/JmGjWKyOF5nj49lLPzk6tmLeNQ0nS8bUmXqRhH0wYKgvuu9cOx7fTwc9v3/dPLh2YLZDuQT2NJksZsqrTkseXUbifP332Y/356+tO7u+3wFW7cpost/8e//fzb7/N/9U8P//yfk/Drt7/25Wx9Y6Iy5lb5pz/ETiy3LLd812xbln/5L//Vn3/7/a2jEL27p5uRKBWMshVpSejamd2pV4khcZLQMBHoyAMxTilKSesprVMu3xxeD3f//d0vb5h0OLJvtAfCqHNyzt7hu7X1pdre7uaW9rZOtYUSVGAe3lo0x+4IYQWChMRZmTUkWALXLM4QNI0dfa5197a25j0NRhpyja/6kh7ETuySTaVHao09CErMpATatn55kOdz9E6cRTOJfsk8IwKot+iA96uFKmrzl/Pl6ek558Qq8MxQIr4mzIIEV8AIflVCiejKAl3hJwYY1+oKTZQmHg76+qvjrfL/B+c/S+cKZW5kc3RyZWFtCmVuZG9iago2MyAwIG9iagoxODMyMQplbmRvYmoKMTkgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSAvRGV2aWNlUkdCCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDMgL0NvbHVtbnMgOTkgL1ByZWRpY3RvciAxMCA+PiAvRmlsdGVyIC9GbGF0ZURlY29kZQovSGVpZ2h0IDk5IC9MZW5ndGggNjQgMCBSIC9TdWJ0eXBlIC9JbWFnZSAvVHlwZSAvWE9iamVjdCAvV2lkdGggOTkgPj4Kc3RyZWFtCnicJLnJrq5beqX1VnPOr/qLVe3i7L3POREnIlwX2M7CCSmUiYSQlQg6iA5CINGgQ4t7QFwBDTo0kVC2MhENlAIlCSaclo3TDkd1Ik65q7XX+tf6q6+Y1fvSCGlcw9B4noH/3V/+12ZWlwil+nO2xb74Kzk9kDUtOB4ulqYr7SX5FW62YbX2PU49zde0PJPZqfPq88+X+V8e7ABwi2w10MJN9U8zeNNVVQfj4BLK+zLMtTmcvpfTBvc/oHjxkV6toNusl7bNNjxAcz56ODu8I75nqVNfzms/NeHc0cR48HHW4z7nuh/T54Rv2vC/95fxe/+wdVdD/f7vTKH9N6WMYGvPjqxzZ+ZyCOvIjeBThlU+pDqV/nLVbfq9f7X3r/7yf8x/+t8nLP8X5f/536P3/y1/fuX1xYD0HQ//4dZuXpZf/yeJ+t1ZiqKAKgEwt4TgQzUz12T2VrRo0rqUgqVERw1pZTBh9A5UoKIukNWWDEvBqogIDREiCWEAaM2cqVBhShAWkGh9ssagAQzCyGJcK1o2TTWnEksFPVc8ZhjZZqo2V1syJ9IkUIWBgYw8UGWiBqErdBF1OpzUO3CjqqpjDAROzQE4EAFqwBE4D8IoBUsl7FFa9GfgqmA6gT10Tby42FzJ0TsQQWwBN2BoVrLujyZAcsXMwuPJSffR1R+2frvC1rKO8/+Hmw8f/vr9eHdOzlig+fTKP1k5WHVh27f4ssG2vA0x6Ztz/PwB7k32xp0Pv91Q4/kimKA1WBVPI8/qv8w3o7Z35abUZgvbQP56GzqrQ3x0BdPxcXmY3qk+qH0N/g34zDFzXeVpmw9dlbV6x30bLqn3zbZhXqn/jRg/ubt9EZfbH/6Lf9H25Y8+LMM1vfqtjgbUZSawLV8FaqqugJq1u254sLCzemrbp0330b9cmp9PMI8/1Pmf/vEffO+/+k/+o6fDDz/b/khKkZEgQ12S3t1O/8//Zlcfr/7T/xI2F5IPCZ2DjSPXds0lehjWw7Ac9wJLLbVAAcQzae/y5OokaCAGGEGXqg9Z7yKcEJWRkFrGFrVlY0oiqfIJw2j+sV6N2h71UjX02jkVRCWo1TKoxTSXeXkstKt0B3aHZlxNsmTtc8kmRQt5qhKVzMSZsIa2Ghf3LGY7noeYl/O9MdZ2NuewVkM0n8WjA3SkvGHs0GBa4HBuwjm4cb2kbpm7+LbVXzxZP/uNHzzpV9v2guBM9hZtBDtbGdP0+g5i648zcic/+acfqHFf/f6/Gq4u/uFv//Hl6uIHT5+8WrXXZ3642f/ym3T/WMv5KeN2n6x5P+2mt8P4nh73tLtviDoRDl62XWE33vmqNCWewb+n7RnDl3wzUziGi0oCgKwo5zqlkg6TW0o6a00Q1WVb71o+BZp6wA5EEkkKI7izcXK6+DmW86kYhiJjZH5wjsT6vqyH1cfP/l3V8e7+9e44z56aFXUrE4/7hzPLQu7MTMPmXe+R//mf0Z//zH23kZf+76yffH91/cNvfnFDd3+wHa++KyLBZJU/X87/04KIfCWPe/2LL8fl66/0/n8AF+T8PmOr8fZ+rvk8jUPTNSKuafq+WYaWhCtUKi3Eth7nmmI5nPNhh48j3kXuvV4EcB5cABVYXMp8PvsRwg6HI7fvwzZKiDgAoafoVHNSTjqOmZcyj1AyLNxm8gfi0VFtCrQVRVkUi0I0VaxEWlJOi4HWTIk4SpBg2KsT23TbXNzD6a1WmA8Kip6ICmVVlcKiyqjOoCq+e0O//JLEkOwyP7/EZ7f57ju4PLHZ5XPVMsZm2cH+C5PGDf0wl3ymZUpx/vwLA5SrHzyrZofXtdxOP+6+eHO1ayhhzX/7k7d3bw+PU1+sWSEPxNfn6cnj7iakq8uGrgJ/7xJdQ35YEp0mUmsLbCOGh2a9kH8Im4UEnXdgPi9kyZd7rolPApkzrWvbyvpCuFERYA5DqiHPdkywmC21LhMLdZ6FHGmTdeXUylJTZPLOrWNdPrx5g7g8NCf22m1baQbXdSRMmcmwY3MGYIQKUgq57K/Jf6by24V/veBH7+D5w++8Tc/D4v/fPz39N6//Jrh/1n98ug8P95tX3139yd9/1Yfjv/Xv/8V4e/ybf/Z2OWYJ27Zktf1cZt3vx4wwBCPT/SnuD7Fgx0QNwYA2lDTEuQ01tEJeuBHFtvAqn2E8W4GuwGbG5iDbyH72QyZCVrbic6YafTpxTVICqQBvDD33HfqehJCROuBgmACLWlVVLYzREwFmNSJDUMwKtSApUVdLitNRYS5l7xtqbm4keCOvIFrYFNErA6ghKGrBUgEb4jXQVumiwtWIT6bLrW07mPa3x7/Y3bUf/9XmDw5pdZefHGjzBxefPFnvnq++lJWRB8Aq0wWTulfDVtB3m0sXunZ1wexefu9qezmGeXE5P8PzFo7X/XEjqQkCYTXONB44Q5dgFc2duqaiS9CnyseoFWItBU1X9cxWLmBykIJ/FKz95lqQs6panus+2TQXZ4VNZ1tSG6BpBgMxa6ryqMKgDIpRm/OBktK55OJPi6rQ5vKV2hITphrfvt+RYPO4FnFbbjzzqQcvOPlQhO9Pl6ve/9py/bJd04cjxAQPAI8K10j/OQR2Gx4umt+8Xv1n+m3z4U/9G5j/l39++2x9+nc+O5b9+fPFFkUpDTqgVd8HaqjpSFrxWyfteouepvXpronn52m8KNPQLn1XjUXFxUjHyBlCspA4zL4vKAlDLpCyqalpQc0+nTzkjSyeSpAobEMPzBSrFq11XiwngoBVEBbUJEFInAIo0AJUgJSrcS1LTBA5Vqc1R52TRwyt32j1sTaqdRwPhharE6nIFIg5knd49C4JV26PqX+e+8gNniaeAJ2BGDZgv4vs2IemDTer/rfPvaPPbTzf/eTn3z6ulxd+gSndF0iGEqQwaIKFhV5eX3bNVhdfxxq++Abevb+Jd9tyvuzSOhQqFUadZD3y6qTdIWyAW3JDMYhalaA6JKVeRABaJDaR0jHWnj2TSbtChHFsLYtpNiidQOegc1wUjw3NDvcGx2Lsg4Tggh+axqSqy26aahNhAQwVKvmLUDMfz6PVhEBkjmsLBGGzcs434h3iMSdN9VjiAvWXhxy1/u2HZ9eH3/7H/NO/SxO/rrQt8FsEf4jQrWH18Su++o+dff093f4TePzi8ev/9c/P57s/Pd5Znve3sRYVoYoAFXLluuq6VbeappyW6O929vbdqnzY2nl9BT1DqVgRErej4CRhdivxwTetlVLjoqLmlQwCgQfcIooxqydQZkYG6tgM4xlKBrKMoF0ojq0lA4PQNXPwaSmnqETCwtx4XrVFSvLMnC2ziqoCKEkvuuASE2JuiNiEsgcCaYNz3jkRhPEYY62nUhaz18fyOOvb3aY7fvQZv/9D8nDI+N7gI4KOYOhgfX2Bw++gDtf6Idhbnd7pt+n88NX9pDUtsZqpuEdEZNdcUhn2X58jJvr5l7Tff+f0RdM8XrZT54rbOumllFBLsPYjaF+wuqDBMQaOjtQ5qwzZkVXSamQYKy5KOfeGqA3Uqg93Uyw2nTe1ei/CBFfTXQfjdb0fdOzDTe9EAwWkJWtMMR/T8sVpwvnI54veXV8PMc6P+7PrwvZFVzICJ6qyIkPLqUrVGlNBq+gYhfqWGnBuialUvXy/skMtV1Cf3Q2f/bQ7XJZvL8pr+Wwr7lrTVdm90LiR81fPgv3jdT6/evx7/8Vv392P//qv7w/705tf/CynKHxGYiZeofbT3VLy2H/+i7D78HS1vwwxrIt0VlfeWoalrbHT/hKGJ5RVojoqnrKQObaCGIVqxkQA1bJirTTmpiLlRqLWr47LnHTKvVrbQO+Y5jqtNHZl6XTf6jqw5pYp0HFvxymVh5LelwnOR9z3Ly6655cVyjTVPkB3EWrBFI0qbQQISlUrudx/GGtRYEZHfvAgTMcxp5ibx+DGk//1xb08XfKbDeP5R+35R/7pC5BPNPV13Op5ovu7i026WS96rfEfvfrmfXo/Xty+e9h9+wYqCRwaRTeflsr2yZO46fTm96wtctVIKwUTY4Uq14k2R1zvoR/zxThJTkuKS5FqvsRaxpQVg5JYtnLKiMyhSSrvFyoo1ftksEt5yTU7UfCPtxHmeu51CPLiu580Vy+//urx/pdf9Z9ct88vll2cd/Vwe7p/e+BtuHqyulmvn11ve3TxKnWb4XrVgtLanKai+yMYur6vpSwPKZfsj8gI8WyF9DiFWJibeePG6+3fSP8527Ov8er9sPb9H7/cbj4NV8FL03vsselOlu/1q78qvonb56Tu1ac3XXDx50+iG8XOAYBSTuB0dZ2uG335woaWRZiAyy3pCUvZ5vrkRJtHWM05zEo1WVmShkpUxiXtThOiEg2W1I4TOfFbXsweEkUESJQNDqkstVrHBu54f8qPaXyq/Urikxv/Wfv2b//sxz96+5k0r1bbtM/LbjnfPz7evb/wT26a68t+uNoOvsq4ye26uegaBKri85Qf95MBDq3Umo9yZKhuRKxQ2RLCObqlykVz7N3pKrxfN8vefv0d1rH9dGq+87u9X/lmxeZc5ZxDL+XuHH/5I223WdZk62fPLxuU8/oyQpAC4oS/91G/7v2L77ptX9042/6xxrmWcr5tl1N4ncN98Xe5POYzyBHZoCyQZ3E2NpYVU0EB9Rhdya2dqILEY3FNePLinOtPvn03ldK06hypnKrlyQ61JiFjwcNS3x7zY3Sjrqbcz7EnDt3Qb9dYT3B1s/3o43a9gXg+WqrrXrwQnTOztOwS6riAqrnMYq4PLWZ7/frbaZwW4oqkfgB2GTnqRs8dQLl0co2nuXlcmn44tfvHLkHOGBs6rGRnc67t8yW73c/3MyZ2Hvfnw3Sa5kmKSRD57OP++jK8+LRpQ9afLHZ4LA9qE5w+9KeT/0X2Xxf/COUAsZepk5m1cM0kSB6BA/oewZwtraYrOLFWihFl9fzm+cNU/ubP3i5zbX+wRucKn4vOYo9ZE9PA4g+Lvj+WffKjDnMelqVDhn4FMDOv6fqm++jjVhji+QCZ151nIhqLeBxWbUT1i2kFn9iYutDUlN88vL/f3VckINpcPmvaIeElW1dPABkunW3pFJvHFEKFfo9prstST6v2JNsdlgLN8zinh58/Zp75iYfjeJhPp2WWoWn7hode+7DU929iHfX1aAesc1Mzfz117+fmrfEBLNYJdWSMgaNVswxITshXpFJyZQVvWDKnJJg9nIStu440woV9oJJvDBjCfhqXYqONXvSqwaG1fJrvq3YeP3l1vVk5tMTgmFzjg/aDIKVTUkQzYnNiolqWw5K5wIHzFNPDnFM8nKJinXVe0kJWgiMKnkSePOv79cCGDEWHbm7CMZiRgSrkB5bJuTNAHG2ap+PucNvBdEmP+Rj7dID1Knz6dJO6qfzmvFRZtcPQwWZVhzbVz39cDg/6NtpIiboM/vOx/+XYnB0vAlhGLPfCpXElV05Z0InjYKa5Js8IviAVWpLA3NpDcPX66RxOemVvfE6fQeOs+WY8nVKZrcyCz9owdJD2+9v7+bp5/uK7T8kj1cgkjgSahtYmlNJhKoolofNBel8XSreFQIqHuqR4d57n6e3xNkPmrVUspKV15IfgmvD81bC5Xi3HkmPRIYztBlqLBEGnJt4JS+tkhnKucTwddt++u3bLr6/ONM+ruAvu8voHv1b96tl3Pq0qcr2itjHGBcoST1YPrLiuAQ/JTYVPQJFBcUatOR3LPPaeiuNcLUIWJMf9nJf9Mhff9hdXeYzlXnumZlut62osGOuT4IeWLgSEbXLUApXBL44ue993voReza2BWyglWYkmLMg+zfE0jcJlkQJqWJQlurBYwvpIaEwUNOXpvEtpeYyPRnrdbtvgXrZPcs2HJRe1NMf5MNbFoICD3EiBgrGiAVaTeUz7D6cxLo/zuJyn0+6MQ0lN8bmElGh3TP/6p7C5HD5bm2d5ccHeFwcnzfO8s7RzZXVV+/DNkvaxPqAsDsyOpDXNj+PxOKyHEvqY62S5IQ5uW9L+dryfN+vu6QvcTW+nfNmWZ5ddWLkyJZzqx22XtW7Dr/ieZpHm0s1FNtvWr1pgB6gum5R0usvxsWpg8H45jbv9gSbgI5jVatGwKC1QCBcxxVzZasF4rCXupzsX+MVws972H28vgPSvf/r68TDOp8lSdkYC1EBc+TxOPC+UjBn89Hicdrf76fTh9FhrTTnDNcStSUx+XvA0Tt/culfPL37rN/gyyLCOBHm5P8a8jJGyhahUFBNzdYixCCiSoWgJYm3XNI0LPrTu+qnY0hz2p1kLN31S9/52toclHeKU7flZBsUDTnWqj0bKSAmYYC4UFaOmpCmOB8M0l5S1uMqsOO3Lci5uzk6m/Xk8xhNWpEoKtVpCriwRFbGyKRYlgIoUK6eM1czGNNECNDMQ5KqKFPphWLUNkEPsewlS5hL1rDHFEtNhf/e4uz3F8XE61Kq5Vg/4F1/R81D/8KYvU3r3xbHpzqv7z9kGubwZ6xIPf/Mhn5ZpHIo1Y5FsMAkXJJonb4v3yI5k8A03wyo0g3/y7PKjV9df/ej41//qQ+yDf3IxFXnzs2M5TMv7cTuwPN32TrevHyDrVAmZ4oxSYEHJpqd8XHKih+xP7v1xOs7JUcvo01zSUtEIleaap5KAGFiqaYbsnQ5tRQNQAAAFBAByoKgzFQZ8mPYLzosKEsy5FpTV9dX1zcVKsCFkLoTpvJzrw3R4PD/uz7eH29cPb5eyTPmsAGp2u5Mv34Xf+7T9/T+5nO6nf/Nnu6HuPvnq/3ZHEbCTaj7PFicG15h3FXPVwkiewJM5MgWqCuacgF+W9OHdtGpD+Ghb07Q/PxQbat/mnON00jFZLVpsXhJWYBAsNpmhoi/AZpNq0rqf8lJ+ZTLqHGMqmZxjFsVSoTAxMRMaIwCCsYGpWWUyJgMAQzIEZAQAUzBCcsKEgIiAjffC2LhsqoJGYLVCqmBLAcuxqDKCGDl1nrsQkGoxrgpZrRqMqZ7NHdevzE7Xrz70bYVDqrWI6ruS4XYP8ylcvtpKG8rhTU5ToNAKn0WL4MFwytQ0Xbte377+6sObrzcEzSeb5XD/9e2X0t8MtpqXcXp4h8rOBit8PJ6il9QMpjhpBrW4AKEepxhL+TBOscTtXINwqrFa9c6z88o58dK6xju2AlbYEIzUrKpWYQtiipRRgAA9GVitZhV9bgSRiYX5cr1qvJyP8xlywMKWl4XGAum85BhTseIZe/IAawqGF+dZeMyx2JStaN3HdE/D24/+/ubm4bfOr0M849slmQkYqlkstBRUMIRKWlmLR2LQFjSjnXO1aq6hxntHjpSxACSjao5RCJiAEQiAED2zE2JTsgqgYFDKAgoWDBCJjQyIGElcE4J3kK1qblrXdm5OEaM5R23rIecSixEYoSlpRRESLwZoIMCIHg2s1mIFoGMh9B1Ly9IE8Y6JGcgTBoLqqTKVJFCUxRAhgbCyVBdKkzH56rEYkMVSUq2xwNuHmAUunz3jeKoPd1aLGLiqcFjyONOTkkmrLwvnOEDxRAWqBzsvdpytX8v1sB7DsKdestez+Urb1lHrXMCq7J0XcivfdsFaWhyqs1SqxvkBVLnfeJa2Ja7QlgaLv7y5XK2a8fSQ03x11W+GIZZ4HqEfwvXl+jDNdZyMUJmtkpXqxLftygyoKgn6gcFqTDNqDQMJ4+rat60PV2snXlxwmAZH24ZMvJIzpiLFt0AN6EPKYdKWoPUwQvILZIOopyWnCudR//Sv3nz6ovnuP/i7kA/Lj38IyyQlUklWq6kqkQojmGlV7px33C4AVTceksLgqXHYBbdqGyeuFEDEphHwwFSEi3PgyBqvjbPAIASOCAk8EyB4Me8MAEVJRuSKXRtWQ1ujWMG28cPQBs+IFhoaNlKFM6GhKLmaoSzZeWk6p2qQKgl2rTMjsgWUnAIzIiAAsRNxjpgRSZxzwRdCAyUyQhNSYXNSnUAVKIzOc+gCxGIltoIr71rEOi554qWuxVrGDghkvJdprGkuNVvb2jDA4zuNWf26HdYhSKxj6Vt5mZgvPQ2qV21Yrtd9PyYEcReXTWUoclSf1kMJZFft3Dm8aIEFUVwlKP0KrW4HCh6g8cVwd5pqtqdX62fPt7gcYBlvLlYfvXiyu3t8D+Xiil/9oNue6/Y4qTaqqzgup0dzXehvupp13s8u8MWTXrWcd3PNVbMDIC1SM/smtG3jnDBL2Kybq8vzcip5Qcoea4NLwFR5NldFFEmx97TaluMpp2NLdMk9BZHdHrzdfXg2Uu/KU7RFUD1pdYhKRgzAYE5U3K+ClBkgCCgiSgVOQwd169uGwcAJDZ1PyDOpE2g9NAyrYK2D1iMRFDRDYCEwAwYQkJYJuG24qq1Wbr0Oq7UvybWtc0GaNnR92/ah7ZyaqPl5xNM+aVYnXojBjAA8iyNiAAQAJEAwEAAUQAZwbI71V/qVmcQLZoIKiEgIzCiMjtmxc0zC6Bi8U4pCHpCQgIxQc6GiDj2pxRktoTR0DZIvm1PERAFrw7pZq2tnPzA6LjPm0ngIYtCeQMrqGb542oEKVN0O/tOXV8dotyN4p62XQejjHoJA66GaPcZkhBZAgaYAteXrm06cezkvac6ffqd//mpo/Pb4aMO2C53cPL8qis9fbC+uumGFl5F/8ePjF3/9elj1z55fV6rLeXbAG+oZlOZYVJfqimHVjgFWlAaxTUhdsKaOUzqHAGHlnboEngWYIQTq+lCSqzFArqWpFBbqR5NkyVMiP7sE+LikJsPT7hrj+MXXKZ1HyeNSlkxWmaAYJaWCrjJWcgpCxEhMTtCLEZgVZiHmmrAUc0Stc1m1cbUqOaJOsBFzBISoAICGBC6gIfgWfUM+iHMy9L4QOqxYUuOkdi0qxikzSt8OAlKmSsRNMxDOcc5da8FJRkslI6AjQoCSawVj8YZoMxFYR7VnDTg7KIFyQ1UYmImIGZkB2FQQHYsjERAmIuJf1ZaKL44FuFGxipAyavZcAQukBDHJuz//y2JYkjfx92dH0D5mzFqvwFUi1w/Cgk2HLuQSy5Rcg0wMSlCgMd6wd0EJigEqVGfWmJrRmCkDZjIUfLJl5/HyqQ+NbDrP6NbP13Up9uF+v7t3m4uL1fPXvzzd377r1hdPNi/Lh903X76/+e5Hz3/tM8+Y09ee6OlFOy0l3h88931/FTV/OM7g3PbpR1Bw2u2Dpu83p21XLyGz8st22qxs7dEzNeQNodqEdempHYIvVFLFZI2gZykuDEsDc7MLjVysOh7T2zeHGqWht0Tjyu6TngXziYC9UHFSKlomA0ckqIDVCImYDdmAzQgNCYlYgBCYWI1RBKunqoAK6AxIUYGMHPxqZjEGr96DZ3BoVJVBA5EK2TzGWqTbSMsacz5N1K9bT/OxLudZlwJKCMgEzMZcmKuQMhs7YiXMQGSdQwRATV7jIKn31dGMSJ41CDIhAhIwIbMBmzKaIDpUj9WBMKARo7QgbZXWkIQ9p0pW2CLhmXBCiGhJvve9sRo/FpkBX1dbJrpsr7xwH9/LdHZQvMF0iqlmbtmFNnRDsxlqorqwnpcpjVCTaa2qSQGYqWlJfBu2iuStIFSPJ6o13aZiWGpm4C4EIhxv93menO8dkh937fxw4fD6ohzOO8K9nsPDG9L44eZJ6TenBG8g6OpZ41wr6440Pzs3nuy5e5ASU/xKLD7dQHdF3NdKDB3YLBWxVDRwhMQgTrEF7SkTnxvZOW4Nu9mtzuurCrSMqcNKXJpiV5w2fHL8pfIy47RgkpZLRcutMigvGUtpHLfeu2iUKwdiZlIERRIvwXFoOAQDNCV0lcSRGYszA1bHwhKCsVcXEEBV0ZRUUVUzmoKWiobkUIjIgAxIK2nxVFrOQZbAc3ApOENIJY5Medhg0xlyYuTGe3HeNWSKQ8GAdUWTYMx4FkzBeecZSJVYmSs7BVZDAAIwUIQKCMaknrPx3CAEg0oNC6PzKr1CRl6IJZB5KoCTYipkmUHmH020ck//hHVFhz/79nT48PxV3627FMGKdq8+6q7WLkLK5ruVa3vDDFDKOZecsXOeVkzQuisgQ1fJwFdL0R52WkuJMZrmsRQC6PzWs+/dqmG5vAyhpafXDVrizrOz8HF4frmWIXG+3Wx92z9JxAuM18+xf3pFwAKepXXhkoG9Va4xDEdvcUNnCrHeHBC18UhIydZJ2xOFvfgNrQIGVVXNc9RxsgtUNyhOJxne64S44Kl+hOIzK/EKrFT1jGnTSOdoSXVReLgYJl9kfiwOKLQGg7Zwrho7KV0wJSsI1AZeDSKqyaTrpRm0zrXOSApc0AkDk6B4RjYSRVVaci3VSrGsmquaagVDQnRE3rML4honjUPpAjEpmFnpGgzAhXPNlchJ63OttSbxddWwZdIZnFGHwgZOk1jsMTpYOpyQUvUZEBDRgKs1GbqITSRfTGoFNTXTXG3JUAFBkKQALx60Vc22bmAMKJ4dF7DKCBw8O6FUMSotvo21yp990D7m1c8eVhfuZuYNhDUdHPkp5TpCOiG1uH+9nHdxNZSuncln9IlcaLuVN2wUcqrLFOu85P1jjSkdz7lAiWyErhUQL70Xpi1jg/lKb5uqw3lxsfJg6CAvVAvqOaWlnBUnxQnmCeuicbaFcuI4hQzDDB6oQxcCrbZMnJ0ckKt0RXPNsSq6Gp/WZbM7fzricEd89LQ+L0U+OJiI0v2UXz+4TV5fuwHqtzYBa92G5OHOT9bZxq+fwynb/dljvvpkw1v37eN6MhmHpzGAPGTI0dI+GWhTRIACRoIFVaGCFqgZ0lTjMTc11UzQFYZCEih4NmAFrJaLWax2nHWOZX+qioQeRKQVRPLOCWNL1kBtYGoguTo6zFgYEWsWTWRRNWquLlaaQM+QI6QFFpkWOY1cjKKJqq81dNw6T6IUZhDDwKhWDQtw0aHo+pxXZxwWhMQw5+znOPhIlKdcHyeY1RXpFLwWDABeQC3m9FiBr0KNYxmXhULtN03t3CmGyXyRXpHlN39vHRxCDfOJaiZTrHGE6DmYrDyvWFa4/UT6az+sQzsEaVtuCKUB1+T5nE6PjitDhT7hwFbQFtVa0zIXkJHZ0BE5IbyR3FBZNyfHUcJCVHQCm4BozSGwNiLc+jXIgFgFlMMsofFxac+hpbKV6C32OrMzPyygppOqhLr5qBTZ55ysravfzO3mbaXRKrewYj0f3y7Hc/PJ1bDqPpzufvLN/ffzlW5fvfdfvi/r54Qve5zjNH51kKv+1SewO88f7t7xje9fPp3J7R7abO0anwM7uX7aMIKqxIhVyYCsFisRmCgweUQPYcOhl25NzYDSiDTOUICIqFoc0QwKkK/SICpiMcs1n2NWFavVGAsI2sppkNr0SWShkAAVFlMFFENmUk/kpF35ZlMxKaSmg663sFDXW+vSulWx7K0iKwWzDOWRgKis1zWHqa+xtupvsqxO8TiV7Nmcq8v+MKd9qQNyd17Gu8PuXLS44UTdB2165CIux5wPyQ1l3cKZS5pPpa7cehXVzTuu1mzaDZGXx34LhodCZNR14pxQWDs3mHdgXJVLzE3j3Crg/n1+d48XyJeInqihQNmtZ1Wv284qQgQrVEZRRd6QB+fFGwiXyKYDngSi4wNRxiGA83Z1jdZVvDToXHJYBLlnbkSnYLMQMxNWl4A5j6VMSAacoQVciZnDdm26Hcv39qX9y4POSZ6FIK7Ew7cpnZZDqbHuju+WOB4/SN+dvvzpl6fjNz/9+VfdDz+xEeji5WFXfvmYHS5h6KQP3BA4XEwze9g8swWX8UzG25V4EZlCbwolESle9r4J0nEACIVcJS7FMJbQNRx8nc/p9g2DgVdsAQkFAT0BtkBmVeriSzKtBL+ymyQuMCFKyWQl1IksUo2IGboWvAd3YbyFemHWYhKszOYEBGolLaAF1StCNeWackUiU18pEDhCEnC9lnU83JxK981s04LtmRsu+eGxLg/LLuWlPh4fzzHOD49Oyv3tfVzubz/cf/7L3eVgl/3FDPP9OK4b3w6evJAAMBSwwgzt2qqVODvAjqgRkvXH368KD4+WMuxKwlQ//8u7OL97/RBPc4VGQeBy6FdNMz++Ww73/+CV++OX3jXZd5EZSAwy6+zzwtPBnUC+xiY5vwwbH+jZ9tgGvdpkL2oWzbTGjRU8f76Oc/jlwg8179PdXCHHqeaoagpadSm6KKiCamZNrrN4afUa6g+g9B6u1gpe4zAdufsbyh9i+fIdlqpP5HYlk+6+xuXheFfHWe/G5ZzLrS5m/Hh6MKvvP/9xOp9/9wfPP/n+s/3d7vXrbz99ll888ahl/HBXzuNq1bZtSMVKBU/siVxTnEfpbp7lAgaao8b9sS7x61/eHu5PP9vtd1NMdalWnrbrrW+Py2lK4/Wu+4N9j2GWdiRR9GqzwQHqSPFeDtJ90z+b2+F87doWwtNz6cqFK+YV0MxQ514Xf/7l6rzzP9vT66V+iOOxpDo/1HQCjWCpWq6QKnBBUWwrrjqwK9RXVbuiW7LGg7U0P40PIX2xrh9U7/ZoVsdhL3KC8z3Mu/loxxlOs56yjnGfcsk1m9nh/bfT/d33+z9qX778cFxud7vrjbgQwOpyOGgsTeudd7lCreCQHJO4yo6k65p5yef7+/NxgfPBYvQ0rto0NBzVj7mmCtJ03K5qifNyHoHP6KxEmQ0bc15pC/TSQsTVyczJd9ebo1x9FX6Nwc7wTsv48NPXrix2WlKyfzNOD0k+3C3jFN4kf6ocoRaozqogDkF6QWIhCeqCuqZwF2XdGHSGnscSQm28XlxQ2/ir65UMn8nlMNHP0z7Vwk8c+iZZKFPwhYeZtjO7jLZ/MJi8awCYyBAN06L7XRofz3GfYJC2nTPsdmXKjXv2VIfVw13JCdrgncNkZzOS0PhSdN4fzrsTznvMyeHCTe08TcUly4rGoeF20HEfzWagEUQqtQWEDcFwZfQdQDWajTy/2g47vHhfPtWk033VcX/48ms5x/jufFrq/3Gavs58W2y2UNEbsvfEgiupDePguQnkgwsBrW2hG6J0s1t741adhLFuqK56ffGKms5dXHfoX5ZO9rn7KlrKdOkwhDL7LN4l33pe+UYSn5cplsVxL9RUnc0WLIueD2k6zvlUwHGgnOxxX4rzfP3CnDvsK1QMXpyDDLOqCc1nnmMXk5a8XZtjCABW7VgUEfpNk6TrNpvQbUI5hWnJ19eP37ku0ZU5D5ZhWvhk/kHN0ApQm9rNbsvyaX9Xu8Z1NzT3tZzScXzg/WGq+bzC4mXpXWUbP2ieah21pIlqJpXKObFf0DnCCXGS6qwE65wPbTtTfSe++PbZah1C0zbiNK/mb6ql339ynCo8vVo7z4xP0tLgWt0CfHQ5YnXr9ojDqm/aJk9cZn756fDRr62KDFD6F883sLpOUR9yYb9uNzdabTqcHeNmJeLMKFc0wXnkJXUpUS0v1tp11ncGAG/utUSL26F0Qddr69b+sPG7JV9d7b/zrBy1PJ7KefGP1UulRwBAA0DMjT4QySfdrsq2Ni9LutiXPB/Hu7rbj5qmGyyNjM4lq3aw8bHOO80nBWJELc2cAjOJEHuiSdAXbDIOzabFmfS9OAzNPGwouK4Rl+IqfyMWf/eGFnR2OVTP0N/EstLNJEvpH8kmzLQOA1096VebsOwgHfDFp/3zHwwCfTf3l8/WuL6Op/yQpxbXw+ZGx2V+f4QG+meBXY1UDKp0g7LpBZeIpXcQHOIMJdsy1WlRV6xRnJYS6+K4WW+fZtffLvpoQ2hfwXmy8+GC4dViIaX+OErg9hQx7P32J9qsytVBuN1cbHy/bXTwo/JtgyPa4ajjXOddme81jVYTIhtyyhWsMhsXoFqlVsyABamSx0ijw2l9eGzKHG9W+gffQRjn2x9+XeO06kPv+DjvEjOCgVqeUspKe8IF3QJtdXAuqSqMyon2b85fwNuHD8f7B5sayN/Ah0dZrHPgQbPVuSz7wqCYDGFRrQAyrM2DXkuJlFfexGM6QR1tPpfzXK6K9gbjnJZp8tJfXF9msTeTAm+su9nh6e1p9zHjH828OR6ff/1moPrsm4VCai6PNrT5O3e2vmm+/x+0btX2SxgLw4IPSb+6reNDOX8o863WAqZAjhAWq7kWIkYEliqpEBt5Kwtqmgu7WTbO+S++Xj69qZ8MDh6mn/6fP5d0+ju/t/Itp2hqjP4JUJPVFjN3ZIrgMnTq4BjTqXAFV/nhy2P+ejrm5RBtb3AGPFWZrQnmTZOWKc87J6A0A8mY2gooLr2DlFfTIcwpQEMk0fXFm3TU9Hm9blaboCaNkS5kkTeu9oroHDXdOVD2NG6Hu09vluOjWn+F83V4dKHKRTUBm49WIP/ib8mvr/srInL7e7ubbLzTZQ9QiCR4z0xD3zSNFzewtNV8VUfkmDw5Ik9t47erNuHmSDdGkl3IW1+vt2gZnCPE9knqenx6KLHS0PrIoTUeFc1EBY8RlgIJoNiv3lOUtglts6bO80Uz3PB27QuvGup71+AsslxtLPTYBFRHQaQCSYify6wXp0M5G9gzFXf0q6zsVzyUeHnVX142vbrZuExcF+6DdVWdBDdsH/uS2u3xyYvXv/t77eHDvr2aYPdd93P2S7M9Qaz05a4uh/zlKM361d/7t9fSh9uv7dtDfXxbpzNpRnHDamib5umz4eKikXbLYT2nZo4NAqIBOaQGh9ZdrcMEG64vI8jBOD5t8ssnJIBtEMXVd5b1SldvomZI61LE3Vg7qozo0ol2oxsTHwpMygVZicKm7y7Xq3XDm67SOtN1lxEXHHwe6AhhXN2YdNh1WB216Cqy0DJB1e661AaKy9U88KVKF0M/NfFk/39Lb9Lz23bkaUW31trNv3ub091zW1877XRiU1BQKpAYFAwQEkMkZgiJATPEgG8B36BKKtWkhohmAkohpRIpMyUqCxdZZTvtvNd5m3N8mrf5t3vv1UQEg5NfIRSTX8QTTwAV6Dq5CbiUWsB6wA4oVA2XpZ/noZy6JYTjWzsfHpcaHL9eNtuuezlwIJBPGCbj3044H6R9vwrjT17oQFKOQUsw3iHqx5/c3tysrq50HM0wGkioIl1gdwGIwYfO+lh3nS+YesqL4KEfbq/jBUCI10+3gy4cDsjOI1L7AI1YB2ZmEDGObBK6FnpOmaR5UA+rcRjGQQM1wNq02GJGBGxlOT3uxUtiac3vXp9pSKtP1hRA5PwIDcIX4IXmmLNH5E80Pj+Pl70W0Tfny+mna/hk54c5n481QR+xD7mEctwe7q8vr4b9eXiTLlN5e7gcFFp99nRs/bhdbfnmp1dwnuqv/9ymh1SgH8Z/9Ecv7z8d3r3pp4tjuJEQf/73Pv/yh9dBXgk9nE/9NIVzi2eNCa1D20q9jSWS9+Qt0Nyf8oj7l88oxQeEJHL7gxcrRUkziso1eXN/NCw6ggpgP5IOsvZBIelmZ8Oqcd+oV2UzOi55muZcyjzvmUOUri7Hd4+vh46fPR1zKd9+82686v7BT572axI7GgDQGqE53hUsWXoQEtWQK9h2R+uOh7OkJUSMAUMgCUIQwBNiEMBe23Y5Sa6zzsnEcH0u9dev83ZieR5iia0fgKAdqtscuQwJr0a8WUn2YCSXx+X9q33ii9Ayzb4sbXZdwCS6JE9eRpwjeY/emlFmnPdstXJ4y1083eNjKc3vv4I+UkRBgzLHprKntKBUF3Up5tV0vsxFrOJS4QzO4JxVZ22lcS7CHFpstlzqaXaNra5aoTZTTbYcHlBF2quGHfIfCpLDry5w592PYFhJzul4kRc/2qWPKaavg7zpBvbeZAg8RLfR2oZl6iHsavnk+GYqGuvisMPw5G7Kv/j16XZLq6u0CxhvbjGf9bsTSIk/Pq3H9tmteKY3p3Qu/Pq3795/VXuZEi/NuBlbGC2OcYfxhgaZr9M5gPdorWJ//h17vIfNVOWvDz23crycNtrgr2AE2o2JhZe4qhzeDP3EUjWo07Jobfp2vuyL5WaleWKJJKGPcUiK1FBIhFPX8rQc98tmfHJ1UzKXUyIvD9/8Ng0mp+01J+JNQoesx1I1rm117V2Yo5dVDFd96kWEJUTVZCiEgtagkjcik2gSnQOwMylyC0NzhLAeoafHlhpQBzuGENQZjIGdcBz9ausLWMgY0BlxlbgLgViQxFiM4WbQq1g2nDsq4s7u4B4AOm8rc4fwrGusbYttUMd+NLSp75BlkqGSnEOciZuCKbROTV0C92pRUQ0SSSSmwJzIAJs7kCLnIDV2MAZjXQLiahzCEJormsq3P/lZjBw+2YasR/uLnKfrz3Xzud78f2+uXh8+G/ovr3bX0I3Q4Rp54TZKi1DBL2ZzDHnclmFYxl3lE0771OWbZ6elhjI8R+a/aV1sOrQfBp037XWEfI2JBJ+9sK6v6z1Oi4kwsVxveNX36023GqNW1+qxXfp66rSMuoA6FDd0FhAD0mPrwucfrcFBpoUA4+qlc3ygpwXSUUNx2jfP5lguoDVSEWw3A90mSpgihoAUkHLNuS3WwKq32soyS6f9miK3rt67jC8/+Rg6q9JVV/nlt0/SEPCj5wPb/PyN0xFGJX4ccb+D49oPo/WJsgCQOagxIImU4lAWshoZEKBWb0rqwVxcDVRFFyIJITJgi9HAL0tfkVcYAqGkmgYcihBR6IMEGnvqY+vFO2juaq4RcqIavYmbIzghGkFicOyNVCRsOnAkYQCCflCMVbvqwYDdUdDAXTiQY2BkCpDIA4oGVDHz5q5qqg0USIG0Ql2EbMU1IHXNACHIrIFmCc4i/9M//XdXt/0/+vjnzz+Of/iffrkr78vwq1i/+9h/D3D5tODT6a5LFgTmuehhGjZj3w9wnqf9YVjKddDO2rTPVWGuO4Nw2buWKdzfd+v0bPsDDOEO0jLLMd8ItIHiyBg2cRULBWgFx+suDkHKxLqk6STHs7TKraXYuqjERqgexPoEIdGwMgod94pSsXcjXEQNL5Vag+UBc3WkFsn7BESwGlIMHTA64aSYFaaHdtprq7PW2WAyv0SlXkXLrJdjSPZ0p1F9WAy6rl7rHMfT8LyKyOGwqSzf/fZxPkNcys587pbOJrC67i3aRPnIcWCJblCzmjmxqNqy5FobgLrWlnM1b6oIdJmLl9pKaRnaPKFGN3awZm4OeUERaJlaJavuzTWbUrOlYqm4FMqVrIkpkkNwB3RkA2kurmKZFXAGb65zK25k2dRwqlAUjido6sgV0YSRCKhhZaxECjQrFIVp35ajqhXTBmiO3ppZU61aizYyLw3NuDQSlLA4E+TZm4jXF5e3h//7f/xnhPeDPI0Svvjk7mp1+Qcb/viTrm9HfzfJ+MNudVXa6eFhkpe+CulY9Nu7fW1emttS4LBUx4uhG98/zqQW89LV+vqvvw0p8GqFimVZoPnDd3aJVBbTBvlctej57QVR23yxnG8o76iuE3HE5kSCSIQstYXp3OdMxyOcl/Lm8TRXu5taa7BkMEdnB8LQMREmqYz+AVxuzVR9X3hpqICG6AruGDqRLpA0CoTZaCoCLYFhaZeWQXWzLOlJ3Vz1J5q+/u7ijeTl01ZLefvtvpR92b0MaVxNfaV22WINbS4GWrqinUKpNhet6o4fxFPaFJqCFlVoDbAAGYg7soMgNoB5qk29i9WdmqqrL4u6uVZ3A1N3MwBFUibAQCQBGZ1REXPTNpsBGFoFn8FygcvFpmK5emne1KvBh1ZVcHCwZkTg0AgdlMBB1c1AnQwYCZn+DuZARkNwQHMiQCdC0EZRA9Zo2gAKIFmgHEl7U1CU/+G/+ZuHx8s/+Wfy+4fb1d//j8P180n/osGbv+nenfGyenfXXaYfry4gh/ePl1fHecjlxnUxPym3hrXQvJwPpzthSinGlNabHYUgq94B3++d2NZeEHFaFjenC8fCQwIR4mCCbbOlvue4HqWXji2Rt/sy3efzYTq+upxzfZyKEVuYRGLX9RJl+2LcMF1FMfeaVdVOixa1wzw3tTNGAAwhMvHQxxD4abwJMvadx+CtltbKw3F5PC3NtZlKH+KucyomlzbofFvicoH3BVdGejcC/mRNaiCfP3275uWjPnui1W3ip8N0HrwObdjUIJnPAKUo1upFPbtnbaWWpbZctVasxefcpqUKEzgAoLZKhIYODrkqmfdqSKhg8AFoJWRGYeeEJDT02A8YR5E+sBu4GbUKVJyzcwZfUB0JAAEB2DGAJEIh7sTBmb0pZgBviAXdQYEckIiR2YVAWCLHwDF5DE7M3CRmkUXQCI0CxySxIRRu2ts0hI5N5+hDAcpMsBrQHORH/L9+Euy/vz2fuwH/vV8tH5/+z2+W31/Ss2c/fT6EcPVLeXzju5szDFmi9fJ4OX/zzXffv3p4/e6uFF+yAygAafOmSyxqjVIXwBsi5qISZcvCgalvBHjzNI1d3MqSCMbQR+762ESsFbepHO+my+Ncc2uLeierL3Zjx0/X0U1dlVSlqjtUyIrk6E291dyauzKogzMAqYkBoqKa6eHMoBecGQODIRpFwcBNI2LfJ47CKdHQ09nCveG549/E7lk6PtlmjBcf30qn108AGGWwdxH8i2i58xbv5hBvu2VyG4aUhlFWK24rD6m6OAtGae5zLrnU2lquOmdlQhFAAHdHtZwLoNdSicjNwNHd3JHYCSEESAETekIdgifxSMauULwubqdSDkXdzJwIqGMaA24imEErWJEW1ea1qLs3U1VvRWvzWrw20GaqoGYKCO5EYPYBsM4C1tDgQy0RzQGc0Ymd2EHAGB2JGsrsaS2d9r1y04aswOIUXGCvfPKrUJXa/Gd/3K1X/8GLT388bvSAfl5FD2F4ohzOKrTarJ+XuO0spjjkzXpwmw6Hs4kgJSRmicWtTXOnre9jCmE1DhJF5wZVe4HImPIsWuD84DXz0EQMThddSrlgzphVmkpax7SOVbSUy9JwPiEjBkQ2DbWUAscz5EaHXFuDD5nu7rxUtalBM5+bmgOLMFGXQgjcXXXD2Mc+hCSWxIJcHtr02Gq5zHkO3C6h6hDlaqWZcvO6SnjzQs9p/6++j2LbO6MEogtAhRCdQ2v7d7YcnjzZdRTuy2UGZMcgnTlWBWAJXUIRBUbiKMKMAOZu5k4ABoTghm7gpubiwiLEVg0dRCggkDY0xaVAyYiVpOHpAnOGib0QyUAcmEiYGjRrrZrPakxkxOwGVmvBD4x3WbA1qNlr85JbUSsN1L2UoubMgZAZmZABiIg5iMRgMVgSFgeormq5GNXWCgiyAalTMVIgjmAhP6AL6DOACvLNw4rdrn4cgzqeOWB8csObDdp3D3w6bK6fdsPq8fFwukxlbghxmfS8XPJcU6Sh6zbjrra65BmJJcTVuvv0s6eEAGUhBozRkZYlC8FNlzpHOEzmHkn7iB23RFV2zlvqOSiF6/V1GXb796fD+/PF68nq49zeHgs6knNiX0Xvuri7WvVE0VgNc+ZmsKtDaf7usMy52X1bcqstA+BVtxnXo3m9TMe5IBGMLzbDdrW7sW0nsfapsBGaUItp7ldrz8/s8SnXW5uhHQ7nFle4/XTEDcq+DUI+7LKDmSNY6DqRxKnlOEMyTyTQrE7Z1QmptFa8mRoSMFGUoKaqig5ISoTr7Qiu8zEjgiMaoDYn/sA2A7aGZtJDFBIGZg8RmVASe+SwCTp20/msWpu1appzm+bqhqhaBNEQxSQSMLmQGlJgdQzGpdmpqRGwEDWwqu5IQhLEoNVm0AzAO+2QWkgoSJ1yX0NjKRILRZUuWBtq3lHpfFbPzYGIbB1sw/KLn/yX3Oq3777rlunKzgl8HT/lfsX9XRjmfif9VUxHDEfrhBA7UDJjO+RpyksupS1myiQA6GpWtJwrkaOTGVxOExP10YbAT9bduuMxcwC7ecF9D2muoi2OkWPwqt4WrPf1YVot5Zp1GGTTpZsn/pFZq5gXRmKOYmp3xyIxbG5HcjyX0gzUUR2LQXXAGMmxza01LQAVSRuSgQAzYj3r8jiNQWJgZGhCxeNsoyvEpldRv7zSdcyrsrdY4O+vYOAlXmdneXPzU855eU+dHgEeRtDE2yQDhj0HlESh/0Dqm3AwEiFjdUdsTZupQQN0IoK/O4H1VpQJ3AAcqjZnDj2lQGMnq04G0oDW72K3QjkwZaQ1c+c+Nc/NLpPNJRoOjBIxDNIzrgPmQucLG7JJzHM5nZYIvoGACIbF3A3AHNVdHZCZxQHJwAzQENzBDAiIkLR4m6sjUEQkNEQ1riasJtqG0J522lELZTHU4VlqKcw2WGWpZ6o1vYHPJRTZ3m+49JS8YVbKhtlB3ItDdWyIJoTIAazfps3Tdd98U2y65P3dBQygQUfBzs3Iq2mM9PR2sxrTl19sx442UCMogjm0kmfwFucz14UOFS/KV8S3CHcL7W272w5/sD28Wh5+d2osJcSHyX73oBUouwTGVUq5+t0v3yGB9AJITb0qWo0EYbPrzJ1pbEU3HfdceAAC6jQGl2DAFzetuTYKiWPyUmLe923a5scbWFZ69Id5/+t9jfHy8tm90p/8yflSXaygNZngmsjOiVlywRytNccG1AAagDqogyEaIxISUexDt07JyYxJpulUoAEhBmKv7ujNPAiuxrTbDS9eXg0R6eEea0NxANc6V89UC7Rqno0qP020CzxXnCtf7/qrrjxmPmYg18DTWd/flaxwMV71YXi+qrW9fXckpuunIzHXhs0QjAkwDQyEnkMrloIFakGEmbrKUQN6w+KGVt0EBAOiaahLV4/r5d2qq8mXcsnT13Pp6DQO72b/F395fpxU/p3rbr60X7y9q3O7+XvDk93A8LrVqe9jgFWKgRCREuBKIktH6A7eGAxNEZGEQqCQJPQ0hrgahhcvnnAUGoQJIjQOzXSuBafT7K1d3w4xoeFkCLJdpzDy6R5zw0jAjACgRqSQWtrY6gkSIwTUq6E+vT2c6+s30+56/MHPPslzBiZkevrpNSCeHqdWfRyjGS46q1k/onWkkDU3ohGYF22ltlUX+z6hVBPr4nzVL11Yxnjp27Qe98PWZQt1tnYdyjBMz2/zTOFp6CaVL1ZyVPur/Smf63rc7W6i701riVEiUBAmAIQA2DEjRTStpsjo4IbkRMRMHDgG2ay69Wa8eXET+9jfrKyVy/vXSGpamsF5zq62TTtYiRUyd77qwsDoR3QEJiQCQHRHNBSV3vstOkMTdExO1+l+2R/aZjs8+/R2uSz790dkunqyA3QrtRVbe2cGj8epauMk7nhcNLdqDghsVqG1FYUYxViVPIW6jWUtl2vZR8tDm3jFPAQYoa2ljinvNjWxbC0Eldv+Epf5Jn/TL2UbP14N6d17WCbtNAkK4kDUkQsZpdjHdfIj5HMZefXRteTiywImfLVN67H/+Pk1GDy+XbrRu/WOiOJ4JeSLpwoAV47gOfYAUFtglfBY2tngzuDMHZNMpO+T7YkCMzWjJJ914sCGEdKI0SJ+4bt+iPn02OY2hODAeW/m0Gax5uiE7j1IZKcIyCDbpBik6yl0Y6NkvBlhHHIMc4zzbjXdbC7J5qGdSZWLepQGfRm75Q+uJu5PrWbN25tzWjXZpYXD+aq+jqWsow1dLOqnbGyRoEPqiCKBoGIM3TCsl/MChQcehk1/PlebFpdkq9XV1fqjly/Oh+l3339fCz5tzFHisCG07MQIvhZiKIEcjVS4SjpdDAvsDS5kRHEhfYh6YgnM3Kwb6KMV18q5BAgdBErMROBaL8eWoeegRuXoaqCLuDkDIkACcmLqDIOnPnpAiR1xuiVYI/XRUijrLq/TMq7Om82eLEudXdEKV8cJUu22y+efLxUvp7loWW+nTpvQ3Z+kff4hfp8DjvUVVV1vRwoBJioNCyGYU4RuhSl5FBMk8gDCIJKGemWxAPaA6/UQ192K+aPPniPDcrmExuNNRwzZKqCzMKKejgeynOrC1rBpQAfqsEucE9UAJQAJXQgzNqSCdbZ2bja3+Zjv3dyaM3nfOSgSMjIRVQfsIiNAACIAlxWQYVdBzCOjUAQJAFv2gTTGGkIb03lMpw5P4XyiueGxOBCAGPAEtw96+1X+fF7KdPfNkrXu56ZV6O5P09m+pKKh69r3WGy9uQ2r6/3DVJZWGcmNI3QjxQSRTQgJBCh56DusvaRKPgj045hWfUwpUcx5eXh8pxZu+h0K7aeLgSZxdJ1PByiXFS8BWwNjcKCESfQSbRHhNfMI5+pTLaUsuSxgZ7DzstyfZhZMPXcRd1sSokSBkANXYoqjMGF0IAIeRxQ0WZwUJSDxUFtUHcU6Vo6FpfTpMqQDz5dwPuPe4K0as0dXkAvcPtjzr8tnZTrJ6+9a1nqcVYv4mwkK9DtTLfDwvXmmm52kvl/10qOwITldZaJmKyxScLDuCikmSistqnNhsigmErxkdEpjwOCdjci45OzZl8cTuK7WGEjFnYjGbhDp3NfuUHEwDFWpAWYICAJBoIsmQWMA1Ei6akgbYqYQOTD0HRBgAEBECUQIQgsBsBMptKk5gVEDNEFlAILGoBZqZbMGFjGhOyuy4saxd7wGQASkqGGVNztdP5vHefJcttagf3FwqGLfXwBxuBYjuLz/ne0fuf9Z7AbbrCMH9IJeSWfuq2EpmGmtPZLEFNK2zLpII1Tm6q6WF5bQrTas0lE112lZrNTp/Z5NQ4tDgDVZEBzHkaNMmqqJ4rphKqaZVFvT1jA6EpAXtoxsnWhPvKVIiMIM4OiObtgakafoBIp1QrPgARyXi6u7AQAANSd3ipVFTagIcgXuqKEBV+gVB8cecIVkiJViTtvjbim7l5f1eaI7vwGU9XYirnK5A2SIWzSE9w951tPl/Nu2OtfuykLfrceQondDFwNQAaxeD1CPrtZO+3yB8wEQG1Nx1VaqI6s0Nb/UimC9KKjS5Kh2zJcJ9b4c0SskBqbJuuqycG6YzMgNCBuhChA7shs7IiEQA4BDQQd0c3cHNXNt1cEJFcGwTegendCxITqiBGbCESyiq1kMwBAIU1QN1RMsGiszGzTKCk3d0BWwTVy/7etys6wll/s2GTXjDjjI/hVQgBWTIn73q8vjIe/5/8k02uo5ptX15z8ab5/e/OHT9Sdbp+JcyH4vavNhnh/fXY78eB8RGuJiVeuSl4qPy96QSbrIcNNbAE3VoOn9/tByeTw8lJpPxYv6BH2F0MJolMZVl7owdtonTRKjhOAYnADIEV2rtuyt6ZINrGJr5pfS1KzU4m5olcATAiGGXlhoM6QYeJu0Ez8YS8dCvdB6rNA79AjbjolIYPGp0qU4kLsjHAP8aizvPr5YWuh3uWgA45UHEH+5MZHL8yeNE+W+PzFPbg1iODFN3cll+X3W59Or3SPUIyjqA+qjtCXUOecA0BmjB8IAIXRQcURuDUqpzfUwnQVbhwu5AgP0MvTb3m1l7EYZ+gYyQ9cgMH2YuU3YWimleHU1a+ru+iF5a0Mz0AboIO6ADcEJuBdAFwYCjwCMEAWJAMjMfVav4D4hFJRpJoYeLIEd7w5vvz111EaKkBEusNnJi5cRTLxMWDievk81Jk0OdH6Mzij+86cq3eHJz5ps4xdPpPDmd38djw/X+bvUTtPXv8x3+q9/8fJv9frfVPuq+bjR1bq92NZPrzOEBGm0MLT1VaBupJVlDhzyVO4e70qe9ufXAHUcXQKvd9vUpesXt10ftjxEDOa9WdhnmhvNp0ue83zWfJkuU7lcypTzaZ6qtaIFAfCDQ5CJmbpeWLhfdRw4rRMHiN2H8GTsEFXJrS2tKRwbWIPzhNkAyxHrSZYiuaKe0E4rpC0OVqrN8uOfxv/kPxu5VHg8ULsM+TDAuOJPtKY3r1bVSS78ecH0zfRi5rXSDTIOF04H/bev6zZlsrm7aS/tMbgGH55AF1ZrWfWb7nTdH1A6iGOm7kSBPuhrHYJXJL1eiQ2p7LYonq4Cx5DWVxxDuuokCpmgERWkBgnMqXlvREbEIXVhlH4Tco27GtW1eQX4Ow9VAGeGGIGZYgckzqN90AUSeUJggM6JHV3ZHQ3REXcmasTN2YyLc0XzqJD6+GzVffz+zfLq6/PTXdKnazi81zf/xsCwt0C2Duqu66LFXN7Lf3Sy8MdvX9x7H59vCJVf/WX3Zvn4y/mzz6fNv3UhzM9DNn63dF+UsD33n527L5bl1TT/LWMntHqc+Lt7qSfKbxCbppZHho8/6iR16fkVDoIvrzylJdwaBUUEdzgVzY32D7jMPddYaoylqBokR/kw3GLCwABkwIZuaIpauU4ADSkjGEFzshrNCGpEIOgYBGElLEQxdcziGAApughwRzlSJVcCnSMtkXn3D/nmP//zPzv+8n9+d/1lX3++aV//y+X//TUmC8+xj/6ia2unNtVqJOeyOTe+HMIF2J5HYmvtes5Pl3LX2iw8ERlZATaUU+jvPV6DnJRUfSgVW1kOZzzvqZ2kHDtaPMymQGJMzssSDKQ8UmOf2kWdzBEcwqVx0+5SpDZqhuYN0ZGBHQiRFVGZnMgAFVHBDV0RGoAiNLSKrqTF0VkdCVUREDCgIzZhJ0IjYwtsjNRhi4AplIANGJ0o9Dsbbia8OZ/Cw3E+H14dT9f7aS1KMHYozRWbQQgezCMpgMmb47Nzgf03dALEH0Xq5KH+EZ6fPuyn04MLnyM1jA0FMHwbVm/dCpV6nFan4+3j/uHN2zfT2Q/vwZcEhy036XMipL10GsOlrRfGN18tS11Ob15rbqCMjp1xAHwSbWS/7mAUiNsgA2FfMTXiTFLVi9mCH27G1bwqmqJm9Eo+kzaZZnBzVCBAQSeskZGoSkBikZmRr4MIYcfes4ehctQybLVfYf8juf7R719d/6tv6m/+6m/e/OZ/+f76J7/9drNe2u7lNdYF5uyAKap566bMjjKsoy4u1FhVzMhUS9a8vD6lrx63f9CnThgflYrBUuECl3a4a+/uqj2W4Zyl+QhkKZlb8hDdaCpgpg2mJnJBLswHxurSQudsHRMjDsbBsWON6ETmaE1ds7k1zwUkA2e0jLagK1kFc2yKruKN8AMrptGNwIgNyCOBI5IbGHpzQKLmCIQzgaO5GnjpFKLdp7CPvNxP+c30uzfl++8fHt++8dYuh9O3X3+3sfvljEG5a8zMCZkcYa5eUX7409Xh3K6+vW8X25aFJnx9+uqy//7/+Gr1i8OP/utnd9v1if/lRF8pfNTgiX91/+2/eHhzuP3J4/NV92wYv3i27tvT3WIXaX23vy+/eXU4z/Pb06E6Flp5HOjpD2Q9XP/8Zb+jl7cwRlg3iArxmDk3u5/8Uk6X47zPSz7mcq46V1vcKmhhNCEjgEAWyAfRKLru2yC66T0FX6+d2QMouuOHXXxjMyxFrKHs3RfPx6KLLogF8c/a9As93Fe7r8e8vJ2X79Eiw/jqb+/+t3/+v+86+GSNuy58tqPtbfwcO2levzvm2eTw5vE0Nb/scTZ9LxYB8gHwkuP1pYtTXM2ytqJ2roN0/U2fSNYidc1TaOh1mXKzqnXxidvFlqwAJCGOV9tGXNLKYo9PVjR2sg7Uo5MqeFPABtjcmn/YTfgHpQ9TCETMbAIfnqmgCRqjC6iQByZmcjJFLG5gFquLWnBnsKCGDoHAGCWCCYWVcYAEyknNyZ2Sdx1s9X57Omzr8q5Mp9vb5x9//DmFi6T3jnR2waqPlxk70Ith9Q4JGeSP//H/Vd1Pc3W3/XesYPD4fdfP3Q+fdF9uD/GL72i86/76ZMsf/cNPv/wvPvmDll627tvX/NU3l+8eDr/6bS6nttwVL+gTB1qvw6c3t7uf/+xHuO3mH2xK4keBYm16uLOl3P1+wkXlAJR9LCVoG60G0BBh7OQ6jCEIkwo1BGd08EZe0Rq24mZetYHOkLO1V2Wm0obj1Hn7VOuAvussBqcrhYS2cYgUEjKjGLFBzlwb6+bHH61+9qd//sndX3wMD6HMv/n3/8Of/7f/3X/1dvn6X9/96eF1+f1flsvp8vjd5fmhfLqZUuSPt70DyvnxouAGCuBaXN1AC5FSQuxZOVboFuLJsQ4BrrtoPXk3Ttq9VaJacy5Lmy/FK8JCIIkihiDjasTNQNfrkHCiCg2XIxp6q4bZdHHKEKqCWUNndEAgRgkUAwtDYCAEQkDHvyN9SE1RHcABnN29ApNZaciGpuAIFIHMGRHJPThEDz1yAHEgAFsQKvbbtN6MaViRrJASAPZD9/T5dbnc9ZqmI6gYIHvzUl2zA3noCRD/fyfXtTkKZW5kc3RyZWFtCmVuZG9iago2NCAwIG9iagoxOTY0OAplbmRvYmoKMjAgMCBvYmoKPDwgL0JpdHNQZXJDb21wb25lbnQgOCAvQ29sb3JTcGFjZSAvRGV2aWNlUkdCCi9EZWNvZGVQYXJtcyA8PCAvQ29sb3JzIDMgL0NvbHVtbnMgOTkgL1ByZWRpY3RvciAxMCA+PiAvRmlsdGVyIC9GbGF0ZURlY29kZQovSGVpZ2h0IDk5IC9MZW5ndGggNjUgMCBSIC9TdWJ0eXBlIC9JbWFnZSAvVHlwZSAvWE9iamVjdCAvV2lkdGggOTkgPj4Kc3RyZWFtCnicLLvL07bZdd61Tnvfh+f0vu937O6v21JbkiUZyw5OqgwGl4uYUJVJBjBLqsKIGX8AVQwCU6YUMxgxByocBpDEVEGKuGxiW7IlWWqp1f31d3yPz/Pch733OjBoxmu6al3run5r4X/3+X+ytvoXX/3qtK6yJjS2tnPPbhKO9e5ky5owCXB9B+0G4naK2wnXFZYFkQBZpMvdZuzw0Q4+2tkffLLsLujxb4ycmSlhTfHyiZ936y9/UJeLr7oPJkyv7FcLPDx98WW/efizf/35l1/dDp9s89Phu785fuNbg88lphV8j35RK6xrEKAQRUOfoTU6Lck01/Ugqb98+og7sN1DpBbbBbDx6Q239bHNvRvPSA1b+sB4f7fQueHdLk4bB5ghpsdp8yzv6rzOD+dah3m5wKXx7dTydLp8BWPC50+Jxw4+pEjSVJs6OrMncgFjUiQD9wiHACISAaagLnO3ITJgEqwbKhUAA5EwiYxZQHoIaacVYoJ8CznFJhkpoTaIgjxRkoRLRu8IAoVDwKXr+nE79uOQh54i+UKwJCyI3lP0opEMEEEC3QEBDImRgYgwECyseAtbpmgtogA2OGuoLo4eiIVBubkoy1y5NAoDDkAGJAxKxcMQKDE5IBmSAyEAoqE38FVD1JMCIv5n//c/CMNyTNbIHigq8FGpBYQDBPUZRdYaTeHFxcXz7f7p7vLJ7iLJJqedW1Nd19nPt3Y6w+u3sNw+3P3457kcn5fPH3H7tw66HbH7tMcuhV+5b5b5t5pdHvNl4TR1ryqfzt1UUuXLnrYJr094P2/qbmzbRJss+xCIhEEWVA2shbWIs7mqT+caroize2nzV27Vi4eFK0XQ2m2V84KHBv1ETyvu9t6Nka8+7g/PO3kC8hjv717eXv/i8cgf72V+qLevZ5/F70bVeS6vKtpDchq7w6cfcU6yrAWd2TZsokqhkOpC1ZAIERA64MSZTOjR/uL5o4tn+4tn+wumDfO+aFnrzGxtrYtCCBawm3JIE9DdJrAcpxm2To8W2RTKwbB0diuG5puEUho3S8Ouz6NQ31GSWlu7N6qjtIPwIDRiRuzRqRkjkjlVAyd3VActYU3tHLa04zG0+YJhqNY54GnkKulEXcF+xlwhgUk4DcfoRpVhSGNf21iwb4QqEAmkM1UyDjBESxCgtVCAtQWo4X/6P/4hRhrax2x9OieuIPf31JpcPsJuuFGenX7r1z7+xtNHV9vdYdjE55/B55+9+vz2Vz97/2VtP1lqM1grIEvKY8673cULsX44HtKyHN78eK8Pv8s/PfB6sUki2btfc96d41nB8XYfSxfn4a7mmbtMIpvyeKiX/XHTnza4BM0OjJDIuLa81FTO/WnBehen4u24zo7BmQHdYwGEnHeAsjTSoLo7qOTrFRelzBeCA795oPv5y/WzN/VL6X8g/W/91u89+Tt/94Pb6ZevHv78WY+/seflpr396exOEbm29fb4JpJ1zwkFxIpRMBiSc3bhAKFEBCQDpA0HM/LF5vKDi6cjSm9yflinr65vPnv96odfflHt56srQEPsuny42GwOdff0OQC3eKy8run9Yng+djl0uxqlBrsJBcB6gAqcwClsNp5AKhATXOZIaWGZCM6GxwACkHBx6Cyy2qYarhXm6q22ORAjemAMTogUaQQSR/JAzB0lIXOC6KR1SIBT+LFM1/en102fqT376Bu7aENp3X2RbUbsGDvFVNFSYMJwQgn3WAtw4D/8b36fPT1aP+58uKA+IVPugPhdlcX5Ox9+9PRw+LVt96RP1//8X93/qx/+8Pbur+7u6sz1zMqbki6CI7KLaD+UYGiZKG/6i2/kbnd19Y29we+8/OqwHD+6/3FvaxqeAQ+TjxXkfmdLZ7PcN1pJiZz686FbduOyH5e96C61AzCDiMpU8k0dyvlqmnF9h/cK1qIGE247R1igOCJsxiBp2gcQ9AoS3AkxDjGnKI8ddgC++ciHJ//TP/uzf/rHf7Z7vLt4fvGN3/lbP/ijv2f2si3/eqvlgzqVGd+/SdqoVSFoG7omVKkVxMBmczfsnIUh9S55LTYrbLvx+f4wasHTPP/8i5s/+cuXxf+mmtAu8SHT0MsexCEbc01k1cpyuqVuil3vrPbkewbdUjBNp7K+osrIPVHnyA4YZABK4RROCqQRy2on8EJeBKJHRwgCZEQiBwokRCJCQELKJCAEiZ2gBgN+PYiCECOIuCHrts8p0+CnBPOzLl2ltHt2tXn8nT//mx92/Zv72zdfvY7h8YuEH642v17wMcWHg4OCumvkoC2GcEsMwD/4j3+bh747ZTY6bDa5707Gs+HF5fDs8eabFxePUn7/L/6fL/7nf/H6x7+6eSg5ffxi+Dee7T/aXz7uHo3tmcHOvK/YE6dtSuNF3m3ySNi8Tbenr07HL9LB183Sp0k3BGhKde2kDTjvo26hDWY9Us7Ud5k2mTcCA3tqti7lZvH7xY+aFj6wbqxezE3qHBOypR6lA+qBOxt2sd3hbpf2A++FL/p4djk9261X5faw3Fw9lounw+Y8pdv74cXD8OnLZ7/+yb/9d/+jJPDjH/1FWz5+/YvvvlswfvChkrSbX5SyHqQl8XNNFt41CM/Cu4FWDAQPR2ESbgVq+JMxHXb9RiBpmz5/+fbP/mputIBs5PJJ//FxsPuN3Y/zdPFgalANnMEGAdiiGdSwe7P1VO7KMNw9GSDlcxVaU9bVa7TOjNl6sIxO5MjBKZyxJtSElWFFrWuNJTxFdBl6SXvIEMkgjNyDQzICg4lDgjQACXJGQEAMjNgPmlKL4wlq6fKYNh25x3nBeE399be/993v/p0//NVnfzNKW2+mXxzvrrb7NH7COt0sdgh9kgEBnRSMLBJEyHd3z4z1Qa+j1GCOLpOXFPHBNj/dDeuf/MUXv3x3+uUXAbTbvbjMz+76/ovudO7xNJCmxp0mDsEEmtwyeKyKQSjd5cjIY+Ik+kAz6b25UeQddeaLrQptjdQcq4kBWXQYAiI+BJHljco8ynQxl9NxuWHmSW/AIiDSEI+fHxys+gpEOG4DwtcjFtvaTIh2FnToZJauMjN2fXm7K9cX/rNLeA3p+s+7P/5x9+9/In/05A+//+rRPxr/5hev/vTP/6npb7bj3zsd9/X4abGHx/HSPEJnQFmHhEjyrNs1rZO/U7MgDBbihcP2ma6yfPnyq7u//Em5KQDcdxfj7sVNN9/285xl6pnYE5sA9s4eXIEjollgkIQIcepGYvIFG9qcghFKBxhYV1W3BqQh5mxBBgkhVUJK0XPAEJwypQNMS9EZOUoEh2ToOaXt5WCgsVRA5qEP9zIhmWd2QdCiYcC1MmkiIuHl1JUy6LuDv9uUNz/SuE7f+QrgF99+/vDrv5v+pT28/+EP733/egVd+7o+yRZFLSAAWlDUlBBByld7cP/mx8mb3rTy8FBfPH26HXp593764svz6+vzqQ7D0814cdM9+jLj3UVXLxgseo3sPBRiZSnJMXebLjy8UoA7NXeoZyOm7WafGUoHSOW2nrow6joEAe4JOYNFuJMEcghX5DWII0hWGt2ufPzoEobAPbi3UlZWw7M4GFgEqvoRIBIBIRM6YtDAEbhYBwsDLAF22vvKgZsL/M4TePEf9s//Pf7WT2z6X+Nnr/2fzZ/c4N+/4l/Smz/56uclfL56QlN7/5rYDXAOlDNDIEm7HYXh6aMtgL76/POplP3mm88OB3711fr23Xp/XFfdXlxsNi9ekrxCrNukl4KzpbP2xptGqESNI4n1KdyNw9yrqge01UVANqMwtVQA6axzNR9TFkwQGYEJFMEMyJCCWUlqAEMQVIIWKXLexBhwAe0066tTWOhiQQ4QAO46I6IQEhEiAAJ15EDVkhoZrU4+jVFGlKuR6Qp+59fT93aw/te+/r/xusUP62Ph3fac8e4XN2/O4+iHPdrxWDBpbLEG2kpsSPKjH/2oz0wfX/aZR4i+TwehDcbdy2n+7EGXQxovTsPVue/nHJRiwDqeKpQGpTJSdBdOfYVtEHgYhpEvjJF7pKCkSAwW3gyiClJO0WfkqG5eA/sAQY8ICEJAL+7NvbrOrmpFdYUM0VOHvDkIjpE+GcForYRENGyJnGkFdGAIiIYZAR2HwASbHaXE3YzJLh9/UzaPr2c+ljev8d16jfUv37Qf8tWP4wlBNVimwtOrT6d/OQ8fPjz5wcnaF1NKGl0OJAU8I4B89tnPxy4/TX7Y9sMAktNGcAR49W65//wc/Jz7/bnbL123jI16za3meY5Wo66RttYfDDc1rgLXiHsK62IFQsk9BiZCADRwM4QmQCHYCWBodY1AAKQIQghwCIzmsbhXbaxlbae53kMmMN52GaHPQ948GnXB+g6Jqd/0xIbcAMPZA0FdINiwB+rw6Qc0bmRbpfNnT7+x3V6t1y8fjtfXMN/cL/Nf3sz/C39aYYO4qk+10PL+xfwXaywPl99+dbQfLimrP8FG5IArQMj3/t0npPjw7ryey69//9f2+019Pd3U0/0DH+0g45763bq3ZfNQM5pAhFND5Ex9UhzcMgUmWgFbEACxkgS64xokfd4QdUMvgmQramAkRmLkAHSHAIhADERISILkKAFCnLgTj94YhCEnTtGqo0hL7EB+RYCkPSGDDCOQO1Uk5LwhSq7JQSxDRLu/OauVu69OCemz29dvz7f1gG0H57Ofd7/2WdMf1XYZ5Wksc+bbd1N3cbzK90s/bQaGGU/TCqALNoeQ7/3+k/Wh/fR/eBNn+lu/e/nscHX+q18erx8eHvikh6Hb5d227O+X7VkpGQo0R0CRJJTAutoyBRKtQA6EhlQgWbQWE3O3GXPibhiEHH0ibQRMiIwCGB7uARAMQYQDYkYGZIDcS+4EUYgGwBTUaV3X6QQd5yQhFMwG2ABIBPeC5EZITLK/IM61YBiqhlm7vjlP5ynu3vp0/OLh7fv54fzhZn4yPEz9cffxoDq2+l0+/57cTuf6/u307Pnpm9391Nex51ppul/M20zNMeT29SZWf/RI8o46Iii1PWi5DYPsQ/KerXdB6lsOZ3DuGnWYmqfJEkAW6jGUrHqYuQY5CDIkxn0Ynq9PLDU/26aU+PIxR1hkhZIQMVo0MldPAewgBIjIlBABojUHdIDg5JKce97kUUbOXQJO3WFAAApHDhrdQZcKFrZMk/t8ezfVYtHGMD6fT62UKBi+w7wMGN4Ubk8WzXeKFbXgaRzfHPp2cypnbexYb0eOT5/BkeLVa3XzcdMhgbz/cp8AP376dMc8EONa6o0u712hj5F9ZBtCQIbaSUGuKMTMfN/SqXUdy5A69oV9srAaGugoSCgdDXXR67fvifP+6jl1OT9+Jsx2Ss3mREhYfFZTiy5CIigAkQRZUNVaM49wt0zMHJK577eUUQairs+HSwQAr4AeuVar6wOs1abTsRZ7+avXy7xK3ZALgWIExBXEDnIbe4b1LZ/voBvxsq1LN0/9w6PdyxcXlN7R2/vGBvX9luU3PqS3ES9Lc4vDYcvC8vBy6glolJxRhsQYNk1tXiEh5cS9pw69gDXmwMRoJJU4Ouo6Fy/kK5JRQgPWIGVzAibeSW4NZkRmvBhyN2TqmIBa46iSxw4ZcagU5mLBDpSCxMERjDInTiQJJclAeSvMIAkCQwOgcT01d13ns3lrOFetb+/uS7XpjKqBIEMeavGmNXeGFPNybG0pelavZMje9Yqwtk5xMBwK1SPlgO7x80X4518cx/7Rs29/v/LNXXxWm5GTOMv7n95vE/AH0I+QhRKG3h/rUeMZ0TbS1vMGWhmidCzYJzySnFEox5gd1wXPE5GwDA2oAiu6MfYkl10fhsHIQk+3Q94NaxYzLGsqi3XjiCnhSEwaWBHNqQ/qo0zYqgxj2gxpu+t2F5SD+kAwjKbNy6xao8xrWdeb9+9rW6dyU1q7uV1KjemekfjT7x+Gjdyc7otW2ThnOE7n4+LlHLXAldBeNhtto5UQ86Q+13KzCm+7F5+e/fhnf/3FN7/55G//wb9Ths/f2v82l4LGiZI8fSEbjF2/jhysGQIXk7MTDgPvB+USboY90QAURg4oDAzRwBsS0JDdZXVWZkmJKESSuM/zimvruoEkrQ9nVcDLkSjxmFEAdwoDS4/A5sEGDXlA6tiQLKehT0OPKTlZ1dbOBcLIW6s2n5uqraXVqqej1mYPszvguD/0DmEtIoLD0DTAAmoDgwg3Qu3GlHrmQANxYHfKKQ1DV9nnWnmDm4vddC7zrZZFmYmFiWTY5u/99m+Om41857e7Xu3p7XHbLBWxxg+tuw68Olz2Tzel3puuDFuWvXNt3ABIAsNr6EoiMmxKodOZiSRvBhLkjnxebt9+JeqPtnsCenh1jf3psruQgfLFgNDTE8Sh5e3IyZue3SvzFrnvODJ5yjmlVNdW1nqez3fHe3AFra3Y+aG0qvM8u1FrY2n2/l5zz9/9Nz9ImRivW2uRrIBWiBpkq1MNtybUul2WPttCraBhUatj310dhodynua7fKCrDx7bq/V4XeanjRmSMEt/OFz80T/4Dx4/fST28tox0uCdYL3TsoTBECmBJGACpSgoGDl7ACgQIAphIHskBP6aBxEyO0nxUFBzL67EJILSI5CEU6ZxT3nD4QDgMiImCA5nD2D0pOGuBYOAqFmFtdW5lmmdyjzNa5hF01psmk3dKkQwBAMmGmArCWtTVVhXU3UphA61eF0tZwImCkloqOZr9cZm7IAhbMwNyYACiDA60guxTzv4KGmHp0eX9Id/8IMcm8Pn0L2pMv9fP6ZtGv/w483Yf/VZPd1ijecw7iAnFIyV48T9xrdjPVWYGyXBLqFb50oeEIiElEjEPN/XhjGRObingZhjs0fEvi5pkMcfpf4iOUGAr5XMwpIZaXACSMtpLutaecjUr+u6lrWelvIwt9AlqjXXxavFXDzEYUQW7Htgyo94D+EPxwet7f62uAX0HSWcHnSdy3bYZEmSlBja0lRXjU4hBbDnVFlmoIrkyIyxlflRV75/EVe7dSuvfuObh3/yn//D9Rfx7r866fW1PEkxCFJk9W7SdFK2NCANwBbhhMjITEgESAREJMAJMBgC3d2aA1I3ECkwmCMKdwauDEpUkwQggbjwaVmKBGUM9HmaVFePOUAX5oakZbHaHKCBzcu6rKsutZWm5I2iWZSiHghMwAgU7linSuQpp4hoc2gDd/GA2ogB+u0gXYoCpWomYsqISKSCQshBEsQ5szB2fbfL+247NKIhp91+N5LTq58wboaHy/Xz+On1w3Rj8rvPMnVZbL8su9c13ZrU/WPpBk+3FlUYc05JmJkoJcQkvXW9a2QsrK2WuvQjb5+kqOYnJUyY92v4WRdDOHY5AWwDneLzV28h4XBByHC6uavrOp3vWytl6CzJLsMgEAvGStNap1IBERGjQxioND09FOllc7EBBmCxtZ1eHwGo22IAlgLm7JGD4DwbZ3j+ydNuwF/8xav7u/MGx47GXrTLxkzMFEkgSQcwEmy3B7n8oO+6U5LNbv/sk2+McIv/53+PJ8WfwPW1/7c/K6/nkIQAQMU3K2wnwBkYElLnDErWGJFYEDiCmTkzMzuCA2EQIYREEDuRG7oFGISZOQAhIYI6IEB1+HpwgIFNiuTnqbS1LtXUvJRqbj1xJi6r1ZPXCAUOcw8jJg6xAANDw9oaOECgNa8WhJCRAlDdA2C4GIDwdL6vqmYZgPudbDV325y6xIAEJEKJyYicUQAFgQmFwsNPre6NDB75XOL9El7pafTkn1LdQ0iYm/FN++jMj97A6Sh6tbVhu2SfumUR2lHXQfSt5G6fu41E02gVULxzQd1yUFYEtYCzhnmryymY+qEDgLp6C1grIKIrBoeeTh7tfDxra9Q7Cq21tOpD2nZdvnlYbl9N/dVhuNyv07ROp4x5GNkCHG1Vne8XIEbuw6IFJ0nDOAJAXY6c6cMfPOfEf/q/f3W8eThcAdLwwadbSZsCSYN9KV60F+6Ia9NWW0YckQmc6nRs65tljnb13fm348t++8//GL6t8l/IJ2/pn/wpWQsB7oP6AnkNUQBHT9I6ieQu7hRMmBkSgRAQBZqjORERdQkJSDzAWmtmxJwBgM0hAMAjsFmEgxkCIgJ5eFNXV3VX8JQQM3kjd/8aeFZDBXHkIPZAbYHVZTUNwDGFaq0FAVggCCATJIYsEW7gEFFjERTZpc4H7jvk5AAWjkRE6IABAfA1A2NkgCAPJnABIwwna8DTuE9526qgc7cTmf2CARCExheRxnvqH5CVCuF8kf2yCz41qghpA3wxIGck0IApmkrVDncDHjbMLaVyuj/dvLzPvN0NV2Gtwj2gMTR1uKuuRqYDMHXCKDY/tNLWyA4M/Fh4RLhDW9L9TMc5NEbejdh3wGKOZdHafF5UDil/8riezueXZ0YYeiLGdBBJOS47a1rfqrfy+bufyFYe/+2nH0i/i14Cb169Xc/z/kr6EXVVnYtkpkzAWQbxgtNCu66NXErn/Vab9F/2H81+t93sNj0P0hErYgk0CR6d+hpQwxBVWAVMIhiIgNU4grjnnNhUbTUSyf2gklsQAiMlxIQhGIIgAIFACEBfZwEe4eEOgOgAAIgiiAmyA4d9rZ9EgGhBbhhAKBQBralFgIhheNOAJEOKJp4RCBScgBADwauVCKcxA0AjddRxJMpic0SNptAUECRxgtRJF0TsHpwo5YSO2IgYGCNR7cmYbU0x53TsH4H0V4vjUswxAqR0j1dMp6Wcw4a8MpTcKs3R0XPutg/HXKo9/sZw9ay/+fx0el12377afevyl9fnL948XIz0bDeI0eWG3aVUCQ/zEcPCzCJcyZ2qBoRBdaTYfPR4SL7adfPlVI7tWMEGkCwu5AwsELzM0/39xEPKH13N8/Tw8NBJjp00yeiDrXB8KBhB4ISzzKfcd4++/4I6muSdkZ6TEsx+PMekYUiS9ruLx1e79CgE4+3b97e395cXm8tHO1vD5hi47xgPcEP2OvDmXN4WTqcP//7Tzd3jn/5Venu/zNeuLs6dg5iFuwmYkJMHGiAlxA4cQo0EpZcAqoWQc7fbpFklz4jgNcApS9eUWgN3DJQABDcLBEQkRI4gCHRAACZI8HXDKUL7ugLxNVQHxwCyFtU0kWDPVqGFImiFpqSewgxUHAMSgRO4mCfHUbDnCHZ0Y/dQwwqow7DJXZdEKIgICIFFJLEIizBlZw9yMieMNEDSiKJnpVguniwj1WnA2vzps8gq3l+6Q5wBmop5jui864zRh4BeYMnYZCS+6Bfy21ku+6vtB48+vdo8+sbF8eW765/+KoscNsO0wmnRAKRu59qmuTkGj0KEhA4csFEXv5vXMutsdxpVB/S+L8dibd53+yTsDUJRE5ZMdWuwWed1PsWR1vV8u4LXaEdMiT7c5y5tH48ikjgj0hRToFe2oKBUCUGeWzL4rcuPn+RH1798d/PV+9bcDPaP8otvfCjMGDFk6jqcT/jqGrb7iyeX32uK0/kX2O3x9z416N4tj8eLjx79l/9YZBST5ApojmoETugEiUDCKQAJQyQAwQKCBfIAqQNOubMdpZIwrCETExJFQAQgAgGQBQIAIQIhfu3ROIBCQ1u05qqhIB1mcmnG7uLB4RBO4Ygh7Bv0Idrg2ht1GtyQGnZGwrxB6okvE7MwZnDUpXo4CiIxCiAG9cCA/TYNXQaMVlpTMEeWvNluvKk3o4QpESJUD4vE2Dms1B4AO7nK0LrzA0M/PP7WJzTuZem6gob1RtaScc5klHaR+mWq2k7jgcYhn8/L+WeWD0++9fvPu3138zKm+eE0vWrzabgIwigANcAi2K1v4K6gaBjrqop4Qg7B1AuIxyaQmi1ndR0vN7LpcMyttHrytswmnfeml5kue+ubD8WPHJ8iHrJ8uMMo2CxRt+l2EgwO2rw9GCp12CXGYb+nBEwNwEIZXH95fv/q4WhWY8DL/ZPtcHh8tb04jLdv3t7evc27jDlJsmFoKfUGh1Lt9PAwbvrnH5Cd4q9/erxY9RnciFQxYqMAb2SFxBgCiIJE3dWUJKeeltbK6oenuLsalHA5+zzV+TSBrcQBEWrhFuiOjqyBHuwYgGgBCIbshBQBiJgSCaAxGqMwilCXmMDXZsUshefwHcGVRO8xMGQCRtgRPkoYjpqIkkgio5gCAuzr7QtzYsqSSAARAshBwmFe6lKtR0pZurHf7DZd3wtlDIrmbuEAgMHsSODO7mimESYSDj6vnlf1dgQ1wdSRAbeV2iwchKSRa2R3CkcCFVBbW1ksXlzJk/bwxm7fmtZjK8do1UulCArUhnkFcUmW1JLVTRAOJJ1gDKziCzx42OawhRFitqLLfF70fqGeSLC7uOCLXjuz5PNmWvgOuky7nvqedlvMvY+CQOTiwS2EHNsaXGT0bU/9i90TZnrQY2t1KbO77sYhMyAQIT17ur/AoWNONL15/+5npyUrJE7V/GGavQJiaKvn+zuIeri4SCjHl2/4PL3wZ7tlxb/+P3RwQWIkAlc0RSBCjEALDEAAxHAKD6uuDbBCVjWdzw20hjar6otTOIeFEVXkADJCA2iEjOLJgxIRsAagA7AwJpSuMw4/TnWpnXQgzF2XZISuQmqQzHAlJhRAZswZKAUTAAWxB7lSAIQBOgnkjN2YN0x4XCdTrGu4O3SJiBAAAfvcbdKAUdHrvJ5v7h4OaTzkwd1qNTAEoDDTsrJYyhmNyjx1Sz3EOFrDu69iKpKSWONWtZaWrvp+ILezWu1oS12mNum5duA0QDm9f/urmO6YjYhW6gY1LK4EA+EjNaoTh8voG3YfrDi7snuCQtgy4aYDwLef3zSqlt05EMZu6MfNJg+dBdawaqvC7KJEqbapTreR+tQ/8/CmhsHkKdxLLVKwNxpQnhwkQ0zLa3eblvfVqnkDCFNTJJwRVnxzfXOvD7sR+x7VIo8jEFdU0AatUSS2TGEQTcVLAIQjLB1Zzpk5a0HxECIiQjM3MxaUhLFWN2cchQJVPVYWQqFSpvmOdckYmUiFOYgJCCEhjOBkldkFfKRwcbAwbTUgtIIiADIgT8el2MK7TJmwTyyY0phTv2gxVXNVbAGByOHa6pk4MW3Cq9uMDuDsHqbGhhyYIIaMErEsk2pt5ajeAAkI3dGNoBFUOB9tWRFcwsWCUCQgFAzMoBkDIUS4g6lFFA5AR6hAUJgLsRs6oPQyO63gFJrIRZypBaoSIoJU7ZEwEgaDBvmqWIObmc5FJ4LUpa2VzianRluT7NI1sohQxwTdPqOorvctVFBZtD8wYb+9OkiX19bUnS1FAV/BauCmk5GJIgsQjwEDxyAhzRTU0Z3dxGPj0AVdYpeMlptb0FhP6mC8CcrkhIGwlHlZ3WaFNXrtUkjMtCg2R3XsAjoAcRYjNa26ZkQgbMWmecGOu4M35jPzJaQX06MNVREqQg0cw4mCKUjcUYEQAMhcggIAwMEDohl4kHkrpa5zztvcdxHSVieLFJScxAjcoQEQJGYn91KdKgIQuyQClmE35r6P84pVKQgaRgUvgH1iEEYCJEWqCALydaLM5ughrsmxc+gCBhD2qNMUNeo5goK3QAmZwCHmubamViuoRbhFooZq4AEeAEAQ6JHRu2gGNYA5ibTwYoWAGdlIJhrCeSpbwCYdHBUaoQNSA2koQPr1KQ9AEzAK12oGRhmyoFX3GjlMom9rnKZTtnEHA4EnWAV4CDd06ty60GSU7dlFX3PSPjTFZkdVfJrgdKpRAZxlyJxkP/a7rdsQ3kUJq6sJtoxMq+E6ZV8PVsVhcBCNcQYq6rfgjWAhAJZuFwy63kWp2GqY13lV88sPH/Xb3m5Xnxqcw9cACAKICAME0zAkZw5u5rNbkCVm8NbuXwVk2TytTX50/1EykASzoBIGADiQAjM6Urg7hAk4R6ipuwoKA0dVX1WIiZNVW5eFUXoCBs/YGKyPcARIrikmUchxOOSW45ScOPoRUfz8TstiXSADYUrEuRspdViTq0RE0VIYJQEDGdRVombQzmHrKDX6Y/iC5RpCGbxHId5sQsDqgxvQoqGq52YR43e2++cXJ39fsMUM3oAwCOP/13ezUBIABAL3GkoCnMnddLoF6Xl7UOAvliuoLBCVQgeployqAhJqh0bQGDwIgAMIAsGNVYmbawNFckxeMYJ8bdN1+YoVUo3kPOJoJGfsK+CkqEoFxqLx6rNjZdt2Pe9xyCWhXfb9wNKADJCbo3lYUavErSdNbINQBEUwETMJNsAJvME6IToJdygoxEBgNqu6Hie3OnYZOeFUvbTp3b3H+vDzd+u78x53IwwICqAYjM4SlL/+OfNGEA5ujhUJ0YSzBG3mc5vWN1/NuqJANAztWY2dmgU4RMJIqBQaFMAAhI5kamamNbSGITmIKwEwVFiW+cgauVmCZLhX7O7poqKcPJmjY79avHr5UMO/+a2cttKlSGKP9tttzg+zLtVQK3jEXG2ZKVvOjskwoxuFEhFzEl+i3IU3bAtz4s2+Y8EuRwDMukJTOy1myt3AzLie/Ozz7VFhevjien11zlep3w0RFlEjUjh0wBQBbuTq4IRWgk+YmH1EgcC0zHqGm3e3ZQGZWl9dhwzUad9OYktOzBRO6ozgCmGKpUYthrWBKbgTNeeoDDFAEAaPgYEYEiGzoRLXflBmJ+GUHj3fG+NUsZm92MvQxxla08B1Xsvia6NmoRbmSRsCUAsy96qxVtVWS8OkMUCUgObkiMIswdzQfb0u7tAimTsXJ0ACIAQSYIGYmlHbbMbhwy5zMlS35laFMQmjubtZuDogAVIouqKGR6ud1/bu9iZmf+oRFDLpYFaHHCmrlBMFJdkwUiM0gACNcIvSoC6OiwKagCdpiq0misSeCceRglmTFJPblZS5bXsL8ZUk5SfPdtjLZEMz/3C/jr3e2byCzctcVKMWMrWC0TAJZAHWEDNDVaylqs4teg+HaAHVEIkFWJypedX15ugahjkAyQMZKRARWIAT+FxVYzNu0iHHOWw1t2atCYmkwHBXQwfzr+P1UHKDiCDV3M7t+PlN1/Qjx0Qg97YFL9x1YhrLjBoUBUHiazqEgYCGEghMnAhczTUolN0BwzEqulPTzCuBEpRdpuyHS8AgnHIa8gUQBL3YSlNLN2o3K5aZbfEwBbdqbgoNyMIbOqGX2kr11FxMwwzdo1lbMYI6cKUyBxFGBTQHYwrMMgJg0dXNl9eTMyBH3kuwBXhdi61qZ7PFUnLuEEjNFrAcChKAAaEtrARFz4AatDoupScbczwTyAhyq3vx9XE/SNQWDZqSF0IJEEdqSA5klACFCTNBC4tWUYPVI8IAGuhEpQ5yygB9wKEfBr98jl3Q7qHjlPsgcBz2qTW8/2Wt5wX9zDHbkJqgNg1TMSN3AHIgPRebCvQFRtWk3rl6LfUown2ffMHlrBigBAyYVATTRrYASHO01q7fP9TQzbe6vE/ruqpqWQwb1mOxRbdXfdrmMDUtbuaGEUiBbtV0FvSRLar5/SJmB9YdwUdb7AilNHAHyEhOxmHogE7gQQbgBEzh7MrhQI4Y7Oj0dXSHxWJuHgCBySjB0qMKO3BSPT6wZT8GYLp/GS7sKO6hD2CNGnMlamNtycEXiApq4R4Qgc4aTG5RtVZEldzMilnD5MZsFXxSDkqpE+SRewiabueIrz04IAFFeGu2gK8aaqzCgTIkSDL0uaNEqqTuHkYNLcwc3ChCwHs319ZaFY/EaBC/OjsFyLKGIWBHRFQlGrujEaqRIxGZiaNoDW2MzVEpOuLOQyzSSeOmKAIzduiZcUME3X2wlXZ+Ry37ydTS2zoZSJ82xFS3YYnXDZfE63YqeRWeGWs0Cw3nElRTzrnLi69lXYg0eVVbrazQiSbRNfyhceTcbXPK+/1Om717/VbdDk8GTEgJKMBLiTCbq6uxcGIctn3KJChMjCtANUNrVMJUtRGAAOawjappm5dFiNK2awo/ula1kGQ1UZMOGNCRFCgFgRN5RBg7sENHLoKNSIFag9VcPRTAc7/L24Q0YEIACKeAbMEafVVR+v9qepMdy5YsPe9fjZntvc9x92hun2QxWVAliVIRBCcqAhSggTQRBE30BHoKPYLmAqiRwIEgDfgAgibSC1BsigURWZXIhpV5szJv3LgR4e7nnN2YrUYDTw1saiODrWX/+v7fxFKCXscUKBo1AT9GOBXWtHJS1iS8DLwdlMmQZE7KEWbh7p7DdTgsuAfgtnekTK8nHtJvPTxXKhEhwhCEAJxSGBBBcEC1gbNJLSwloYMQEZ65BQ44R7DBnGHsRCbm+Xx49rQuKFPwV1HquJuGk062VhmtZSnszCOluYiJxEB6CS8RrShVWRk70c3404iRGKDz6fTl68/OLG9Jc1vHhw/kISOoMx0JI7bg4Nd0T6gebJn7dgyi5q2ULLhY532WoREpmYQaKOHw7v2wPkYXdlaDGW+eIway1PnhR2/sGs8fbzT2uBoxlyaqYoIUlKqFSAgc2aoosbIwMfpAt7762D1GhlHKyHJIhiDYhFc6Nn/8ZBzRogQeXP/M5NUx/VFH1WJd0ygzAWEoJ42DgjgHIwpLYdqNutEz65V1lEnvp1qb1LlJnVS527Gu2HffdnhaBxnTYPKgMI7D80YYhOoEolBKS0+3sBE8XMzTIilBvY+BIzhS0mM4GYV5/4MT0ZH98Ejz2jOSazK/+ElZGqfAOJISHMRRiAXQKAymQZTkB2JkjuRIErAwVFC0JlqgUJlsJjCchXJmYznrmK6jHXm3o+q831QdHqCsnMkh6zP52sRVcpnva5k+3OSHnd9p/ajls7efv337+etX89u3iz9u491zvz5/+va3NJz3kUFmQl54FE4XXzOsOwhlzntmYfVKccQR2Ma+DluHH0PdmYLpNtZNLtxIKowPpyPN4tql0mkp+/D9+fB6dLqQc70TCZ5ShUSaJGOj7hSsxuILVYH43nIIdofFuGU/vNQoBTQTzcyFpOjsfO9yGqe3+nrJ85s3X7WS59O4rfmrX+K7MV3G2wsmFTAjLSWhQigU1Lc00sYVZEe3wZ3ONt3Nr5e399Pr8/3D6VzJ7eNlfLoeH578+YLjSPM0i6A0ifAI5uicBFQmADWhAfH0FwEtECAikCdGBkAAhL2wA4lIZlNNeIQHQjiZgALlEB0CMKtKKicRkJkZEGYmcCoFEwpCslMMkIGMSiksaEvWFtRA7cUNjsXKfW8n3N3550ucz/amkp1wk4m//OOGdfnqb+TUSQsXYtljZlARqIx9ffZ1TK/ulta+v+ZlbJe/85P+9ic/+sdv3v6DV23t0zqe/vrXn/79z/fny/rhU/FYLBEe3jMoQjJg9sjggiZoM30NmoK6k3SMkdExOjmYWWunfU0vSOVs2lu1I/thvRSaGvct1iOYJKdCmScRQanbBJGYCxOzKwK2GyVaq5RETohEL27kN4vhkiDQ+fWpnuX0Kua7AAxkNXUKXfrpYX/V+puT/lE72l1fim3L8d2rz6cf/dd/7+MPevsXcr1CBUhQRwFcQUCGj7DDj2IZz7t/sKqznD8/T6epiOS2bz882tMj9ouMTWNIBqX/4eUJBpReKEMQkEk+cAW9FNVCNZgztSc7OECpSlWYaCCNOVhgAc4kYoKQQAuRFmJlQFUEpXADc4gARAkArEIJZWEmZEFkRAGYC4G5KilTO0tZpOlQJIIptUat0Vpf2rHUseix6GiSJzGiMfNcSvc5+OtF1kHa4Jb0Pk+GeoZKoh9rrrfr2DrLz7r+Oss//UZ+8udfBTye+6ef/urxL/7D1K/z/lyDloljHJaXhKdbEhNPDDqJEMFpG8Q37kmtlS7cymlSpee4RY7QgMTdiU+t3Pbb3m9VvDXKIEtOKZ5Nq9SmIRSVBVQCmnXCOQVeIhFJAwmqE4OXUE7yo2YgswJ0eu2txN2DtlnAkRRjv9rlYBPxOtn5NO5O/e68vZb+qtxeFZlqe+Bty995Pg764oe7rH/+o6/ic1WBB9iZB2S8iIHhGTZGgpgDFVzgkj7WvW9HXFcZnX0wLIiD0tmDPTKSkaDMTMAxQDCGE5v2JLDcXKwKICIlC/HhPdIEXigHwxXCRCAWLcQh1WliYiVNogALqBILFckpAUTPF3yMCFwYzBBOggQIYCHiVqIWCCWHh3lG4EgMFtcSVcckx6J91j5Jr2JCkHBGaNKSfsTzBs5WDQKd88akpncHEWeKu1vHOBikoC+Lvi708HQbv33/9O37p+8+3fdP35yLHWKUe45nGLFJCziBGsCUamlbXILgWlPYF0oaexpBm7wSacubV0st379/3NfLK9c5WBstc+tqHVzaWadmOQ1M4iie4iQpIlK0ItUwZfjYr8xRa4ARUoCX6xxVgwltYVHU2CWHP9/W7uM2/HCtTcs0y/kk57rd1dvrecxLvyef2RTOm0Gz0euvUzf+tVFzevtIApXcNFXpUAq4pbtkAkmZAM2UE2cZW27PdKw8DoWrICVNAElIggOZLxIrXsoQMjmTEJopmWrJQSAgnI4EqgQrSqVqLEIMqGgqTJUkoBPzlGiRU0FWuJAoKbMIl5cdMwmkxKGSYHIWgBhEyAJiisIhlBrObjkyBtgZgZKloJWomkVHka4ylA7hALsnuac5pEMkFL0yD81OSF38bwrrl7HuwHX7FOv1Pqy+3MXIqbpOluuv4/tyr+eHr090A90M6RmuEucGOGAZ3Sw8k4yEGPP0EreSzu5tJ6HzfE8Ul6dr+DHnSRlffvYQuOv75jbKNMnMucw0zdbZhxTWyrWyz2xKpWByop1A6S0P4pSpgcD0Ej0QAIqKEBY6JMHHI+2dLgcOL7QQFT01eVWUmlDVm+hVylralcpOdCPKwXgMqdG8Z/kQs5Rc9EF9nNYnllChW5LOuHCix+FuDahEQYlE5ayS3Tc7nkptWjk6u4CESIjphQ5DBohJBAEiEAmgDEpKECVREBNpvkiRAOGlOFUlofCIJFaFCMuJdRYncmYWES1sRVhQlGq+NF0AAyyQ8sIDcCYkQUAREkKJFDi50Rg0EkaiwihKTbhKVIkineQgOUhGUkf2BBIwJCB7IHoIMzhInYsLA1rnj0X5S9wsc8qngX3R1MqHwSPnkrU6/CnXd0Ufmjark88LiRMfu/VxuCdtSVXlfNcC1KGWvvqeIBYCwZMzMCDM+vDmDWE2L/sed3MrszY5s/PgyVDEhA9pRDqhcTZJwDNGEDtJUoKCGaUGKDMZCTgIuGssjMrg8HJ94r5zPyii8VlqBS9JNbrkznStuarsqDvUIN2oj9iN0hlHygZ/Tqle7nvSZYcmDleGavIAU6NUYKIh5FXAwiMyAWawADFgO2cwM4tGKRzKKpxCQgiGKqVwCsBMykGZmkhmJoYIp1CSJquUKlR9l0wiYRbl2jiUciZUZlJw4aycVaKxR6aRJCiJQGACS4pGIsLxArMxvZym1HQO1zF4DPakoJJFqCUqspqzO9EhvCr3lCPYE+Z4yQNJByyRYR6wLBLBwymMd28C1meYAHeSlXMpPmrquaAKNgsLm1gmDO/Hda2vk06V9EyNaU3GJgKloctyenPKbcSnq0Nc52C085kITUDMMU/BtAJJbHVKLnNbBKpzRZMsc4qyTyVLa8JVODrHQeSE7kxDNMEIVoyCwXyoXgGKl8OnCwOVOpnFu2c6+ryO4klaQcJ+R7GwL5SlJEeyeuHUYpuOLW2PYX1oH8+ZHFmcffiIki7vU6AZ8HZ7+ppY9YjUJEhypghSwJVBjJGRSKVQRIabJSUpIwRZqBTWImniQlK5zhE8ZAcJVJlZGjGhcBJLtsWJJTMAFAGTiCiUi0KEqkILu2ZoraKVyQmOBAIJoVDGS0MFaDqzCztepoTMRUUANcCDutExqkODiQtYEQ3ZJCt7TVCCJYRDJMAR7ua+Z0jmiFSPMHj3AXHKgUhCJCY7XoOr/v6ibebXd4soZLFYwUtD8KBt32x+VXEnfoSNI7hnG8iRdpQmM91br3PV1enj8FLK+ZvPMmGJFIl5JkC6Z+AIJub7uyWVwR0UZEdkyDxxa7XNIg1ZMkXCeLygGoAoiSITGYIo1CWO4lfAqdaEsp4olA9Ft/H+wqO/DqkyL6ezMufDfZaWx0PaRBehnREDEcOvvq7RO9vYbb2NKwUzZCB3hKUcqBkOW5XpDAG1vk+JomvnLJylUCMUoSKkL/Y384GsgolhiWEJT/HkIIEEF30RabwjfXhRKa0gwe4pEnNDguHp2XsScakNhQMj4UAAQYWpiGghKYAghYazBziDAeYURgQ8mVLhAtMcAJI0SROFSMiYOuI2yGyaeRKapLFotFPWlrykNRwEA0VSmpNZbJmW6Z69585gJu7pB7qhHFgCHrnWoAUVCR9rpmrZQ4vQdJcnyVc9rLOeGKI3qnxgIq+kCy0lidbj9qku99Obt/H7D/buvbT5dD6D4ATEwNgZPMtkiWtkgvi0gKixJsEkEkERjKznWaRhPkFnyuahL8yxTqyz9MhImGMcoIwTspDNerAMKW5cNj5n1vQTD5puo7gsb5ZCfn9HQuRP5IPG0y14aydIm2IuSayTaq2IqyTTjbEGiSS1I8bwzWOz8RQs4GbIi3ujeqLPELHuj5GsPJIsoRW15tRyJpIJUGmbjoBmMKQSBMCwvre7V/V8HnrzTlSL6tQKnSr5OGwdRCplzsjcjyCGVmLRVgD4WP//pyGVolJblJpc0wUhyZmACFTInMk5PcNTgIIoEo2cyMEIUNKUWRCNInSMmribS1FqJyaCXzN6+t4DiWVioZBMVV6KzKpnxonDKTsQnCZOY4cBR/I1iYEjXhalMSEwbPeA0vsb+6LlXs8Lv9rEd82zhJzfjnoqqRYZ5TzX2o7E8eFxmu/pjdW3c/3Tb+y63j5eYq7l4SQq8qpkSByVFK8eIgmemgm4JZwooEntDGJpd6RT5pTetFQS9eyR5t5HP460PVwY5yVLWouDqBN1A/Y4OZbAGyW9W6oefbIfSuxSn+Dj8v4aAxivEMWjA2GSuWpfFx81ccRoWY2+VNDq/RJsoBFh5pHDEDtBhEBJ5iQUBqYIj0t4KF07zZWlSTvxPNGSYk1CpvMkBfvoFs5tLuf5uGCsa4xO6bIUmR78d3787iOLSgqL0txi8OhKjGnOBIYjItwsM5kTDC6VWFNbcoMXpIooF4ETInt362PABpkqakWLMfvwNEvP1I4paMpcmHUpoubih/pGsacf+w+f/MhSZmLKHIDHGjC2Pc1NCjElqfM95yWiHJn+B4sPB9LBxkhKJZAHBUUQKDJjy3T1W4+TCc9a7vT+TeQhtohz5ZBD0dmcouoBrq+n+vmsuh7vvpXWZJr4s9PDqz/NoDAGeYgFoZwFEbA9MziJEFyQoCQGceQML74vQS1qS63mnjmG3yx3Lr1UY4kmKDlKHhi+3cYAHzR3rZfp3HR6Mzfdhv3ind+e6Pc/Z+zYDYhj7WFEfBOMzE4U0IVq1SkYkbkPH5iZWh13ajel4fPoNg46btCRpOG8DwxkAWla4okJc+lIV98tuhMqy8zzWbzSmMlZfWXJ0IldN/FBMZ1ru6txOcbThzifo6DcfTa9/VHcbHzYECN9CyIBh5vfIjIZmZQQgCjoBY0umS28OipqgYhHDx8j95FbKyE1tIAUPIz7bh5jt0515bnTtMlJaj2dlI5jfPcxLx/j4++ZDxEhpnFIhpS6EzlhAAlu0JQpSSPWbgdIFkxqs46FaWQ112MQ9iSjFB80Ig2kAKenrQCqDsrUb4ffdxvjRn4qdw9UmPcTTFQJ44oNMjKIiAjTfGjR+1nPs9QTt3Nm3T/tNIxwZI60boktkRS0UAZiZAIDlGBky2SPmllorqol5kgdBTvyYByancJ8t+1i63DywT7SBF5RFmoP3Eortfjw778d7z58/6t/Lfvty3ph8cdHBJH0xlDtl3AlKcS8Xwc66ivVGSKqjXkRuqu5Njtm6dAjJ47FSoh4Kcdh3XciPAiTZR+XYKlvJhbSd8MPc7ONYi+nL6nN0DsMldrZK8ou3Rya4FGLsep00nrPtDAW62zPh5BV6pmWNhy5U4CgDRTI/AMcG0nIipRwTWhtyq2geogpOtNB6AKz9bA+bs/Hx0snAJkiLFJrmeZ65iJVRfc9Prw7vv/d+9/+tHn/+qsTJz1f3EELU6GwninC9Yws6zrsiPu5UmVhEmWZhZdq50Z7kz0LR40xbeLQ0XjwPratEp0LB+d6XZMKP9xJUb0BNUY8fktP+/Tqm9QHk/voyiPIN9QnGVtGaMbB8+CmMv0h5NCJOXiKCNu8pxjaiIQmMpEjMpJe8A4BJV4Ii1IBSqGO8GO9jDi8fwrbbn3brWMgB0YIQqSwNoYoNJ1iuw1/uhy/+di3x/b+l5ePH9+vTzNiu6UorwJnnmpLwPYAc2aBQppyE84juydHcqAPOryUdnr9hp8vbDG1uD9lD9yMql6mcpmIzo068sqJKv72NVrTG2EKi+dv6Wmdv/7Pcbo/8OBHxZgQg+1dxoXGVnxwnjhPDKYXnDEoKaTZsL5lJxhjJKgEh+XYHfFiYwOJEABLUGoBcyYdmXSsH7Z+XS8f+nH9dNluW2c0QZnmuzafpWptJYS8ILqP2xjPj9e//UW/fZjf/+x5vX3YnhfCekstcqucql48ifwYSBJuBFJpVJPiyN5TKAU5DIeX0uq0pCNv+9SYo6wDfYNpzoUnxlKJg4Izq/jbN5gnbbXW5Pirza/X+uOrvL7l6SGqxjjDw3uEL6o39iN8Sp/AlMTJbOSOw7F6OtgTI2JPRw6KoGQOwCIjs29HRnIPSvh+A/gW6JlPx+Nue9geYaK6nEW1iVQCJR1HP/ojLK2nxaFxa3751L/7le0Xfnpaj8PcnOg4Rno0KpkRvRtHJSWh5AC5+4HhpRVRkUmkVALF7uVUdJqwLHm+k8OYe+zRzDl2Pk0FWYi9SDsVWh4qfyY06zzVloi/XP33xP/Vk9YLMzKq9xou2BvGweM5fc2hNMSEjSm4G47I3eM5kqCS1hNbZuaITAlenGhFuvm43WBevVOEeZjn97djHX6NvafXWlRkWto0lTJNpdV9Hfu2j3309TjGvu3XPBDXxPUx3/+NjGNdbyPczJx52ztEJhGEJx2mjklJODmSLX1DF6KZtcmsMk95sK8+nXRelhyGbra7iCfbfhyNjoUXcpPuXmS+O9H8pulXwovK6594jJ9f/+ax9H9sf/sKYNakN1n+LvhOskAoqMOCPYVgIyJgw8083MLdR479QPQce3gOIw/bPTxztwNuOq7sln2k57blCHgoEddJhVWFmAkwG+5hxy7ePY5g9ybGGdxYMMSPPDb3Y7f+0QYyz5mnzPR0SrIkgGpSpEWkB8IpSaiJlBjFd42ZMlJmLedJmpAFkVCbQJHkLY6T9mCNcrYxDj8GtXj4ktsrJhWQli//fOyX/+dnv3/ozz8+fvYqvye5ET4D33PepzZ4BVscJOMA9d7DthwxRox0iz68W197ZkfcLOhmMhzX7eY+xniU7G/8wmG5uQ9cnnCY+P0bafNymqlpwpAxjmG7DXPzUGdxKoVqoeBYCrfiZ7n4dutjf9fHfxh9SvxD5lNkuBuoDTBSIonjMCOAQzixsKi0PKYxSllYpyivans4izENZ1Y+nbgFt+AkfroFVa+v1u143m693vndH5OeXth0pR/9sd0+vf/F8nRc15/enFj+ZMXDivgNYk17HT67dw+PtIyRmZSZOYZvsDXtaubuPdJG7BY4HO7BOThHzUf2QbeLD7/dchjdjmkkIzlT4vD0UCYmii5pJFmYQIg/+FARw6MPP4XNNmr6a+HO5JkBFKQgt8yRQfjDcJ8JqkzKJEzEFIAlRAgVHbl5rnvWG/TEbeJMBrAbfGQt9dw8LVGpcMyaeqcPd0I1Yo2E0j/68/Hp3V/96/+jfPz4+H99Gj+70X//I3lVEP8urfrxZza+GUbmgB8ZOxIMcl+P8YzxhP0HtzDznn6Jw92PMSTGFKvmWPKJxug/3I493j3x5nJMX6QWSSWU43p4+KlOVRVd0qmWokUNu8XRw/qIfffrerzm48zHg9s/KBLGlunAlKmIxwz5AwYDfxHzm1BRVmVRcqAHl0qy5BrhR8gl4PSmymlmEZESlz36lU8h1MeRcZsZZA8a7a5+9Rm7x/vfmQ2tDzFcZf5TK3f/5v1/fMrjn/z1p8888/VrTHNuH6LTGDqMc12x7WNP2zP9RvYcdot+ixGxeaazH3Br28E25HYLG5/2q3W7fNz7wGMvAwJuVJY6nXQ5VWqEnKsUkRicziIiwtbJBjMHS0a3snV42613E1qMgogunFmBAmoAAZSBCHMPQx9HIJoQU3BWIZbqUlMX0Ym5MXGCgAScMoAEFaIEBwiIPZNEdInSBo3M0eNK0XX5ZkUrpzf/3eP14//yi//5/Mtf/Y/zf/zP/mjS//I/oR+/icdfxfq7/ZhWK3S9Ydtsc9vNaWfews3s8D39GhEmtmsf5bJiHfju+XbYz5/2i+fvPY25ne+10V19qKc39fXny9351b1OlVQGk5sXD3nJjXXrbn1Mesy1GGUnuv7w6SPf1VveCvEjv/+o7gu40UtXC3EH4eiJcOMQlbdkHEUnqZL1PPRk7dWpnCZRJkkiIAiesKBMmoEK1ICGr5lF6/2bDMG2ut3W8X3aoVN+D+Uvfnxf6/27n/2dYxs//f5CuX/9/z6ef0gwg2hABgi7oZuNbqN334/Yuo29d9/DLmY+et+jW1z22Me49GP4Y48jk4po0XI6yXSS04nnGSwJRCCCoELCJJWzEF64pJJeR+M6CQenl5wN0xftbuM2lb+td7/5bUs8EioAECc0kyJPLCScRVDYlUahIUkUOQ7bNzoKFSWqrJovXkUARGAHDDk89qDAaSGduCn1HNs1jpXQQaZvjn/r9VT/m396fXr7r/63/+LTr//h//6z/7P99Nv/9t/+8idT+fof/af3P+Lba13PmmmJPrab7et229bruu3jeT187/2yjWPcbvvW44fbODyfhxNwUiqF37xqOk/6zTc837dXX0i9g5DZ2NeMLnRfUTTLDKmtaiuiFMruOkzHIe0ms9PDoC/ewDT381/8/O//5c9ul/WvzQrwGdASaj6DvtZWWnm6p9HomMohGgVVnK9PdN3uPeY9T28rT0sMiji4KrWS0iGbx+XYPw6d8quviVSopd2e3/02bJ/KxhpKgxlossdEb7+aNR5w/UJ7P/r+qXs8rh/L4637cdmSVtDuY7O+9e04bv3o47aPOMbow4Ydw4cHMpmyViImaSJV8jTFNJs0ptqImLPN2qpKEgBPZmdHhjsHyCJexgwlXly9UJASN2ElTDx98fqP/uzvXT48f//b9zRiChLgOXOLaH00AkYleQHpi1FlKqqNqTiJRY6ReriIhw6HEzlkS715jCg1tIW2PvJyWa/P67YfiKGFmYj++f/6PwEy6Oyp60V95Gn9Vo/Hx3/377fvvvt4xM0ya81SSIMliAMSkuBIpCE6bGTf0yOGcaIkSEhnycL7ffVaj/Ob5Bn+jfDy5WevTsv04z/50d398vzD2jfjspDUPsw9NF0yuDuPKG0q09xVDq04G312vL3TP/lqlnHw04fLL37/V//i/z4+3eLZrsP/ze15TT+pLqr/5Msv7uf58f71aNPDm4dpns7npdYiUAbPZWllPtVlaYtqSI2Ui+tHr8tY3oxoNz+9f//8F3/xi23b1uuTFnz2ZRMl7dYSFOEZQTGYopxSp7L83QddzG679vEy6QYC6S9/ArCDHZkZHEnpRBkcqgwqUBLiSaMwzZW0QCZQ01AhIre04X2Mw4iIVYgImUwAg5wARiKDY0hAkiUZDOKZu9m78bSU/HyZ6/n+/OXntZ6GbjnG2yUXG7hZTXB3ZmvbEOfWjupZiIuHiBMLs4I5QjwkI8Ij4AE2aKd2DL6s/fpp36+bjUMZKvSCjND/8M//JXnqZcXot6dvPdZXP47lFX7yzau3d43tQn7E9UNsl/7pOp62fvF+ibx5PPuW4+rHgbwiAmykkdXibCSbqjF3fYm9mRnlXu8LqUgK8/mzz+s8P3z+WVvmMAuPqqqibhIhtBPtjCHZxUb2I3XJ+sY/fvrul7/4yy++PP+zf/Ynmmk/3GLd+2+/J9ubfPBt+/Zf/aY/73ephXiqk4jUUlSl3Z10qvrFHT/MuDvTslBbqC6pFErJFTL1bV4f7x+frr/57bu1P31Yf1Mavfl84iLcGpjUQiiCDRhhvUfsAQrmdl9Pb07FQ4K91lj1cOlOh3Hv6Z1CgcAAklCInBgknuJeiCRUk/jlkw+CcPILSkQRibBuLAaAmYNAlMwkTCmcEGImJkAyGJ4YgQHq7GtcPq2nSUcPVpXTwiyxzGz0UCbn+KgsROLBSDUrkSWTjaWqULJNEiXTAQc84QFyMIBMdRfrbDuO2xhm6Y5gERJ54bjp/wM+9fxBCmVuZHN0cmVhbQplbmRvYmoKNjUgMCBvYmoKMTgzMjAKZW5kb2JqCjIxIDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDggL0NvbG9yU3BhY2UgL0RldmljZVJHQgovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAzIC9Db2x1bW5zIDk5IC9QcmVkaWN0b3IgMTAgPj4gL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0hlaWdodCA5OSAvTGVuZ3RoIDY2IDAgUiAvU3VidHlwZSAvSW1hZ2UgL1R5cGUgL1hPYmplY3QgL1dpZHRoIDk5ID4+CnN0cmVhbQp4nCTa2bKm6XUg5LXWO3zz949779yZWZlZWaUabNmyLbcV0W6pmyDa0QxHHBBBcMIBd8NlcMZhA0FAQBN007RtsAbLkkpSVWVWTnv+p298p7U48G088eB/9t/9Wwgh3rzW4r73SV1k6t3fddM+fP6lWm/R6Bkh/PpX2du35vKTbPuRLdJDmXbpuk/vu8tP0yd/Hp3HU08PffP1zRO7MGdflCr2dP2N9q4cBvB+2p18iDdzDFo1f3RplmXKV0LW7weencgI4Ml6NKFITZbKn/6/Nz///26e/fDLT//Zn8zJd3HQibOYTveH91+9uni6/Mv/5A9qm69i9fC++5//+7/h4H7w59Wy1R+tLQb+xb95N57SP/8v//zRy7Nh5BAhjUsOxZxmxwFqBYXaH/f742HzeHPx/OLdg/nNe3vzzf1v//03f/ps/9/+R29X8fh491rdBfybgDMAEgBoAgQEhagEFaJCJIWoCBQBIRIRKiJUJISsgBEgIUVSgXQAiImZEQEIREFUoFAEgIQsK2ZtgEWIBAkYIHKaIpqAKqFho0AMBc8pRQRRRGHmOMUQWABFgJljCGF0gGARUQBRcYLh5FWhljmSVlmVRw8+wuzZRVAJkqAgcBKJIgzCKAIiIoBImIQ5MRJlea61BVHJB3+acO6WaqrRmei1DzAwTIIMgAAFAIKulAZhVNpQWihVaPXQFAKJai0lapMZSnU9LyrfWm4oeoCB8lNmDlWdYK4Po8VYgK8hbuGBuMpDyZhNzVPgEOse3SyzpGGEWyc+7P/uFjJz9n0oN/VqY22Wffd1v9/t2qerpql+8/X47VeH3S4EzObIwzjsPtxd/+7tYl3nz88pUGFW/T3/u3/99aPL9V/9pxf5Zfa9f/H97tC9/vZruptTLDJUHVNEHA9huJ09FFG0D5ASS67J6qPbnYbj5vz88tNnmAyNWff7X3/9v/zfz637rzbzk2x4cnuf7b36+xkngVGgRvhTBQVqDYIAiGgAlSAJkEY0KAqZCJQmpYgmRE8AJCAoEZRDHBEnYJ+iUkgUFYpBR2g1YiJCWwibqAWRyGbiIgJhgtgHcZIGx6UxqHKrIMYwO2Eh0tMsu32YPILOBFVkji66bo5FBgKISuvMu9Dthqr0c2IiZReF5eTBCMuUNBN6oATofHRTEJuDIhaJHBVpZRQGBASb2bqp3ZFdl8Kh9/fXdpGebviMpnyY9BBxYEwABUCNaaGlRF26SWJIySH7cTQhqplnT3GImrwyOkelj1N/f7wuN20VK6e0V2bk+ehmR1ovNyQjc5KYMHO2KNaNZlJZNIFl4FwyJ1sveU8nr8epSsAI++vjYd9rrJuVvr/ub689rsTV6uDsEDMsF+V6oVct24yqulhts7amvLSKW7HBczasVaV+9c07VND3wgjbLz8nQCiV8+GY3zvHb06n2cYnL/N6kc9XXRhjYVdlUzdnjyS7zLM61/nDqze//7dfH69fP+LxI5termPpPb4OAIIfIzYI39NemTu/SaK0jkFSYE4gKYTEKAkiY4qMIUlkiYI+xTnOLuY+ZQEooorMIYYkBKQASAQFRZCR2BCIwgwIRaaELAJ5jjFBZiBFlYRAZh9Tin423rHzafYyRbJRedBJWZOXuqopz0ERGaOLnKwVUqBQFQY0sCBZ6J0DBJcQUWd1pVGJAUYXsyzaeeTUh5AUYyYMPkaH0GgNymrKLCGBT+4wHN/f8XBaam6zVJUp4wQziAVYUlpiOFOT2N11E6LRdrhhSUlGkXToQTRN7INOUyAYEYUGzSPEmMNRmMaYYopxGh5OMuzD0fQPeYDAME0TRA9hSq4blLVlllmChD5BjKUJYmdjvYm2ASLIiUEBl9YZk1YNsO6ypUvLtFnUn7HJM53b7NyoFmyyVVoK0EMfSIHKQXKiOrOVXn1UJU53t3s/p/7hQEDpvNQWlp8/ZXcW6nSwcs8ujKeb3a6/mWxVZrbcvbk7nTolSgld/f5d3795XE+fPcvOL9B8EuFAMSgoMD7VD47+9t9nd3H99/yXk1Sa4oTCBDEB+xBTwiiRgSNziOh84pSCMCtwzINP7CV5CfMsfkxO+ykhJoMhekyROHJygZB0ZhHEICOxaIyamCgSGYugQSlEBaxUAII8wxq9ymI0nCm7VMqCNqhyRCOqULbNk+N5TBowLxWgAkDMtakKigE1ColzEQE9W9DKLiqIWVTjTHECNimMzo3zNM/eu9jt+oe7nQGyqFx/BBnrPH60UfWKsEYJyKWSkqS13V6/usuvQ/vb8slErdaQGBgliCTnOQBGSQKigjWkUmSW4LrZDd0BeZiDAlKCfji5aTcO5njKchIhmUfpHxhikoszYQkqiwiOOabE3nP0mtgqUVbQABtiwocBZAa7fXrxuLi6nnZvdipvsnUdx8H1gylKO9dZnl88Xx6v9x/ev12dLV98/Hzo5zdfXyXX329mJEE9m0zK1kiCyQ9zFJ4ZknBiQmy2BdvsVJ2GZv722L/rb47jofPjZx9fPH9xcflGPt2e1uVcLHuQ1L1VEnVqy1Hn1/3mOla/u3wcqrM/+NEPqKg0gQAwAIOklCABijAAUELFBAk4CYfIMXoXAihDpIli8BxnH9LkGAisAu/YjynYTLxn0hhSQoxJUhKJUVIkYEUCJEAgWjHR6CSIVGdNtVqlq/fDcaxsmReYXEhxjEHFUBSWqrYad11wM6Eslo0kCePMIpMHpQAokkJtkSME9pKSJJIE3gkCjKwyNM4ol9E8OfE4i3fA2NrF01Zixb0tbFQ5waTcTrFSKc87rG7C5hYWx8Vzvd6ef3GWNYVWmBCTMTNILEhbRGAipFVh6yxDyUAoXD6q6zyAiaDiOMZpwATMMI/h+jZWRryVMPEwejR86j7o1KAxjNpH5JRS30U3YpwxusN9igT63IrVb7859cf4iLatNPMYOEadY7nKTLHIV5aAwpg8pmCDNmr90aI9K5WBFOb92/fZOn/cXADB/niTHINHYYwSBMUajYTudohz+E7Hu1Yb9LTUu24cdsOnP3j+/PPLTQU9u9ub04ef351V/NFCbFHmy00qGr+67KgcYJOr6p9Xj5VRxekV9aIJGYQVRcFglSQkYq0QS6MqYxE0glotWpXpOaCLNIU0jwMLRIQUuOsTW9EsaY7Oe+vJzYeoBIITlBg0xxTnmd2EKUCK4xQcYLFG1Orw4HY3U/mJ1xuOgYGT0mRLTTbXpU5jTL1PgaOPqLBaFXljSSGnOB6OmInKc0GZY4o+KU7AGIkBwSoCwOii79z+PvQjri9sWekxTfvBlcv6+ecf83g/Dw8Px/nV+z60qomm2GZQrFOznjcvJyw8LLO8+PhiS9HN1684el2ogSFF9AQpYVKAGnON0FhoCwRhEA4pakoCJCipsXzehqCCr8A4zEcTp9x3npOXCMGF7pgSg70PYo4HSMHJfA/RcYg+wcMhzkLP//i8vFidxzY/zvl5wTSX2xyrtRAcrk+oADVU1jQX5Xwcrr/6rSl0vsx0rjywFKr83rLdLh+vz13w3/mvE6ft45UxVlRAZCuISWpFYQjH3bXvB3W2zDSlcRruD1cf7r5+fb179Wb3+l28OfnmXJ6U9svGNI3ebME2OtvmaDZUAEr38EGm0X/zFrzXluYEbFQCSFokCRo0BqkwUBoUYRapbCJgpUEpoloTFElshNrjMOMBR8L9KBOSJEghTiMhiet8VN2OY/AUOpRASIGlH3lkxHKRb89byPToiFgw2NaoWg89DPtJF0oXShf5YlmGw+Hw4UNz1rYXj5WhKMwZ2cuqWNfLejGNI6fEzPW6zoscVURgFQMmLpSNUxyO1+M0o7BWlJxzXXfYHa9v92+/vnn7izcLbVbFQrat/nirsprKM8KcqLFIjTI+uq7fpVOfrh/EeV3oPoL0SgApI0CAFcYcZaX3NY5gNSpVlRLAaq20ImEjYn1KPqUxaQyEYHViC4OamACiF8CYuj6w4gQikTUAKmdsYFLnlRXdO5bdoCJWys7DEIIvNkvbVGk6TnOXFaYqqDFSofCilE+flItytVk6x29++waUfP7FJ9rqN1ffxeDPNisCrAtBcPfv71MITWmMVrnNcqXySvvJGAVKOM+warRWXkIHFKnUxXm7erJunlTZWYuehtMQk5t9SIZioxMGVL2uYv5yi0l0roYAhDpDIqtBI6ww1ZQW6pijIluitbXNQRuttVaUWFKSOfIUEjnlRiJQlr0FZeYp+TT3iSHGcYqghAkgiQImcrkNYNQmN2LGIOk4L6zNycwuxd5l53nbbo5qFBcMUp1JpaUEobrQH51lZd4s27ubw9Xrq8VZ+4ff/9xF9+rda2BZLRurVGEletfdPrjRmYsGC2sW1uSUF3outCZUwNZiXipNEcKAFKlQ2UXdfn5erjO7LMPBT0MfHM29l5xAKTYJ85FKKoolCWngAKgUlBqojr3FuFa+QWnzNityyUCU8pyC4xhCQgxRQoA58Bx49GFynGaIvYljNvZ1nP147JWVUqcE3E0piYhG0IqLFmy+Xp+BzrRNBJx67yLEXpLTRspCNbkqrNJn7fLF5Wb39v7Xv/jKNGW+aorcnFWbEdxwe6qz/CxfH/b7u5+901o9/9M/KnKLMBPGxaIIhV2vlllmZj8PY0RDRV0OvZ8Hl7fmoy9WqzVlMDYtbp40OpPTYX8366KzcgzxgyOTmXqZl9nq0YYsoUU/hKtfPkQXNHBAFAKlgao0lzKtaWiAq9zYRgUCJkpjCj4lAQZ0TmYHLvDkZYw8e55n7E7GjfnQ136axkOfZfKoZAbpxikCiM3QaI2Nts326TNb5n5/labBdSFMKTrgpLQUpWoylRult+3i5eXj3W+uf/23v908e/TkDwtambN6fY+74bZLi9VZvopxvPvFu6LM2x/+qM6KKQ6IsW2LxLheL41Wb96/6/ueNOV12d3tfT+eP6mWL2pDSuPYtEryOsXUHQ4IINdIJ1E3qVg167a1pbl4dGazLDf18bp/9d3DeAw6BmQEjaMmWMKpwqkQZ5jnD/vxet5FHrmM2iZlWJEodJFc+EeAAVCqLC1pnRRRGVORY9/PcRbCIRjUZDaFMRrLVlCNHkOcj9d3trAZek2Un7UIioZuDG5Ow+3dzXH/MB1Ps5s9cn7ZXP6TZ3lVcSajjDfd7TEcTJ1sERR2ReWffn+RZ8WiybTGD3f7GP2q2ihl2E/THFOcAdNytbBkMKae0BaFNmb/oTvdjViWWFZ5rsu60GOMR0dOWHNZ6ebxql4trG3CFN//5s3++vTuze3cOx09CYqRQVNa6UNLUyXJMDy857E333bTvS/sdqPaRgrFmfKsPVNmqMhQZ7optC4SV7lKkkKC40lNg4TUB9JKlxcLVeR6dR4DHH7zwU9jStcmU+cXdVbZ5fkqKws5Is3dMHaH62F/dzfs99M8OeTyo+Wz5tMwhPnoBxneHT8cwoNZJFt7Dae6cR//+dqqYrXIY4gP9/cxhRdfPi/y4t3Vm2HsU5gReLtdtFXrnWeErLTaqrsPV9/+7MPm2XbzjJZZe95Wbh7G44ACSgM2dvHRpq4XebYYd/tf/+03u6vD62/fuymov/rhl8zR0JTBtJFjzg5CCk7uXHOUal4+we3j/GKdrRvItRhkrVkpJEmJg4/zOM9zdIFDTJ4jSNSUiPB4180+REU+iqpbFnTdqBRePF0u16V3fho8oI0RETkzGlGhwmVdXV6cV+vaceAEta2JMbpgNGjlQVxZpOXaknH77n4cjkoAo+qG0xBONjOrugVOdzf30zAvl+1q0bIPY9/t7/fzMNWtKRs7jC6CrJ4slueNUuhHf7w9PbzbJ05FbapVc/78sQSc7uL1d7c/+5tfnvaHKktNS9qNIymuqM85ZNhrCJNTntU1lUe7Lj/5rD17Yi1rLX13kKHjhMwYJvZDjOPsTyNag2WRDKeMtcX2xfZ4c/zmF29CYpuSbSvaPNaZ0YXWpXr+6VlR2V/8zdcPd93k8qLix0/LxaLa23mI/vlnLx9vLn/z7e9+89uvXz558sXHzx743vcT4jRPp6pVn7x8eupOP//9f1BAm6qFFL/57h+AdLNpjTEpjuMsx7vDPIcvPn252i5/8bNf3NzcTqcUnZAqs8ZsXi5hqdumbJvq8P509frhdH26f7U7f7RYXVZgQJKM3fT+tw/v39788mdfZYZ//KPHZWE1oAdJPE+JQrBJEU5F5VWhmmdZ/kitN1AV3nd+mmMIwExIWhFlSqMNKOgTI0UvbnS7+WAMcmvdKeRVbhGybWmqHDiyE5mjEHBiAbB1UQYoqiLP7NwHdv4Qx4H95SISaX/wx2/2HTdj1U+Hzt+cdO5NG6xAaXFk7u+nPDP1WREZbg5Hjdn3Vt/LbTYcH2Y/M0VQ7JNzfhIEpXW9sCCkFIU5VEVuzzMW9s6xMGakCmVapWrkLAaZx/1h3sXb707Tfni6fJwVUrVlXpAGHEBS6E8IcWqQM3Vcbny11i/+rFl8zESMMFzt3X6vJSiJShvSqDKrFLlMG8F5SuGYxl3/7ttXNtPuYgUE7bqlQpcvGzRGouMJuHdJYfQhsam2LVbVQrcW7e7mfuiGE/QzuudnL4jM8G64/Q/vlye704vj/na8vi63aHMsBRcZHmO6f31arurNny+nFPZvX5eq+fLJZ6Ut/nr/f3TzAysHFgfX0SCAkOVZ09ZZboP3Yzedn23Xq9W7Dzfvrm6DsK6NjbYMmV0RN8Fxv3vzrrt2r35+a6n4k4++n7dYn+9VlnQKXoQ5cQIZknYpO8nawZm4DEYRmUUiz54Sa9JaGZ8geE6YECS4yCBkyLZUYrl2W0JArRPHGAKplGarmAlzRASlGGD/0I3eRWal0VqXo6CJbNjWFeVNKMwhzrpWF0+b83O7XbBlhpFBJ9fHsQinkCZztJdsF6KKmDFvLrJcW9BzZB7G0c3+0fZcqwyBh/GokEtjqjzLi/zuNJ+OU23nKnNTN4/7CUkpq6t1kVdY5FoXNga+v9nP+yAQUBm0XhT42WFM2o8DCVuOQnAfc1b1jl/O6SkdChy88nuKY8VDzpIVpc3KeBzccYjJhTijQlRElW7O8zxl9YvF3M8P7+/jMIz9gLPou2TyrF6VgGY2NsT0zW+vUKeLT5tqmdUFl8rc17NIqj95ah9tZp2/mo/ZE/uDf/bRJ5fVlx+l4yLdWL4fp1e3B0/Co/S5r/9JavJkl3NO9HmzMpAn/dCN8nB/P03+L3/yLzbLzd/8+t/d7m5abNsqXy6avCrf/Pbu7W93OmmDuH+/f3i1b86b9nHersv1ZZmm6A9+fD+9/9UrclTqXOWKi6NXMt8fAZJWAIjoGUEoxiLpymHDqtaoNYDVYBRkibRQEHbOTd6HGEhhXuaJOUSWJBJjFGEEJhBCMrqoC0AWl5KEWHgykC8qCzg6BkpVWbWFJU4pRYkehdc2X5TL8TR1w7GdY5PbjGM47ZMf0QhmLFlEw1qlSsWnS1QS397ckVbQitLk5RQFKAMj2hitjbHWWmvEpRB9jHOKaC3UjS0LW9isbart2UKXhmJyndtDTBOHU4h9pFzZTFcqL4tieVkTcpwnkahzrZjlGLUTfXDbiJtWPcqyi0JzoXmZq8KYFBMn+PAw3x1P4oKEsGqa7dnydBzv7k7smOOYULwSnwJrNHV2ubqMzu2ubiIkhKOtq4sfPFNV8bBrJPGzy+WyNoe334zHA4+oA31WLL5YP/9/vv6HV7/8drPCl8scTncPt1eugNQKm4jWmVVqcl9a+JOc3t1O/8O/+Tnl9s9+crnS5TG+AVbFWmWhUFYjqbZtI7jj+8PYd7YMAtlyBcauH19szjebqswfPV3v74/3Nw+798Pt7VEiYlBtXTx5vG6q7NHZoq3al48/phCn18zBayQSBKdzj5lZXZjqLKtKa7Uhr4E5hsAuJk6MpExRIKMwJqNRIQAAM4sIIAAiCJLoLCsI2OiIItoYAVGKlCJliBSFMQUXTjuHnpM3hIWCpECSj25y7jC4u1MglTLtpsn1I2vDRYZCdUm6DH3wSmGuVGaClAEzLDVbTP10Aq+r3KLJ+u7ALqYQDZmmblmXRa6sxsxIMszBD93gomdhAUYEa1XdZMGJHxgzUDVJTjMJhXB9fYA5jFdH9l6zsUlU19QxW7z4ix+XmycgFgXzaVRhHg6Hgz8FKBLYxWpx/ih3p73r9poUzVGc996TUkYZSKQTWUWL7VYkRHeIyrSbVkBUXemyUEpx5PvfP3QPw/C2K0r75bP1ujnPxzsfxvuHE+PbD199d/j717vn5t6bh2F/0+/qerm+WNg8vKzMbpq/2p0eV/BFa6pG1t9PueYXDWj2X929hpj94fYHGRff/van4xDW5xdFWX/88tMqr8b52ocTuk6F8XB//+HNDWQKMhVnr42cP21efP/8sOvfvnkoW6OeGhfxu86F3dj99E3o5/7hlmPSIhrI2Gary1XRLIqqDEPilDSKVhC0TmyTRx84ziFZ5BCBwbkwuORC0JlWWmWZCUGcYwBiIGZ0XlICyiyAkCYkEQ6AUtQZJ0CbJdKO9ZwUZXmmhSFM7qiMb1rMF6KaSAbQ6lTjaNlk2BbFkNwofApy21PPsq2w0FgQS4Dp6CBivs5LU0pK0TuOIgkSc5Q4T26epuAdSBBICdhqY/NsjjFIQmBFbCyUlTIZBo6ABHmWdOh88nMaHXAEza6gqvnoBz9W64vt+YXR2f3uIfZzXnGZq6zeBFhOrw/DcUiHQyezMooM3Vx3794d1s9Wj/7wUWZUlevDw/xwu2elUSnv/O56UJo3l61WwGkWCH6410X+B//0JVB+dwiz44fZHbu0/Wj1aLXxp+Opvzt7Gc4fn11czptHDrjkZPpCrvKuzO2L6qmL6kSvuyE93KdNSX/5Mi+1biEcR9j9ZsKkFp+er5pVU1wHl1KiaZY3d++AeP/63bg/lhVlOWKW50V2fr4+O7t8++r14e4aYBYeSOHjJ+UUeH//kNXr7YvvYR7mFXuaxWuIrLVtyTa2Xql6AaJSYGI2wCgJWNAQIdrcFIXFaQjOoS6MNoIYIydmRGGObgrJByIko3RhAQWNRi3KWqUEXASRNHtEqs6tzsvezwzRH4d5dltsbZGlUSIEMolAuOBQJgTMMOt47vpxxOREkeJNbpxA36UiAQEC46GP3QkxkQKFwiCJOXFio7W1NtIQwSUKTNHkeVlZFgwSgRhRjKIiswAcxqAzba1WIuwjcDIWs1qXF7XOs0BGouizpz+kssg2j6Wqr696P8U1SZ6pMA+n0UttxOonz5Yff7x+/3W8fXsq1uXyfDMTDTFlFQ2H3XQYD28fsqpZXTwtVs3m08vJOV0jc6xLAE4xqRRC/2EwWfjiY2qbLHTh4MPv33443uyePvvD0iyVzbNs3vXH02HXteHO+7psV9Xy6vW7r//+tX9OZa03Gv6bF9t3nftfwyFo+nYyscdXPx1lVufrxaKsHH849A/73X13dF98vjo7P7+Pb8fkTJ67Ob04e3Lern/97s0311f7Xvk5Zohfvvz09urhu2/eZ6WYtcaQ7BDz0tX5qXpSV//Fl96r/YOkBNrWS8wzpUwCFV0KLqiCjQbn2IfIDkC4yXVRmiw32hrSmhRpq7PSaA3InLyf+glVBghIqDSppGymUwSAhEBKGWCMvhfhFBOnCDFCjJgSMisAjTS55Do39W4YXJpi8EFnscGEknSKyct+ck1h1nU5WK6sJaUJWhaYnKeo2/VyURYpeZciACsiq9BqypCSUr4gUWQK1DmgToJ+dhOPvbJlm+WGjBKtRCkmxaQZiFn8RLktVhk5BZ3nIFo/vRClB8fRz+xnit5Y1FaGY+zGOO66GKP6eJtRW5X15eXTBLHfH0VCtcyzTMpSaLJdoQFldxxOUTrUwgnGgClMvidFi82KWW6P8+jSV1cPeT8e3w++j+vzxdnF4tFyuWDzm19c/e6nXwXrg44ZJqtTf+YcHevF/C//YnkK0+vfnXAFX3wshPkfbWqrFh/V359sgs+/1mJ/dPGjnNTt3T84N5xfLOHMEPfTgcsKc9N4dfDEN/3b3fzmYewTzsfr+/794clmay4uMpV98uIjVKwUT27+R8+9+90r1ayLFxennf/F//gP42nWWGaC5F30kpCjooSEqEAIGIFZUkrBez87ELQmn/zgfeDEpBFRgBlBlFWiKApziHCaCMWAgEgIAUEZaxiQbIYpBQFMHGJKKVpLVikCgRCn03h8OJm1MjkpQhSIMUw+1CTrVkuv704ag2HOSFSJJqd6oS6siYvmXoGpyoVOMI5hnlxTro3OU/BTjNYYIlQAisCneY5OgHOrZ4XAIswpMQFmWQaSAIIGZYhC4uk0aiyy5DmGOM9xnDUsJTj//qs33vGjx0XZkLKJidtNli9zjQ0BH24efv+rm0rXuSqHYe6GwVGadTxNQ+gOYrQ9b8kUlJfB8/HqPi/U5lkNog4xaYOLRUE2C2XFhM+fndlcvy7fnbru8M37w31fl904lF24lWb4sx9//Mc/ehzzLhbdzenh3d2tyZWU6kVZ/cUXT0pTbWj7MEynNx+kKIvimVX4fKWcd6/ur+Zu/OXPriSk//xf/fhstfm7//P/eri5Xn5a5GuTr2hVZLfdcJzmp5uLRy+388f5PBbzMU776A5xfAjAETiASmVmxhAergfjx/qTU7OsfvJf/5iZdMDoOY5d76eknmhjDHMIwqQzq1WZGaNkf52GbjCFzfI8eQ5z5EzQQAxxOI26LrK6Qk1KYwrAIYJFa5UIk0IkJCKlta2MKFWUZZapvMlmmJME58a+N1qFKLMueHNuX7xoRg4TT10PaQoJJBksMv2kbg01BreGT+huAZUEIkWlrpDxLtz1c3fqHSbIbFmVTXRhPHbFhMpLg1VhLSGlJLk1y6bweekXxYFmNzAo5CSSQJIQgC2UikmCsE/sna2Li2cbIqt//utX7Lm77SkBe8U+e3dzmOeQLxc2z+vLtq6KrCZVJ1WKKlAHUSMvV2V7WV+/4W+vbmI/B78ztiwqsib/+MlFVpqmLUIMaGcv8O7BMca7w8QIfRqKRlcWt4vmIat6mu/f9Cc5VBV//mV9uYZG5oeb+zc3b7vOFQeKOdx0km+VX5TabEv7xUW5/9PHnZ/ju1//T2K0ftwqBDED1u78y0KBUqUTGl980p6tLy8++7xer22RkVHB/ZS9875/f3i7H3E/Yh02i/asUNJYnqe5O3VoRTVF5sNKK9a6f/O+WYxfrJ/kudYP+w4CyzxbIOAgTEM/D70HkwOSJEYApUBZJItkAZUgcGZVW+fHzCAARI7JY1QRnKlMXeSmMErZxCBkU5LRSZQ0DT4BHwaatWnyptBGawNkxn6Yx/G8lsXCZCQ4O3ccDzedd6IdApBX5B2FQAktcpWR35Z1l473pzdgdPvoKSmNypEN5doY1IwhpKmslJFis1jV7RlqA4S5yi2olOLo42ni3cgaq7VWlIFuQCgNTqEFsEiIeZEHlv40RrSZd4VSGiMrgWZtMq20JSA0aDKAPGA+8c1X724lqBIvtxda5UppAEnBd6eeb6QbR8q1UpRZMw3p3XdviqZNWpsyz2IdWbpBoVabVWNz8+LZFpCPeJdktGINmrwty3W6e3s9vL+r2nxRFa//erf/69vfvd99/b7fflJcflm2y3bzeK0SfvvtoVRuZw9lnm/Xj6gpLi+uwEhZuUB+kClPsizXEvVX3/1eJlBvj3oKCF+3myuqtRi8fXt1ezOcP62boljlpBXBPl3ffDBMWVLBJwUxRnA9SmLjFThWd/HID//65/+bAGpiIICi1IUhpf9x8SuNYoRMgtPuNI/99sV2sWgYFAsCiDB7H2AYfYhkiLTWuZnG2J26CLiYJ40SbJYAfVRaaZtnZW3P2pIwhcOdi0FBJCCTGVPmIfE4zskXEO3xpj/tDlc34+1tqNaFNVlVlNvFcjy53e3JoRfdpXZztr5UypcFgU6FDgrRKCdEWV4kr37/6m7cu8UOihn73Z6wI9aY09QNc8fsUYnOSIvVo0g39BkoBZojAKAwBi+YRCUkB3hMbvBf337wMelKtDX0+FGd51qMYcGiLWwGFxfLMrfD/n48TP1tJ0Em712IyGm5rhzHaT9JkKqohUAUZFW2fLIpl+3q5Vpnhc7XiZHGgIjRp/E03XZHgOijE4TJhGBE5VBt9bO/+OTRF49ePssuN+b9/Oubt3dPvyi+/x/XZx9vH33+KEAchoOW8vHmeRji8W463MZXv/oFwETUmYqXn80O+O/fjwz6Dz4rjMqmYR7H9OnLZ+usdIerm9eH5nmTr/IXT58/++h7u/nq3bu7oq7zqqJc2TOtUCkysU/9Q+Ak4iHNfr7v5jHe3s9szdMfPkWrdQaUoWrboijNKXBKYHMrBptlVZcZIcU5uN4rNffTMMzzosnrpoh98mMAhMzaBBwoaavLRVmuymJTalsqXSXGqAILp+Q5xuhPIJFVRCV+TokBjdiaVs+3kjbrLS1reJ/nJ58+vij+6Id1fb5aXG4fjofj3UGrclGuOucfRhhO4+3bKyJXNz5bpHQ+zpI+vB+BzGcvZpuj98F7qbfterF893DV7yd7Vpha1ufrerHpvt3vDwORqYqCNOmKgBQoBcz+kCAJJWHvfT/MQ+jHSev67PnSVIU+fpiyXPerkEo89iEkUUoppfrhkEStnpX58ikZTVqF+zAnl9dFu24D4GlyQCxa+uN8dfXAoJLKUdvpNBuLxowsyC4CSlYQIvmEnHB2xAAOBDX3PoYUQ5/YMezmWxNuH2avtKrb5ux8Enn48Pbmu/7Vr3brZUgfoTHNR9977FxcPF7HNM7hRmWOs15h+OipEKlSJ83e2GBLyFtdroqLT7eLcx1sHOYxnw8qk/1Vf/1VcJtxXKMkA9EUTdWsC61pvSYeZwlHLIK+RJey8nENzbJ+8ZLyQo8HzznPXcKUxkMIgYvGYibTPLDCapu1Z9Z7joHNoFVHNjNFXdrRkVKiAAy74B9uDqitrckU3o9ekoLkBYBDJEKNGQF6Ro7gA0URTwBaxsAxJXeMaUpBei3j3PlAivIyb5eH4+5m//Dh3fj2V324lHWpV1uzebGKDPm2mVx/t/OiJtGRiLbroAgtMXDUOmqLNldZqRcXTbmAu8PDOM0uDNbTsJ+PH6I4l2YEMSiWJSsXpBTVFTGHSF7bVGUUUJNpuVrh9hyySv/gn31OCIVhFCmMyhS1baYz6g/3x/tpe7mo2tydhrEbNcpqUUcXr9/eP5zG4xBNI1kLejLVWRU8zqMn64ddygvOVomItCKlKc+NUlhkS+HUBo4sgTgBZwFC8DfffZiuj7PvMM4mOaPt7V3/81++PQ3zvpvrbPWTv/qsyLldxKLQEo6a8mXZaKRrKVICTK2hdNE0wHz3ag5OlrZaZPr9h6u76/3x2wd3HKmIaDg3Mcvj+WXzxz98ipnCXA1H6Q58/X54/813VY7bVll2RZwkcTdx59PvDp03JFcfQBf6sz99ziEe3t+F0WVGgUhTWZPT3U1/PB7adV6rwrlpOB0z07RNdTwM+0N3dLGfUtGAKYEaVSwLOcXT3tMQpiNjYmwYNSqDWpPJtDUqVxYRXODEMvg5pKgVB4U3/Tjf3KVxEOfahWSN2e+n333duwnmCbeftz/80Zcp9tN4q1BD7JWhuqyYMXEWQDAlrWVdaXHh9bvX4xAef7rMyuzqw8NwCrc/P4137uyjvFmbzUVsN2m9rZpFPrJMIpH9fu92d8P1bw/nC1U8zTDnZRu8l7GHfZdevUoTEL+/E8q10ZgYURSAziogEl0ImsTEEdLkhn6A0+7hcLvbbiGv9KgCQijLnNqVZKMbjiBYLUvANPSmXDXLx4uyzOulFaJRCJD6GXBO6CZILCAi7HhOklSerEmrM6VCvntzGsZ+vc2evrAXzxbnH9U3t8P7Dz2A3N4dNYmhxdSH/dWDLefVYxsBLpdnCQLbo1VSQBbYpdMHHnBZPi2XzfXtGw+dLStaZIuFaVviMRw/nGKQGOWU5BSZJHtyscoHkey0Qi6GiRx3Lg2e3p7sfsDTAJCr1eVSZaXWCkEhCCGorARtQOcAxEwpQpzcqId42u0Ot/erNs9MpZVHDEW1qBdnnb/fDTsQrBclQDqdTLmsl48WRWGrklgwzBQE+xlSTO5hkBg0CZEkmIFSkylrYHWmcpWN9/GUhtVWf/wZPf94/ezFk999czsMCVDu7k9VXqyaxXw4Xv/6IW8HRVpX9aOzx4w8RaNIciiQJ+4yHmBRPGkXG9L7AM6WKmdpW1y2yJM/jXOKmBLtPe8CPzovnl4u7c6FHGuI5eATSt/JPpi3J+pm7EbJrGofLW1d6/e/u4oh7d4eOKT108KWiucAOhUruy4WZmW4JHNmC84xc35+EBd0CP5kxll14dTNDgEQaOjCfJzyvOSYOMYQQVCRybUQa0INWCuJbIhBeJxC8H53PQB68ifUvqhwscww0biTKzhNB3zztrv71o31FFYdntunj5ricdmolcmz9tEGjYE8ixJgHBATiVGYVptVXrjRj9xT2VRnRKhmGKKo02mcggspJKMLQ5qAC+ICOOM5k9lwyCtpttoRzcpAKKm90F63C521ZbuNWTnpV//wJkXubjoAsMvzymRu7lHHapuVJk82Jkr2UVYVBfrZjb3MaByMQzoE1wV3nGckVEqNvRv3fVFWHEOK4AKj0mQrJMWAikFYYxKNARiGIYR5Ohw+OHfabqkqsWqI1jkm6u74dHt4I8f7+3RzncoWxy1WdtE2y+Ksrr7YEFnSVZI4uWMII6STcFRiDML24myap971w9HVy7Zar2DRwTzfvzmc9v14Sm5MiyprSkOWa8slcsFjznMmvizU8onttN3rGuKSxk9tzBZjUVSwfpRsPuhQW2CuIFModUN5zn13CnEy64IKPUfwJGibcpXTbh+Gk9bUtpQiupBAKEqRvPgxAQEIAydIXhInL6CYwTHQGJNwMmEmiKQjEjeLrCyQsHJzKnUwHJUgCp4OaR4SMzBju9x+/88e1YtmtV1vt1a4SzExG4AcxQoHjiOHMc1OUhyTTzFlRS2U7e76iNPykTUZHe97d+o0Uruqm2UmYobbcH83NkuqNeEY5vvkTz4EmBztBn3S2b1peqljKkB0rqUytDI2M6j9ulDAm63kxMstGpX2390Px0NNW8PlQLpH2qw2dV2Enue5a6xuao2ROCRrtMrK4eB3H0YZEYSFA8SRgwkCQColExm6cWZOjfGamDQrjZttobEq824eEaYj+KgZSPD+xvVdiAliwp/8yy9/8q/+6XKx3W6fuPldf/p5wiEGVrohVXH0yR3TPKdhij6GwQtQUa9Vzt/89Gboh3XWVkt79Xa/v91dfFo2Z8t6fVFUy7/7379+94s3LyC/aHM8+fEhTvfOOzwNxHtzNOW7fOOxcVAphMq6RUaPsrLIlL7vjNVw9v/X8B67umZJel5ELPfZ32x3bGaedFVZprskokiKIqUekANdgy5AQ90Db0VzzSSCIgWCFIWGuruIZnWry2VVncxj99nud59bJiI4OE1g3UEAgcC73ue5tN4L4CIcg2FxYHPGaTkd+T6qfuKjVMsB0gFiLaXmQyrHRRbvl6xxzHFMnMX4YIKHgOqQQRVBVVQBRUiEY1FkZiZSoUIAy5RL1jKrLJqJtLF953uinLBktGtzf3pYSlziwGmXp7FuwFnGvMTpg0gpaWJmEypBzrOoQuWMQ6xAmIvsTinl0914uF+qcy/OJRU/y8O+7IeUofVtW47TPKVFDDWdVNVsugX6GJusXjgSAbmkUHbvzeTIvrwJXWO++aZtepGH32k8Np5DjRqXEtPdb44vb5fj3PR5NV7D/AGverns9Dgt+2HmUJW2TMcy7ZIwuba1XQ0tqcWSAAABWBSMiBTJKYKUIlFUJLOKOLcQ8XzQPEEhK1v/5MX24tkqT6bMJnj6w4fvvHCQ7BQrgfUZVDWrHNP4HgGMM0DONmv1EociLK33xpSe2EjktzcTmruXu+v7ketqlT3tCvr06u3y7m75Cmx7vr0d5frhKBrM2arU9eTWp9IO05kUlWUgUlOVMsCbcSREO98dTWdPU20duLlQzJUj1xpyqiiPLomtrzqwVEpty6qBCrLXtEjUWAqkmeepzGNSRQGOyzKPs/OetAJAIVAFMgZBUQyoElQKEjmKsguVtX7BhUtSa4DMEsvxMOcB84CXl+36oqG8mFic2goqa1zOkOZy//5IBFXryTuz8qXoMixaOBGTlC6I68nkrKV0Z/asrsMmaOVPJ07LXJJr2rVvVli3WEdoZqLK2I5CpV3XSHXWNlqEFvAkG6fWYtV4JLLH378pq/Dmp+ujWLpfXF6+3Jg2VG0VnSlmVX0daedxMIu7qIy/NKoRZI50gpgizVOed/FwOwACGTSV7K4fqrrt2wbILqiA6L1FILIOgYIPqLgvxxxTtwqhwuHDUlICK2Bht1v2+yHtOO747B+/+PyTT8u4T/ujg6qGDfl6mWl3G//uP78no2dPGt+G5qlKgcP1AWLy98dA+XKVqfe3r+Y58bMfNJft6mRXC9Q3f0wffj/XoX706LPu4hFtr3BwcGldtQrtJTvnq9CRPTPBSAqRrJYWDVoD3RqI7J9807vGna1MVZnSrSij+KFQSvMimj0gBhqXiZKGhJ1FXjjHDIC+CQgGwHIGsBNZcq0zTWBVFhEtIFoKAiGhIRQuBZUJLAKKiuJHfhQ/Xu3OqPGQ55JjjMeyHEseJ4mjLpNOsyqKnNSzqtec21VHBlwVjDPKBQqbtMgSh9MxYrFbSwS3h3IaZPXirLtYL7NbEsXlZjgdnOnapsmMx6ksGRWcqgMxKESMCoBWDYIjdEjeejRWyAEZ+7/+L18UoBtsZsHd6otSEo9vx3Ra3t3TcDp72m9WeHz14XidNmeXZ+vth3G5vR2xt5vHZxo8t9X9d4f9+8V1VffJtqptUchSWCdhmo9FgaRrEJXjBMKLEQJKJQEURiOGBJJorGpp1rrbx+HdOD6kcZeH69v5ptLjwHd7KB7zUUMj6xFD+8WPvgRCNqyQS9nJslTzPh+md398J6XoDy5s5f7Tt8uHE/xPf/bTx19/NX23H27H0/H1zfV3Tf2lCxeHSf7w7qBHFW5M8gAAToALWUEAC+xQvbFNEwBtglaF7DrcZ6HDtBS2FoKSL1grFF0cjtQcxWopx5hPMVSzCRVMUx4mBAPgJGTJzMMEkhEcOUCDLCiCaIgQiFRBQAUUPj7OwqpcimpJc0IlLqygIAIsWgQyE6tRTWPaXw8wzrrPrbdtY9VhgUxUnBNFyqqsAjlByc6COMwCqcB+QEy4H3k38OvvbyXUb98edrtpPB6Zk6uo3dTGQy5IYAyRJWNQEVREQACLqEphQYPJAahOSxRB283/LmUT3m9z7vzZfwN+PeMZQzMd3vL1XI5l5afd9TDsJpOgWmZ+PyzXQ0EsH+EjY4Ypy2mBqlizAqQlEllrGocAVSkqQCCgQGgUYJkLFy1pEcmaZmN1GWZQ5pjKUGRKuhQPaoI5vZ/+9j+8NSy2yGdfdl/+9EpEpjmSJ2dOojQnyTku4x5KabfOep1rf8z48M5nsS9v4t1x+N//t39tnOWShLmkIiKbJ82Ln13NvEx5aSg0TR1IG6MFhFSkkCiUwuOpWCNl9iWW21f3JYvV4QjF2OhcAZvGog45A4irgula4xcw2VY2tNY6IcjelNrLx/GnrMsCJrHTbDhjTChGRdlynBIhqAgoiDACEIAigIqKACoRcCnKrMIIwokTfGTjBAGtI+utrb0FY8Fg02V0igVRUQrFSYVoASoJFgZVJSsW2PviYFo4Jk0sLDINk4KCfqx1WEMGkZWyFJYCKghKAArAAKAKSGgMgWghNIacNcjoCBHBLt/eC9gWyGKc7r8D6jVYNnj19dZ/sXJ8MDw/fuI2Y5CSpSyXV1K1BFF04YdDfnc7GwYBNPPo3t5D6LVv41jeT6N1plk1SCQlE+KqMmRowRmpVB4RbZ7GkiNqNKbMD3GI6bSL0yl3bejX/vzLsxd/+sSF3tVbx/ruVAJAr4B5huMRC9nZKQOWzMbOZ6vFa1mPUed398Mw5MjFWFN4AS2EgAiVM975XIbd/m1JnnMoJExaLEQyBTSrOGe7vtWSa5O9d2dnvSZpi3Bmq7ZSIGtQUC3PVjFgLWSDBy+kCzAreePRzydOMYHV0BAaQNKUcdVgEPCC6lRLBpfJqoCUOQFbXNUIyrkIgFgHCFKylKIGEBWUQQsoo7BkKZGBgYhCbdt18LUXMlBVdr1Nh/n4sFs56TqLCNYmEZYszIgCgFTAFULb9r5YoamoGEcejGGSj0edAhEQAeeyTJHAWiAUYGE2pGRFpIiQaCmiRbgURtKiUrSkzJkt/emfIEhVos3SvtmZePT1YwpN3o88p/3tbhqm6sz5vt/v4s1daramufKeNbD00Tz/hEjBKRwGfP1+NsH3z3XI/Ls3J+RQ+wtF2H+40cI2NYQwHg65lLCyxoKR2WiStOi8yJJ45irYpvGffrX99IvNFOG77w7rTy6vnjx788c3f/3vrr9+Uj/+7x41PZ9djDzMx+MNFnK0YaqPskrWX3511s3x/fs5l1J3CCBajHKZhpQSA6hAHnbz3cvTo0fd5eVqGfPpNLSmq6o2pzSOPOU8jHtJSz7sggv5ZPOcX/3qdY7ZHsUTahXQWHahiIgFQeGUMsdUUuEsqgBEAlhU1QLVKElTBOPRk/EADUBhtVA8lr4qCkKckNGAKIA1yiqckyhoYWDWAoJIzMCMIqBKgIaM9cYG0/b1atun+7jslqaQmiqpO45wGOB4EoPMXdFYiItRQ4QEyIKqFCqnQMFZb42xgKSSijCUKMqAZJEMKUoUZLD4cZGyqLCCAgLSR/fZRyWXCJQsOXMunEux/+e/vW8b98/+ydN179dPYo68u+Xl/nS8GeOYFa3zjVHFyCFof47dBbWX9O5NfvV6Dg02K1w7ehLMfs6HNK9kWDcfECTwACn4YW0b/+KrdSn84be3acqOjDdWk2jmPGfImQoZ8H3fmZWlxlBFF0+fXz15Nk93Ml4T13Vo6/a8OX+xGw//17/53WMf//Hm2ARYr7y1oQoKICYtKto4UzFceu/qOrRKBo4DxpQ1WYdyvt32XedCsIguFR5nTQVQck7D6UTW9m3nvG2bCjjx1IIoFItOH3215VLs7b3Mi4wDVpYALBHlZYljKVlF0ThD1iBk5WKtVi3aStFJQZ6UC5IaYw1OhiIhG1ASgAVBDWQVlHlSkuqiL5ZAWUoxBkEJUACFAIDIGktogqud8aY1VFNVtd63lgZSh0xahMiErtXD9HA7B7eMPJrWQGvQiBU1pA6UUAOiIaqti87VAclBzgWAkgNlrkPVNQ0QASKoCouqIqGCCBckQvwYSloksE2lRcsiRik0RgTsAmcyyl/+m+87p08/O/PBf//dNI7y+MVmvQnGLIj5tLudhmNzxv3KDWk+jbNbw5M/wYSyIO4TTCOSNc2LFQR4dT+lCJWDFNOrv/ve1uG5/wSdJWPJ6enhxKXU5+RqPH/SNZU3C2Gh3vW1rW1DpqFNu6JYtdBfVhc08Ltf/6EkfPHTs3hTTqk1AfnRXDyUUJBSkGTR202jVeOqdY78tj9z2XRXta1Mv5mXmK/f7o6HydcePSiCIjBpAgGPIVjryVWc8zLdR0T7YOvgzXZbGYJQq7HzsozKyZKrlPPhbknE2/MNKCyzLouY4KtVTSQIejpoyrlxEjo6HXkZIzjTNBYFUhFWnFS9pX5tEWVMmQs6ZzhrHKaSOU+LqTwAIhEX5lyMsT6YpvNdU5O1mKj3bWMb25CtqbIBC1lw3oScddyf0FX9ZmXmMHqHtadNhUYECqpozkilcQa8M9YZMZUNi6vqurWNZTDG5qpa4szGmo/qKgRShCLy97JJo2QUPzb9ASRnAMhCQKCgH7MjhGK//tklpKKv1In0zz+rmrBNN9UUzy679VnDJXFJhyW9vh/7rWnVXE/8YZ8uHtvHz1TAiMK41zuQylSbqp2n/OFtdN48+qrJs0o2RXB6eFBjZayoYNc0ZPWHP1ttrnwlvRWPSAC4bUMXPAUihwLIsWhCKWE+6m4Ytlfh+dOzh1O61b5abz79Jz/y8Zh+9bfLfnn/7Xtqxs9f/MC3KBgA0NneOWzaVegsCDmKj8/P1nXLUBQ41LWvQmGcdqeP1F27bqqublf+6qJeCh0Xw4D3i0BhOkXKi508Ctl+W2kq5dAZVtt2tglVdwQU560zpAVYJTPPzE7JIC6AiwBYrVpFEASCDMdKvFe/sok4oZKB0Btroapyzio5CTMUh2ysJRdwe15fPK7pVEF04AkzdsF3lUGLYDAqMIsKiJpSOAkrY+2CM64wCnm7PjMTKGDOcnpYXLRU2IEWNIbIGu9s8C5477yfVbhpKktmjnMqaq0NwcskMSY0BETSMAo4Q03rqdBCJrHGJCookU2WJhoSsMN+skTnnz4JxqgzMWdnEbw5fHc7/JH3p9tpGdwj/cE/uqgeUTjHJ1e18CN2A4djmmQ+FQVzdW5BmcuIqP06EMPpfiyTSE7B2xc/OkNj//jrOJ7iMEdg6sLFee+WZZY8ra4ua+i6rqqCm09jHOakdBQ6gR2sw251sW2Daw7XfP3q4dff/vLNG7192z+t9c+2KpNdysw58XCvDYbtM9vVzz+72p5mf2EpoDEpZVPVIUV+uEc5AgKJikhhLigGye5vh/1u6lbd+eNiqrpdbTZ16M/WKef7+30+jfO3e0li05zV2XDeVt7xPJWcicAajLuJp/lhdxiX8dHzfvOsdWsxnQRfV552SW+XUUhjVofa1FCyLnMGwBCMRonHxLOoZEN4dubJ2rd2jlCAkzAGC3UwYpaCpW2o86FuKh9cjssCUgASUEKKZEJd1ecbk0ycdDzND7ubw31ebt1wFv77f3BBBVmUhCXNkGdrkZxdrRtnjdaqTkW9LQpKxrI7fvSxESAoKKgoEAikmOeUmaFumwCm20Ad7MV5G7ksJs2eh1fIAvbhu8Fag4MxCB/++H1Z5h9+sd303q8DdC5Wi0nw7Pk3Tz55fld+t8/fJ4QJYF/SQYCNhc5ywZioFEoLlwVwQUxqmJQBikmDvPzrW2ONSdhXahtjarNqq87VzdZBq5U6B1ziUCbc7ZaHnS59w/02DcPsj6711bn3BaqZz+/887OrRuLndbqsMQ6zEbjqrGuN0wXzBMuJGBtrTKgiJ1Ze9Suwssy3cZmdq1a9rzY29Db4ydlZwBRwmFhmQ0jLfpoe5us/3NTb1eEQqXG69lr5chZKBDvtkjFkcQTh7373Nk/jp1d+uzKudgaxwiA5b7aPLrZfnA7XeWBgAdKZeVEAQ1hZTVCKFoBSRDJgQSxAjCQEiiXB/ZvBWNP0TeXJNMa1tvIukDO1Jw8YDRTJS+GFp5lPM3DnJLTFlWwmCda1xhWtTGlas236Xu3zRldO85IAsQ3GBzJakBOkBSB4Y8FRKVkLVKGimojumdkaS5WtG1t1lgtzyhkMglHEIoiAZc7LlHa3p+p8xvU2bNvVOqi13Fi2bK++qQzZbbcB1nK6yFO9uqh8Z+bDVGLpLrbb/nHTr1VQE8FsAobgbeOry9ClwtFyQU6RC0lEiap5KXnR8ajI1PetMI5LIjLPvn7Urev6Yu0r23hYTkeTAhYz7jhNmBbKEfelOjm/pGrZ6/7IaSx2yuuU88Ow++6G33940sNF737ygzXFPL86LgmUsWK5UhVmmXZQMsGZQTvvl5hK/+SsXbePn5am7sddjENRAJlUkwPxAApQjNWqVYPkjHOVX1UrcS7dTVLAXa5ihv1+lVOxm2feoF37Fhni475M2Ky8rSjexWWK6/5q/eQ81LWKQiFI1lWhgWBscK6ZczrpHEsZKRX8r6bGpBx1ntkirttKBE8zK7qzx+vzR6vzJ09ccPPpdVpGEwkLHPdlOuoSfUp2rtziu4HdMOo4SVmYEjeZT8dxePWBh/2mgsutff6Vzcflj681iX7Ee1lVlSUNqEq4IjR5zHHOlkLdrLbbGKx35TiUeZESI2sxoA4gAzAROIeG0Fjjg+/qbslyfYyCJs0cC05TkyLbfnMVp/zL/+/b+TD7tHeYK5OaytzdjjHy+VdobZPjNOm88pfV1T9FN6EdkQpB3k93bz/cygRyoHKCeC05Aqn3DjYX5Jw/326McY++emad8T6kme/e3yFiPI2SkuYFmI9zWIrDUEMTqG5DaMYj5/3gxmkbF309Xe/fPdztv/vD25zGNO7nmT6rq4B6ue2l1ziIC9bEDFPEdiY01Xnw1LY3J2Apc5x3QzotZYyQ1Sh548i6wppZOItkRUA0lDOPw1RhQcLCakoJ4M6bMIN590gliW36s5KG3/3t69273aePbFdj0Cl4uNvnWDBmNLYq+VDS2G8+afvHS3m/8LVSUoh5PtzcTTRbd6jKSeOdiBKScc64lQshrK/6KlSb7SUizfMxxzwMe2HJpyRJpCQRnWxIZENbuaY2dW1ChadTGSY3L01OcDzc/eH+5nj8/vqmSMo86Ww+IJyt7IvPG1IdIREZSgWWhCmi86HzGuq6djwnWdJynPK4lDlDEQMIZI2l6NgWJk4qCoQGMGYZhsTEPpAyUGGvZV05Z7w7w1zU/uW/f78M483NPi1Df/70fFtVLlmSs3qlxvfrM2f7m5fvDzfvP/lmW9Wyv324uXtZt77pK5hopa2ShRAqwPUzBCB1jozxPhgyDh0UnE8LKC5T/q9ZtnJxCgiuAnS+7qyrTfBkcNyd5vl49/ru/s19y7Ery7rWiyt/QU8/p68QgYz0mD+jU8CENHLMsRQEXCIWhPKw0IhLeQm+88Gun3bNZedWTehcKXl8GJdxjkljFluIsvpgGvCqKswBTV81RoCXpEVwzvMH/u2f/w1tV5/++CsI3v7i/7kuabq53TuM3Xl7/mSl8QhS2v7M1m233jrb797Nr/7/637zydUnvL/bvfn2u+3F2eWjRzjhClomk3wI3q5XFZAB78jYYGspujxMyrqcFhFYxiwsqYgCqPVgrPEVWuf7lqpWVFVh3J/u3w13r94+vH4rFfgG3LZ79PlmtX1y8fzH3rm68jIf0s3veTymt6+5zLHMoLhEtKqJF6Si99+jr9pvvm7P2/qys12j0Cqob+6nIw37pKdsMmICh8aQzymnJRM6Wzey5HIaMRccl+U0vLy+7T+5+mf/wzfteWeXWQjtJ5+/aBt59OJsex4e3kxxLFbRKsR5mk6HnFjVFy4xDy7A5qLnpbz7zXu3rp5efJWLzgtjEjMnUUipIGgR+phaCEMuooBoHVnwFSjAoiiKRURTyXf3rLsUOWe5vz7u7iaJc9/Vzz7pv/pic37RPXm2rpptu1pZY7zzGtDAEx4bk07krb8+iShUBLX1F2dI7vQu8bLUmUEUBFCRrEUkVSqZS5KyAGcSsQoC6JGATBEgA8igS06mSA2kUuZxKrf7X/3ipe8bO09SVfbzn359fm6ffR36Xu9vdvMBK0UFXMZxMCYvrOpLyTEdfY3nj9bvf3v/+m9uPvvJD77+yY9SzsNwSuM4zjdJJBeWwjwzCEJGEZgTAFK7qY0j6xAQljmXIrkIF9nfPcxjHE5xmfNhNw3H5XzVn637Fz98+vP/8cumbfvNBtUj1ARk0UIJUhNPneEH8sbXd1xYa4TOVZ9dAvnb77+Px2WdCrCgKAgYE8haUCyZ8yJ5Ui4oauHvk05Fkw0YQRLQKSfP0KIF1uk4lsTH//gb9MHaoFUDT551FxcmzcdDyoRNUwdva4M2jdOYi+RoLR5396//MPcbv9l8tgus8j6laRoejof57ZsHwxIYCiAbFCVBg0S2dihIoCI6zxkWUMmicoqcWQtbEUyxfPROW0frddPV9ZOr7ZPLzfm2k4UTL+N8MKb2DoksWkQVZQPqjVvZoE2zLjkLW84Qx0VJEmg2KISCsHt3L3Don15Vq64Iog0UyDbFLcYrSUERRUTyTsAyYGhct+lNyjLNRuVs3WUXilhlY30rzdp9/c364sy8ffl2HkaLT3zfBs+WZNkfE2eJMTi8f//2w/3ppz//R19+9Se37cDyt3E+Hndv374+/vIX79d18/mjR+qpNChACtZYa5tWFQiyJD6dxpJKHAcuZfzoYAcHQAAIAMZgIHO26itff/n55RcvrhyKDHnJeYljCG3bk3UeayRSNBa1stUFNKFfn9K8nHjhBafDJJQW0OyoWCyg1799N+6Xp/8trD/BUghdY+voNAXKteYsOYugIXKBwWQwxlTWOJ6GKDtr6Vm1TRgeNJRsbH+1anvngjEGUYjEWB8MVawLi5SYMS0lZeGyu5t2y6GvXrdcv/nN25sPqbuyPmx9LbYzJlgTLAaDLZYCY5KS87I7iECOyEVTVC6QGZhBFQA058KMKqSKhQuzYGXQ4+nutPOmtqa1zpBzVIFYVZQieVpUssQhz8Pw/u1yHD68ui05gWV0JqBRY3enJGqTMJPY3leIDDJNc+JSEFIpy5xKLFhEWZnRGAPGgqIq6Uc0zVqonBQtS1Zj+h7BkL346lHfUGistWzFGfahb43vTiPnWGBaYDphZMzy9uXud69u5lfz8Ze/f3Uz/f7dvH0euv7TZmOqi7fBBddXtrJ24+dYDsfDPKeHm6OwBtMimJKtCKZMIqTIgBCXHJPkZJkpxZhzLhWXkMIS9W6/bbuLbt2s1v68AQkqWErJaS7TNF6/Hx/2r37168Mw/ObmRlQu++C9re8HtHbOnnz1KceGuH7UhnPKKMv+CAHB4RTT6TBKKZhZo5YEYIN1HYhIYUFWmzVY7YOkvJTFeLx6hNZZG9rOVVgwZGXyrQ3IkiVNCGKsKcaIMVQpBW02/mJsFOHDbn4Y0hDLYT/cvfnAOT59dOmEoERJzDMpq686oLLKxIWxAAiiQREEX4kya2IVL6RJeVROYhSQsF+7i1Vztqq3q7qvmqZpQu2sV7QsGkEFiNUWrNGubPeog54e2ywq294ZS2CdAiVwSmZ/d1Qib1siHzUzUH3W+NqjYaWkyILCqIUQVChlUPUsOec8TaDFmqqgiTF/XBAG1bbbq9pjRDMp23YAGubjUMrBVyvnwxBClmiDgtPH1G22+P718Ns3w27Kd1N8/er613/+n68+v/wHP/9mfjjc/OYlR5uTiKu7zSNF3JxHzmm4+1BSyWxFKZtWAFIeWDL2UhXl26mcclWDUXr+ovv86fl2s9qu14F8MBXBxwJIZF4AAC1AU6yx9bZ9ev5JienybqvCvjOiurtflkXK0aZC3//ujXl5/eT5s7brxyxJ9Wn3uK+89Qn9JAKZIRtJBlgyjxwAOsB5nseHB3CuWm0zLsNx9BUQg1Ww540Y1N1+GZC9erQd+GIwIQKCWOdVmkJcNLFHao1pjGnspvbt+apt6of7sT3rqbBVrQyxEqNJDONpETTGWGVQqJGyFmXRmHMRjTEzZ8GgQA61dnbVQFPhtve1Z9JclpmMoIGPfjki/JjAgQEARiuEYCGgRT9XwiVLKUWXLJGFgnHeAAES5JxjXJYokWEZl2WYOTMC5azjAGyNq21lS+tiYOmy1Jqo5oRmSspRl5QomHZbN11lf3y+TEv5i9/eTEl+8OmzVRNqspZnmKOW0jQraFbXp7SfTz6ArWxIYSPy+OrRJ0+evn9z9+1v3tgQfvJwtCmd10HURawfZnn19kNB32yeWfK1XgKmlB5SSvf7YUllOE6cebV95qu+xbSqyg+/rJ8+8Y5Hy0ue8mF3tKb2tnWVrRrngq/bBlCAGKkgFgNgmpZz8KBxiru3D8uS7g4LK2wu100InFUEUl7yqRwHWbKGznEpZSmkYTjw9TtZPw1nT+qzevdsdRfm2O2HnGis7e1o/uYdz6e0Gw7U47MfXW7OV/a8GhvSx2s3RMyKx6QAzpOgRCj88SNHswIrkrPW5BJPU26ndJrjGEsqmhLkiBSBRwYi12jt6HzbRrFJuLAsjCAmi2UUdN6iafrABVOkOC9UJtK0u8uV8a3GCpJIEDFooYBilESsJWNZABWgqLIqq2guJaW8u5/inPaHnBKnBIrIDIZVFABAEBAVDZHgdIqsB4JA4A/H+eb+mF0PlV09Mf1qY9OD2R9ATCWVZ9FSEfH6arO+2rZd3TTB/vTsbQH/2dUXh1j9H383fH83Pd7Uja1cPJkp2rlQZtZkFIPtatvs9sOvvt2/uy3fvT9pAmYakz8eaz2m+PJYt9Xjz/t+2z/98Sf7if/8r9+fRr4/eVH0TUXWt5c9GdM0nyLUf/Fv/+rdy3clXQsf3/0+nDXui237fFW32/Nm03NwKI4XXU4ZS6R4VBbmTITOuRTL/e1xmJeXNzepMBiHBuvGOW+mgXPK5AySQUPG2crUXtybNx/u7/bbsy/X6/Nff/uHv/nVL7er5xfbL5p/fvXsn/8o3/+n41/+31Tb7unmEGuOse5Wf/oPf352tb662rZNsOWP79WG9uqMoaWStYCYWrxh59QagoSSLUIgUxY9xTRPkhkLoDhSQBCb0OwiOvW2XavF5Th7MN2jpRCcd8YjanZFAEMDxCktmgpqVMUUuRSt+5ULdV9D7cE6r2qUUYsqqRoBVERBVhQFBQJDQlCsFpVigK03FaKQc2gwOGsMARspKGDAkCYkQUMG0KGtyLe+7epVj9bHBNO0HOhheKji9ZzvlnTM1pmqD7X3/WBK582mb+t6Os4yZ/v9v/xXZtNc/M831cVZN7zo0sp1a9o0RQ5aq+XRlWnliUz3m293L78/Ppwm65vman32zXkaYN7Brmr/6lYeb7Y/+4efy4eb7/7jX3Q9/dAezrr+z37yYi7+2+9xiHhHfkz5zV//8rQ7xOmGEx72yYT65//in37+409avg6607c7/XAy6GQslJImMI5cQGdM1VdEhmzFGZYRVErb2rqVy6dXgKAWRGGac2EZYilZIzpGKkdShH4TqrrZPP1y9al9+unzq6eP/nB7Db94fZqP4/KL7//q8W+Xe7r7Xm/K5lH76Odfw+J+9nubq3V+fJGy/Or//S2nbNPN4ArDMmKpSQqpoiEwVq1RQ4AAKAbJEHKWZcolCyCRIRMsJUCrjDQzZDRUN2x9XnKxgCkaCW1lDNvaQ1Yy4JChFElLXsZcEkhBRFN33Wq7rcvoOab7KZvp7wv/osAKRlANARChMcZYAwKIgKhEFlFDQCQQA6KasyowgqiIIDIgAwiiCKoSWW+qEJoqNME4B+BERWTOyxx3sxkSsSqQqYMFWwUy3pK1XHIcU47xvwAhQ5MICmVuZHN0cmVhbQplbmRvYmoKNjYgMCBvYmoKMjA1MDMKZW5kb2JqCjIyIDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDggL0NvbG9yU3BhY2UgL0RldmljZVJHQgovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAzIC9Db2x1bW5zIDk5IC9QcmVkaWN0b3IgMTAgPj4gL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0hlaWdodCA5OSAvTGVuZ3RoIDY3IDAgUiAvU3VidHlwZSAvSW1hZ2UgL1R5cGUgL1hPYmplY3QgL1dpZHRoIDk5ID4+CnN0cmVhbQp4nDy7R69uSZYdtl3EcZ+55pl876Wr6q5md7VoQBIEOZEmIgRqqhFHGuonaCJBY/0aAZqRIKCBBFFkkyDVrTbsrqysyqzMZ67/zDknIrbR4KYEnEmcUcSObdZeewX+L//r/3w408OJSxVwR286KwRmTqWePBS4f2q8IncvEwFHgf/7X/2KEve7/vXrejnFZzuQxMQsMpTaN08VuZZqqkKhYRYebday1nnBFkLQZ5g20XUwTkiZg2lNfcNBozufYD2Vcq5QkhXVpRqAE1iC1HeUE297Ys/sLya9YpjCl7uPymOjzV/9TofL3auvX+j73219/jLP/HSra3s85x9id8CuDmmfYZvpav+qUr9A/ris1Vf104CEwa4pAACcowA2ADeKBmZgcvMEjw92e9eGnAUtwQoKEdRagDtDSJShAhiUGxj3exmm/dvdOKar6+HFbp5S23L1YAABR0Eghi6zipihqoOimyLgkHi7zx2BMKQEkoEphIw8MFywNuQWgJTyIJVodfMAANpejyioaG6kgauZB6vSzaKVYUJMa5acJFPvDks53p7qTIrdxHi1aWlqlxfk1m08HQyllHjS093qMlnaDvtrTqlIgvWIbgLhwAEQwEQBZADGxMgsP97G3ad282N79wIGqUxnoBTA1UzYGL336sWw2vlQsO+Gq/31zy6v993nr8YreWRdcNF5ETU2pwSAHKnDyGJO59UdUC0QcOplP+BuQhYgAXNydSuFtRIYgzeABpaYVaQN+XE9AyFn/vrnF5KxtjI/tnn1m7OumovSx4flIDgxvsC8GWVEGszW8/posXpaEkvqNpc09G3X6dC6pdHHJy+ftB5O5x8fSDY0XI1/9Jq7LsbJ64K+JlSN7ECGhCzIBB6UiQXxv/3v/qex6zf9sMkHxspUG/aBgpgYFoE6xZJTQpKHCmvuWu6G7Thi3fjaPvwO1JB4iY1jQs7awhzUAtwiAgG4E+nl+uWYpAmtqKu7alSgHjERZW4LaeFyAkN3OmtfWDTlcX9JhBjx8ouXWpaHH36YeKyrffv9x4fSn1q6WcVXi7Xh6a5nHwRyzzxl3g11eGWetMCrruxzfTudh03Km356927IuaOI9396+quPD39+8+8ed+v+rX/5t66+3jLXttxAbaGxKhADMlJyC/Nw2Wz6MfGUVaghBnAKoAAkAgcyZKdczVFbCsKw5Cbnc7RlKSc4KyBhzoYSyMIohAI4kBAYowsohiI2nr26nbTWdfUwByOuRM4JE6IEyxpoCg4K5Oyu4WMtGmUxyEtd5tsfTlPMaJbbmlSTcy+jZQhwhJzAiFw6IgrUyroSAee+QTcbP5UoAKnhiWs/xNjB222//3LTUfm97/ROjzf3H8pWaCDOI8sa0LA2M4iIIDdtZipffnWJ5YzlEFCcxVMPhggA5IpsRK3r6+2Dn+eJeCMihE8fbtfzWefTbr+hvre0AcnMlDOkLDnLdr8ZxDNZ58f6+LQ8Hj5+8MdT3Bz9uFggciKmRszc67jJnWCniK2hWxqTQRjGkQ6HJ/30ad3cclmX2x8f+PFxm+MXP9t1bka47xuMHULu6JLCKAy9uZlqy/XAgw8Xm1pTs3jQjs9LaHv89oa7GEf/Z/+IL35x/dnfu3j9Nz/+6q+Xf/tv//qjMl1eXP7sQjIGIZ7XdvZWvbSmpVir+D/89/+jQM1QeNM7cnWWaIAegk/SKUpGvrC6DbsIPZ/raa5P5zZsuu3FSDkDJ6A+dZISjgOKIDGJSMaSYBnigx0f9XR6PHYnnx5h9/1Bz2s5z/PAxgTA1G02/di9fdkLG4Eth8VrRIO87Rxzi/4Ysr/Y//7Pv/jX/+JfHD99ugyE3l3gHITUAaXAnliYmTkYUZC0OlHK/Xa4upKcmD2hMhNs33ya8fGk9jd/8TV9+IP+47svW4v8tGz+9Ne7u7a5l5fjJacuONay1lLa4TR3PaVMgt4QFSjCA9DFoocGFAYkCIEogR1ADoO1eFMPT9Mom56m0YMImInZgc1RAxyDUBUANdA7BmSQDvqqtRYp53HIIWTEHSFjoJCDP1+bd8hERgwUSOGueey3m83p5pCSv3x7cfHFZYPl+P40EBIBFAVCQFcE9hSREEGYk7AEIWAyzdYEMHfcdZmStIFBuSB/PE2onQDnbh5G2HTlxTjHinMdSacgAkYRBojeJPecOuJ/9k//C+mQO1I1NtuA7qkO7JwYpO85vSbezk/59HB8/6EJ4X6z//lXaTcpos5Bhj0izIvPi55P9XSqp2VZvKxWC6QElCANEPV8vnu6+83H4WocJxl3eRryNHW7/bA+tfVxXW7O86HMZwXI5ExAy3rabDdvPn/z3a++FfLPvr7SPjzLN988yJBApJyLNbdqy6KtaKuK2ii8E9h0Y09JGsXasOpmk6dpSDnfHA43T/XuqDfr5qmkDweC9x/b4zLoabqkaQQCUcxqWIumzHmQbhTphRLJbCsYRmBCIWvWynE+eoDmLENJTBOUHhfpvP+jN8vwYskX90tAq9TWXMPCltIcgAhFkMEQLahYZDW+OeeO+o5se7Xd+NPLdvuXv/r+YYmHioeTEsnF1YVZIMTElM7CibGrnXSZ8+EEd3eHj9//+v675eG75fZ3/7L13Xm2hycWSUMHXmVInBNJEkldSh2AUmCdTZczO4tKeAZqj4/LqbRV/dzoscbRsO1fK+sy7b+RPzzR03K8eyEGPF/iXRr6BceHVcrSyuLbvRzX81xWcTALdiOgIA91Iw/wgNp6wR5hk9bUA3UCF5fIe4NNfTpR89QsTD20QTEkBDRlgYoEyIRIFFiaGOQK5oSOXb8byq+eyhIO8nS3BCTGadjl1BEhkDAxm6M6IpJhLjWOT3OSZN4ePz3S/qopBWQLcQ8IISBGjiAKwqAAjgALRCFHCLdwg4CAfJ7r8VzmMyxmiiAXUwVfTe+6DUF0tg61deIZlwkXFmnDth6qNvPG6MCEQgnNUYnWsvToMMjlxVUXkUrbjmWc4urd4NNVke2H2+u7p3Q4cteoC+zJl/UR0DlBaebq3iyBMmE39ilNkgfpLtdlWk7pT/7kV69eyc++ftVfPn7xeXrzR5/97//y/fmIL19dfP2332yu+no4dNIJp6WptjCNl9sLpkhgFxdvAKhUPzc5HJqWm+1gmbRqFUYImI9VDTws7YZ+k8Ztvnh3weh2OuACXT+8++Uv3t/e3t4e/tO/eS+etoQyHT8dHx9/vP/06l0bJabXvR/3rexxzfNdnvTqizf2bb25L4fb88Wb8c2LSxmRvEuaeux24Bq1qJlY66kO+zzuEu1ePLXhcOoP8yaMRgpqS+hp1WOz5mEwm5siRCYQCgICc4XFo9K85HE37KdVvhoyFMQ8XV+83v/+H/4ypTf3n84//vpAFGaxFAyPLJaY+kREjH0iBkZAIQDMlGkYcucRkHllqNCYrWHoa9mpsmpK2+va7DyX00JDny5evHz49ma9f6p//uvtu/2rN7tvpu/O92VeFH4rda1jgmQn8s6wO/jInLddH0vBOKZy/+ZV32+6P/+z7y1sORRhdcSABNz1arpqqDULQ4w89Gkzer6e13RcpbSezHLUsNXaonVVNDfz2sgbY3AiDMCIUA9ogepRJHXDZrqSl6iuTVH2ki66fPXlVzT1jze/eQxzq14rCgBDECASCpFZBGAQltUQCYmJMSe5vBwogJASE9lKoZv9Vhu3Rph3h0NdV59PDsEXu94c13N9fHw/vZyGiz6PGI9a6truAxATItuKjg7dGnkFMUloK5VK8+PF9VuZ+ohYTlUXldtv7lajs/LaTyDEgjyJJMMOaPwsxsu789Whptk5o3l98NMt6C1AC/G1NgrvEmQgNGvnuakB0rCnvE25T6/e7dr5sN7cf/XH/3g9y9MnO98dPn1//LN/97+9+2xytYffrblv/S7HgmAUlW6PpRQrxZaiAM4YKQmLSJcRiZmGQVLS3OP2i4v9JNsx7a92Ws51Pt18uAHEmNKf/IcPgXD/2ebNsGHgv/z3f8Fdf/3F5YvPrlE2eVq+/e2PEMGICJVYaaCaptnlqcrLaZd8Pf/Nr/a7cXj1+u/9469+993d7Ycn2b/mNAecTQbEnFLXEWgk4v3e+8uK+/OarSKpQ3mkOKKsi3pzb2auLUwX1aU2jEgYbiYC40gW1kp41XZey3HV8uDeY+bf/wdfWhhI3UxsTad3D5vrHWdZTie2Cm7e5wHZUdyDEBIiAhMiMYUHBBAQgCHB6ZjaEQ6oT+9vpwnHkQd3Gftpt/v6HKelFVPY5E7w1euX4Xw+tKohRJupu7y6WOalLgsjCkFizR0S0tLcNx0FyOkAyxPNcnUxHg4yr1l2r5IcDMnqQJgTdwMucySk3WBp57BZVnB1agr1ADGjlIpewqupWPPWvJY6VwLc9AncA7Dv8VxUq3lrurR2LlYOACp5/Ppvv8tDn/vUrJRSxncXJARh62Po7FYVth12A3WDCAliQgKjcMAIU3N1XUPNzWBecJ4dqz754bO3w/B2zBbdSHw9ftH45mH9/v0DDJISv3j9EoGXsykFI/VdurzYI0SrKzMLYyLvMnLgOodJBgwmguWIZ9xfD9sdHeYk0/Xl7greOjzNeFrj8TQ3Rh0nuH73VHLMFg2ozdIWgfOsy1Lr42Joym5oRcR5lOuXPRr4bMvZwkyXUwQhi4cN2zz2sukSpx62E6SaU9psdt//ePfw+PTj9zcaC3gbqo6UE2eZxtak1MA4CUQKEBmQBElYEmXMXWSiQOyVEg9CuS0FR1wlTh9+QLrjm8PYDxuMBH4+tUTYvxxbAAq9e73/8NtPp8en64tdl3ncdNteOjRvJRNyYAs6V0KRYbPx4+Ju+7dvN4l6Efn+dyW5ipsHFRNradhuOCUFRLWwQLfQxdqi1tRCnRiJAtmMDNzBwjuPaHF+LExAwgEASIDcAgkYgY63x5QxJX7/1495ml58vn7/6x/vbp/ef/8JUoFoepgzZKas0xSYg/KQIwlmodwpkZAkzoSCKMQ5sXBKwp1Ldk/ZMxVx2+10Ptnj3H85TR4DNXIjEO6lzMXNuyENY7eO3TjlZuU8hzYjckECRySUxEVdAIdxautTnMvG1lHsYkD55ldn0ZJ02U0ZU+d5yleXKYuacWtgAFFDZ2tLbVUN3DkzkwKZu5OZF7NOyIo93iyX1wMP7IgADMQ1CB1Bo/7wOPQ29vhX//q7vBm//M/WX//V7+4+Pb3/7lO3tcD28cd79ASQsB9TGro8XlxMfc/dKF1fWURSwh4pEfWpG/vcpYv9cyZzTGMjCuR4ebV+sOOH+5//Qd6SjVyTmyBzR35W1cgdj5tOy9RN3Xk5h1s1RcQk5AZEyJlLWzHi4mKrp4OVgvU8Cb3YoPz+P/kCzjOe5hdjt65++6Tj0HUpQwOvNcxqKdVKA20AYUHVfS2gDiaOHIxIKWcG1GlkHtATnFcNzhh0/xjUCCtgrJDaZmqvfzbJdpo+7/749Rcffzd8fP/t/k2SgUrXXbx6N+2visCA3Yg5YTCxiDALAXKAh3lYXXV+Wg8tfjjPQBYUzTbeZR77f/pf/kE9l28f//Kdq1v1872SQHK+HLqc2eLh06HWhgmP5xUoXb54sbvs0BwWLRUI+fp6+/jD3KquMHqaEOjpN480jPuhk21P4AzOBA4AREIkiKzqpBpmpm7m5h7u4MbhgIQsRIQegpEIMpiBU8coDERqiO4UTiFh4RrciSFUq6nHYDudj8N+7KYUaLWERqhGbciNPYkBGTiFgVmYNTcIoIgIN4/m0VbQ6ufjrF6b6Xl+aITQ8d/6+tV83xbrijFQGrejL4gRGJYIIbCulZn7ief7BQKFUt9n9Ajker8wBzA6RpiV0piFoFuOyqScWbZaETWyne7mqpl4Q5IDuVbF1kCtNm/mqu7NyBTBJCWkTAwBHXOkjGk5VDaaGBMDsSlROJkN1BVo1VsaemU8rQskqHW+/+35y1/+HJgM4uHjbGFPS6xlTQ9r/2q/YJuhTamhASjoKuEI4QgQEIbhLVR9XuqylmUtn97fLGVWq5fw2TCiyMW59X0fV29fn35Ua4GuiRgD16Xurnfd2N/fLmBIyFmYCUHk+PEEiEYREmF2Ps3TkCin4/15So174H+w3cPTYfT2OEOlHjfX0+6CiLWsbBrmrZhqNWvWCgZgYGnR1Jq2cANroAuQGXtj97Cmra4tEabE/X5aSp2XYgTLoRw+nH2F+dDuPy4qw93d8tu/vvn06fHm9ng61Pubu9sP788f5/Wx6sKpGygN3WYcLnfdfur2Q950edPL1OVJ0oZxw2mXun13cXlFQGWud3c/zvMp5e1i3iK9+fxdrRYYbuYggazM8NyEHzwUvQKGMfI49GVWIkRx0Irhdlq7oSfplkeVhEIgA547DIHUoDPOqRsCMDyexwbh7mbhHj9FX0AAQCABIhIDURAZJkQnymDq4V5qdBIBEIDm0AysWBSDs1pa1RBbHB9P51XztLX7Owd5+ebi4e6wznVKPGbpuySpS11KvfRDJkIkCIvwUHNrqymZRBQPInKYdn05T6fzKXXXr95dVbO1OlCfht7N1kMLAiBkQteopgn5+Q+4P5NOIhKhrRkTIVIppgYZyIO0epub/N1/2DfPi0u920C/Hbc7VwdTahrg7mZWHBqAmSq4o4dkEKGUEqWVyRMJZaIGWEIYFGBetBNMnZiLWapq9aRkzo6np2NO6WK//XB7s4S8+r0vDstp69v/6r/5J3/xf/31p9/c/p2//0seE/YElIQpCU4DSubcd0AUAWWNOkstK0Brqy11We20uUy7zduPv7v7o7/z9X/9z//hv/k//5yAzifrtxsSOtyeuAcS7DKvZ22r95yll6EH6AMplkVZJBxqqx0xMM/V9gYdIAu3uZyXIg8fzzPKgeREF1m2wGLLGawJW6tu5sHgGqaOyAiIEOHWqrbaKK99j8O2cw9XteLRTM2bKkqkDKZnytLthtOyEItkXmvNA1+97tb7dYM0XF3ev786r2Xp+xe/eLN7udldG3AE0nKG5RTH1e5adXdVN9MAiCAiR3SSIKctjX0fu3GzHTZjL5sLuX96f301uNL5OF+/7Aceh90YiA5e5hLKFOTN1MI8hBInIoQkYi3qCt4LQBjkulqj0mUkZTSRZYEzy0lG7ybgjB5gGt6CTSMsHCAiPCIg4PlzdwAHCIyAQAQK9VDEgAD0AHMgJskUVpkodx0UtOBAWYOGIGCiMA7NYFnSwv50UpTcbaaqlYGRxdXCMBxrcVVrVd1bRCAwCzADISVkQMCogsyE4zgw4nw8D0PvSm0JEkYKThwR4G6q4QiA7hYe7mgOaMAMTBRE4WgG4eSYtHmrOgpbQ68oK7xY+W3pvxrGy46d52OyJUILaHPwcIg1wAGdzL2ZmTVccy/DmKVPgm5n1bmF+SZ1i6uqNfA09uOuj7akzL2ke8C50qnIwzGtSum9ne+L1vPH3/zF+mSt4X/8V78eRBKhr4eL683F9TYH7vbby6+vTnUhoWHMmRU9fMaylFa1LmWd27q049388MP9Ov94fflySnD6zl5/NcmU9YJSF7pUsCKciMmBGoaTMRolyZirB2ggwNQJEVb1tSymAHmYW0PQ/avx+LgebpqcaVppUOiEnKN6PUH2CJ9LMBIhejUiRmZDZQZBoD4RgVprR+0JxsSEzOgWiMEAmFIPNBiMViuBhS329FQXWpe0lhIo748l54mTYfO311uTvMgw5JyZy3F7fbW9vtr5wYdx2Ezb6XqHjFn46fG+rGs5tbqsrdTz8RyKEPji3TXSC0Ls8jhMA+ZOWwQaJrKiUTUDerMwQGMAdAALZzDGBigACI61KiB0Q19bMY8AakENQglkN4yUZIGhYQecCA2thi2AyQNq8yETIoQ5UkJkREYMRGAhD1NVLzUJEzMERiAGQhACSmKU3qlTE7EgaFjmmKGdCDpSwEPRq93AGEDL9rqXfjhiN/VD5rT06fJye3m5be6p7/phlMseIKyY26FWmpuruqqtrQklEZmuNsPY9X0HzogcgK0ZEDGFq0XzhFzNoAU5I0IEKESAAygCAVAAqDoxyZAA0QE8whEN0SCozx13cj+Pm3G8vOqW0y3qGtGaiyp4VcpI6GaYhJnEuTuf13k+YotwA7UpBTMy47w0NUMSdBXE3UWfLzaw387HOvZt6Ourq2rL+f5p/vk/+j1P/WmG3XhBAOdmx7vFfDmt2La7oR89+EHbei7cxo1M0l1dX10cH87f/OV3Mu24mzgtHTYmvabWYaagm7vb5o01wklr1CUyCRhheKmODXIaopZwkwaru7l7MFJ4OKhSSpxyq40DBDxnMsXHh3V7NeRO6rEhJiIWowGzdH08fTwnNBn7Us08kpCbAQSREDEykUCeGLpkovXcylIuUpYAVwt3CKdAas4G08R9lpySgqxNg+L69fXTo5flsd0c1zh/eii+VWFRX/ux55SGPne563M3jEM/Dv04TMN2e7m/erm/utpMiesvXuSRFfR+fmrnQyu+rHo8t7bY4+MJ3QRgs9syZ6LU3MU8AboRKIdnjbBoFJoAHPHcGgo6AYRbhEYgcUC0qpySJFuKWRAA1cMTIzKSeOopScre5jMl5v10Wk/hnkXC1TwYEz4DTYY8sWBemteza6kJMgO4WoRBBHtgc3YcMveJEzNQqlo84O3bqzyca9Fye1qaPd6ecMKUexpF0ig5D9MwDv3Yd1cX227qurG7ernd7TdX15up76eMAJeSuVqjh/Zk81zgMNfD7XJ+qsu6WKlRG76VfqJx05uHRkSgGYWLuli4AaBrAgiAs1kgOhNEuLt6JGII19qkSyS+1jCgQNJ1oTDEkOH1DgcoywGbAlEA1FIQYtvzMns4DF3nGOZq7mnqqE+3/+mxnho49dsJCY5lhaTgBqsBAAtvL0fmCnH6/IuL+5t4uGt/c/YPt8m6nY/jfur/7i++eHv5NveDb7gbemZWj466zCknSiOmLUw7luylzGVd12V9fHi4fbg/ns43H+/9vrRzuX18WtfqEe9+8Q61Ri3ruszHVud1czEBYg01BCNqnJXBEaIewVsKHdyrQg0UYicIcEkCTqUS8ACSnLYLDqXPv/j7nw9xzDZLNzFGLceFEQlDtQEAAEZAOEYgEAAGRtCzWKBEPSs49mMXhB6mppwUwltVCyTmNI7IAgFZcOhT24x5mN70Y371ctqSZEwdj5GIvGFEq61RVfdoFXihxCemB5lv5sRdplE4USLuMAzAAN3dmllF0X5kAFwejwwuYGOXPcgMWrHUeY/Uonk4JYgKzkCC3sLcMIICIeAnpBgEgRDI1KuxBvCwnzU/LrzQGOdTm6sMG7SntjzOwkQIrRYIRER3iKAIDAoERwxk1hZttXrWvudp1weCmqmqhLp7WdQiJ055s3UkcOQU09gl4fTy5evN5pfbzfnw4LqSrfOHm7ossPhi0gyrOimgIYRYoAHG0iRyhnEcpotXuy9/+ZmEZE69kLGBaNp4JwOHvP/NTSc0dnL5xUs1mteoq6XOmNl9jTDJWEsEB3YcDqaOHoiIQREeHhDsDgScJJ3Vq2Gerk/V2tEfWsoPwLez1Kf7OFtUdISACFV41oQ2RQBgMnZwR3dm6qTrIF9dXfMA/T65NXBgM2wQFesJu6uh306cBgZB4C5324sujT1NgxHVwG+/XebD3JY5TrO36s2qkwNBosQgDMGYum7ouv56O+Rx023azKb6zX/87bmeg7XbR7cfZN/10zRhTwXe/9UPLKnDNH88Dxf7N5+9PpuHAYFoMTftO0ZXNztaBsHAfLy5d47IhAmEczeketZMeLHZzA9PsNomdffnNgOu+zfHR60Ags3DIAL92QudIgAgPAAAACIiABCQgRACIyLlhDkgoTZDMwgLA2uxLjowpy4DEAITSspd6ofU9+qo6q15VABDIKY+IUe4C6IHWMRzd2Th6IpKlYAAOdBKtha6amkriMtI2kzDLQUN3Pdpt91u+7zbDKfzqtVN/See8Vl17OhmhEGERYMBCeg59Ny9ectgIGgegSDMaE7qHQBHqOPiybqt7q5ElJu5e3g4OIRHuDuSO8XzHwMgASIMUG3alDJDciPX1rhVieaN2uqHQ3mRpB86DMAgotQPI6UeMB2Pc1lbWVtGpqn3njncyrrcBji7w7LUQDLA5tpKxVrjGAyUIiXYC6QUbKpg3mY4HdaizZ5i93bb7cYvPv9if9HvLrv/5z/8almL35/27/aSuFbHSBhR6hkZWWherefoEEdJDVoNP1kVaJZAPRxBCMVc1ASsC4Pwp9ll3PE7Ea8c6hEGYeFgDfwnn0IDREQKDA8Eewbf3FM3Xhg0hXXxY7OmbTWTtUVB4G1KO6mtjMO27zZEvRnoWr0EGkjEdMnVfIHQBYKku9gnZALYKZiHeVRTiED30pyCxRmfNS1AOXMIoihzUPHjx/nT+Wbu53ZwZKZBvvjjP3i6O3/8/uHq801iB61siM+nViOHKXWiJ9YZ6mHVOAfCz96s2+kT4pCTBazLOQF0EKfjccSUIS/vT/3OaUgCDgCA+BNbEAEeAegRHsAAGA5IgAQIjAKQkANKMVs8XBEsseuqrUBgUGLKYh4IRCTmqKEKFmqgBuZMwAGsgcBAyB0mQgJEJ4vwgKYK7uCemoMBKFkLCHfAiIhwVSMEZiSLdl7n1aOm+QTY+dWb15xKUwUMxMBw9CBHQHY3MOiYsBlaTeRn81KQ09ZkmJ0zoTm0VhGDEUKrJCYMn1sMBAMLAhA6oZsFBAGTglGEuQcyAIQjMhGRpB46hARUo83t8f2T0DqxXnfww/tSzsCUSAQ4a00RAsHL3IyaU41i3sybgiKZpxYd9yyQBOE5D4KQCDKFt3CLMA1vq5Vze3ysqhBG1dTBfG39QMMk3rKdy3qaUfOy2M1tTPudqjmiAwQCMoQaWHQiupRQ2zBraNjyYkrHc5sfdY8vWuS56oCeQdd6BnCgACgJOYDqUqhk1CzBFu4AHkYQ5E5g9twJBxIEQ2IMpGChrtbaau3FW9X5VDbbVpf18XD65scZOf/Bz99kITVAyAAE4VbVuQY3V/VAQw5HcuhApBRwK+YtXCPq6hbgEaiVGYXQMInkLo+bjbRqZW22GIQhghoAEuQpChsVb0UYOia9PWHxMWdBpkAOQIKIiAggQEHkhNwB95x408fLgXhFhFgZzaKFFzCkULICmtiR3a2pCjcQ5wB9pusAAsIRPICeF89XQ/hMnaOAVTcDfqbX3cEjIjSW0vIgV9cDEqmCYEaHMHVtHhqhZmrBDuyO6EAOoO5qrWmFUPdSVB3cA1sRIRNWgy6zAGRJhBTgtbqbArgbBRJSCqJANG+CyCZ6XAG4z4mAMBADEAAAwY0QiNCBgDOk0RGS0LZjr+qEWSLCFa2BE4VSKDmhMzqEh4dZiIo9V+lnmR8FmCowWOYIIyRiRHSkcGQAxHDwKhR9J54k98Oby/TVLaRpePH715+MdYHPdptoVuvZ0I3N0GoLjTC3aAG1RVndzSPsGdkmutgM2GUUjloh3N2fbus8L8fb5fWXL4ch9Vd5icc6n2uZAxlAmAeCQljR1lC0IqePD2m/v3hxRZTBUzRmgADjYj1hS3inhsMFjhf3t08AcDWir09jcNdJAVe0E0WH7mwm0Kg5kOTOwWprgmBEjhLuRoiM2Cw8QBERHMDcjAURMDzCMZyWVTWcO4o8FtIHb8P1lXTdqQikQahzqxYWYJ5I3RXCA8ED3UMrWMVYTauqLrVqaICfGCVnkTQmko77Pl3+8Wenh/Xu+6fHuydKibcD40XXdeQc1iAAm0uAE7ZE3kLN0zT1223e7cLYa2B2wAAEDQIgwCDRoBTIjQfJzugEpXPyEA1yDAWAsHBDeSbFTZ5xl/lPliKBcA8OYgzzAHAERP+pJgICPEdahEMzNXdKaNw1SOeQtCVJaWkCKROleFY1ojuwRZhHAEIEmIGVsBK+ai2ltXlZmlZzj4iccpbEUwdTJwwXryZJVJb14fsShpIwsEdAghUAIIwMACAYOXF1b4FpHNM45qFvag4AKQAiECAIgAGCuRqJAzhnSiqkAEbgKYCDI9AB9dlSBPHMtCNERJiJWBMhTtmoIjN3rE3RgYmqqyOgsDMqRVgJVw5XVbaWvEndEXAzwk3lLIwX4EJmCucgQkCtYQgO6Abemq1rrU9tnevp9PA4r6UtdQWLsGgNQgEdt9IhMWc5l/bmq8/+wX/+R48f5/NiT7P/6b//5vB4RoB+k3PGQZLAQgDjPneRHYf+7UvOgxn5bJGCMnj1AOyHsdjiDkksUY3QU46WIALVekcwRwlDgABSxwhkAm8O+KxCUHCTTAQgBhI0oQh3A0sXbrpo6hMRl7lOuyFlaeuCrhHWlgoavSQ3QEAmho4kUSARAAIghUc8D26eIZo7qFXVZZ5PdVnW41xrc3cRRooQFMEwRMcE4kZW8Ld/8WG9LfFxbYdj2uS3X10fX/tD5uMpydhzlg4zthPZMvTFonMYC5IYJiVURgBfAwMQn5OyRARRAogAIwkIsAADDAAgIDMIsMBwcEdCiUBwipDwAA/JyA3EPAEnSII5pzxYLW3WYRiZ0nKq2/2UUlpPJwxH97qUhNFJtgKIIEKRkBIGIQAgBBKahTsg0TMl7a6mtbZlPp/LvJbzaoGI2KUEgAiIwM/VShppIV3xh2/uyvsz/fYptceXX+/e/GHSz/w+03ctRbfBrpfUQxX03F2sDr3HsFaMhuJMGuhuSxAhELpHBAcgYMaoEEb8fPywoOc9MxgAeFAExE9gDNwxgiMswoW6ySqdF05Db6A3h/X68ze6zJ++/e7F677v+tmP4Ak9tabPTXNjsgB1yI2FSBAqilMCSKboBoQRjhCI8MzeA7Tajuf59rGdCwXuhy2MGZggkJgRCZyQESnICwNS4MvTkGqk1eR0pu+O/n/cff3Zq73ij39277uvYHrBryZOW+LOn56AElGSmTNyTwyLQoSdTS4IR4hk0cAxoh+sJneFqAwK1BpAADwPfDECwQh+0gkEOmA0t2cDSlA2C62QGdR9rc23A4hg7hzAIIjJDbRGklTLWksBcCB3hGAIxugwREA4CCCCMBAQEAIgIpCQiOrcvBk49P1AhJwYkgBS+LMMADH42VISSOSIIFlSi6F4qh34/Onbh6sl1Rnnw8OOXmSY6FwwAwius0rHqYPluDoBPMNfM29K+4yAi1kQE5LrMz5kCoTnAMAAfGbxIOCnXeOz9X7KGwaIQCQGWU21tGmw0nQupZkBUZomBSBTzmItGvqQu3I6rYcD9Q0IgCBShIQN6MLIKRgonunpn16UBAAxIWMt1dQQebudKFEwWmA4kXaAhhhMjISIkImDG7Da1PXIU2DfNu22/PZXT/AJZ8Wn0/Fld7zkSQ8n77IJPc2FdyI7aA8nEYWJGSOatVOlyEE4tyadEBEUJSBEUoAABEQg/8kqBPHcAj97FMTznNyiISYUkWbhgEiiukBYn5JWBwDpNyXCIfrLTZiqF/Y52zpZQ4xida4V0C1Sqy20J0YBE0QkbGDOCUiQIySA3LQgxbAZPJEiWbAAE5KwSEpEEeFWTKsdlrVqrdaOy4HDerCXbe2b9LuX5zQY+OeDTX6QRQc85v0rHLdq3gUMSIdYYV3m8rTfXrait/cP27STsVOtQkhISTiaBwSRPKNvAovnFIE/cZn/n0/5sxFNm4Agkrh6+LMQ6JnMonjGBkTmih6KyMwoCDlpWCnLZkgKxMDIjMLEAiCCkihxGAUwMxA5EQojPz97QCQmImNEYIREgIQERE7hABYEFJiCPYmQm7AraG26HhSqs3HPmAAdc7dEA52vTMRP5JjRGBzCupFBVUKl9xpWoa61ShVkjJ/KIAECoAciPMcF/v9NDwACxE+LeJZdIERYQAChWNHQQAyN8IAI9qKEkAmaQYFo6ONmoEFg6s4/vL97etr1111OIF3qBpKccoeaEqdNnrzOiD6MQ3FuQJR6FkOoiAkwgJiYAYUhCzggBEY1VY//t6pvW5LkOLI7xz0iMrOq+jI9AwxBggDIlbg3k61JK9nKpBc96E/1G3qUHvQk2V653F2SEIABBjPT05e6ZGaEu+shqmeosu6ytuqyrqpI9+PHj196dm6GNKR0mUdQIrhdUI/H9eHh/tvlwWKC3poqgtP0cDoObX2hRfyObS0yOdbV1+2LjURLvgxbLA/ecru7f8ji+smIkB7ISFLglECno8QZplwQTvIs9QISwbBoSqhKclOGJXp169RczqmLJbhAKZj367r4xWefXvxywTQ8vrqVYyHHw1GYRQdXtqSodkjimjViWDy75JvrK9jBVvMEpiSlVDdBJAZQAXOxtCs5DRvd5DpLXds8ByQowzRuLy6Gn160Tzbrw3z68WCNBEdNh/d33qx99uzUrLZY8iZ0cpaTt3AL86HOcpE//6tfcpo8yanWVIYkaiGCACH0QDjOmIRegDp30SG63cEQHrFGNEckdwl4Z4gRDMIRRDg8hdOR3KwiXNYVHDfT82fr/aKtaEwuZIJkqqioSFbNWXNiHjUNKmWcJlvWWCWCFEIV0RBBBOhgSCJFAUFFLIHqunh/ryaumlLR4dl2KDkhLUsgOKayeKC2en09H+d1qaf+iTzaIIGM4MzICZuLwQXBXqLyjxbDsxoDgDyD05P7fbyxh8LwCEdEai7nop4zgkY4wgiK0BrNCw8Fmwj98Z/eTVc2XV7sfpW1Fl3HyIkaWkwoqixZZCjUBN2mtMm57HY83s92UGsSKhGAO3pNLodk1WFzPMly9MOrdxdRN7TLKYXABKeHYy08bfjseZk+3d18cXN6qFaDJuuY6uL7n37aDstyWL793S2DWXH92c0wlFLy4+2PJ7f1cOiMZPNssrpUa6rZw13MleEdPtHJ8fnMPHpQ/IBdEQ3hCE8RJCkE4QJIhEt2xOpGySSWWAdkZdraKPvWlga6RzOpghBSEb0i6NJVoJTTOJYhp8y2wIBAq3XQGIZcTw2uytSUS8R8X+k5U//4i5eXaKOv7f2bFVIDebepiVVjufd28DoGViVCFOPFwMnvlsMwJM1D2mB7jd1zPO5/qPNoeTcNiZSI0nVqNBFThKqyOd3RqTgiEEQEyWBExAciCCLIICMc4XRPHf+FJPyD9HU2LqrTDeY0hWWDLxHNvQTY614Op3uHRXhAnOGUkARNEFs9DO7SmhWIFlhrCOGULaFG1NBR0ijpJo1jO2rzdjoGkksu203npIcKMzYgmVJA8TzkSP44r6UkTRq0kn034fF+cUNteSxZRN0ZQlDCzsI6SXQ9l9GJUz+V3r8dCJ5dMM643vXMCESkxqQwhWq4BxiIFiEU1RrmcOZgmEVN7ajJk6iv4aKuQoNV2EoWijIskIISbbW2GhTzupxqzC0dTjXtVLfy/rCWcbh4cX1f3yHr8+vPnlsa79v6P3/4+tXf373/1mS1cRebi5svl+FyHC6my92FaFLNXBUdjrJqcm9RDKz18PruWrjdXbzcvDgufNxHS41izdbheidJ6+xZRagRQYgyUZaAw6PnFWePozy5Rzevfp7nbCM1capoyniEhg3hFs1CLURB0N3MhFQHVpxzYAFIBmnS2Za4CCjpjIISTNAk0sQDrXmzFhIY0uIhgVTyUAX7mt7++Luvf/f49vaH37/Baa+tvtg9n8bn07MXiywIV6CtVRVjEQYAGrUiTJCmrCG9Wn53dxS8HT99Cc3jlNNWPGx9XEcJEQrPxkLp/JLsb7RjEz5gepwDH3iGKcYHDpGc7krkHADDM0JgBnikoEQwXEK6Zxql0xElu2bgpAi1JwN8Ov9+edh7Qjxae0oelC3CESIo1eLxGN/c3v3dX7/+8bvf7O+fTbvLcbeTPI4X+eL5ot8r4QGrHmGeTM7ydR8XCS2JLZyQlObVbu8ON7uWppympKN4Q+PZ686OhH5APYnpj/TUuINOfIx+Z7T6+E1EImfkwcah5lE8ip2SHwPZuLEIIrIrPALuoCe4wgNiGghFOKO696YkMzcJAmJRqyFarbYe57Y/vbjZbAax/bFoSJ2X19+nb36zvP7+67/+h/+i9SeT3TKu/upT/+LT//Y37f1uXVL76bNtEoZRp4kq1q2VEdoTJNJiPc1trl/9+Vd9V8ntuxUPp3yoebuLJDptlgYzp2WIkNRgMLnAyRAiEPQP5kP09UYB+Nnx+lMQwki0lRyklCpZtRaIunmQYYAGiPCuyAn5lD3iHBbQH5Y4IyS9VyN7h7+4Fm3Nj49rTsPxcbl/eDfmCTW++/qHr4a4uUo/vbTPd34dnl/Z45u7O8jV88/XrI2zryemrCmZRXToDQHg5r2CBEOEBLWyuoSqjdcJJmJqtQWYMqRbvfbUhey9Fey86g9YVJzv+fHB+Ijy0Q/LmhAspepgkiFJYeqNbk/WeTZd6e7lAj6dVBAghD1c9j/vjIAHPSRS0drs8LjkMs0H/+af303DTphefft6HPWzm+kvnqdPP8Xuk7hUu311+/vf/HD9bDdtNWT25YS2dj2tTyBHwAPmEe5hEQ0R6qIL2hzLjHm8TtNVLhttrXlrOUHUKU4NSr/Cej4mRocqPEX7j7EOf9B6f74FwlNKO8Zoq2q6iiZLrRpVw7OdXCJCHbDep+8BUVDUPEICUIE4aAhRErDmEgAao/qK2sRs3e/r4fBn//Uvv/321eN8+sWf/nw5riAfd/x+Tsvlsx++faMPq1b9H9X+fl7/0/v58vl0fZOHvVLFIRQIQxDhEqRAnUG4N4sa4dgOO3Oz2o7HOUkuZVRJQbbKcKggZ0ZrHtQ0eADeFTSevQMdiTwQwZ5C96/+BAhCwhN1AhJbJNGQbCxEDjbCGI4QP18O8Ew04uzB5Aenw0fYPFdx0GOt18QYBGxrEV7ttuvjMSyurrYL1nuZ8PLLsnKYHq8UfF15lMNh0XIkmJOIJKd0dHpC1zjPXLgbPLRzo1CSmjo3cu3OQIVK9woJ9D4gAYIfLOmjfvD/aQk9mXtypSdbS6EbCdHqGWLMJpNxdQA4dSnLIYEz2xd2HVODDIFDQNGOU0+XCMFwJ0xI91oUu5JO796nWj+5urr/7l0u6eZy8+ahHXS7/OLPpo1u5/c3F3rxf+6vv1nuDovbfTzOu5+/pGRqYm/lEpwvflhYM7cGjwQCsTRRTZINBhUTSoQKkman9ZOS/kwFvXMcZ5dhnvwr+BGjziD1wfUAAMkSEjw33/myRDtBm5Ze4AUanYSKUPskooT2eOB0pwKQQDRCEQwkNKFoIXnydvSHN4/ayrOrF2/+4fW4mz6/vnl/vwdZJD2bxuptXtpt/uJtvHy9tscX++dT/aM/egkVA61KF/4RLUhH6tU7b+HOcFqEWTiCKoYwNFCIABpFgYi2MoFQhphF0CXBTLy3m/U862OGh3jyGyA68Xo6txB4ggTQd5i58ZwFhfTO4jhLEXHWSnsW0JlY5yR8UpzP7hwKSLi7IcKW2iSJ7kasQoSEab9GxkFEg3D3SI2ozBcvhusXMWwSVEE9HTunDfiZ4Ti7ttYbBYOI/jE/KEwdpJ/gpUsp54c6D6QAzo+KwpMZ8Q/u4+OR/cEZRiQRgyMcmTCGwEUkXCO0M9uzYgqGUMgAhXZW7a0LmNoRzC0Ls0GrVQoJP4mXKQ9j3g1XqMvxeOdgRK5rTIJN+KXNj61Wi9iML375fLocv/vHfxQOqYyjDAzS4xzVn7iIBNzdw0QYHnAC57VH4UFBovbrqVkbESIgJYmKQoXuHxionOlyVze7NINzKDcXdhUKPegm1BOYQtJKbxJMgDkQgHoIwJ5jR6C/BkhoBGEIFQZpvQNLCI0mVaRl9WAKx7rEan5czY4xpmG3mVgDbmZLjUbl5tl2el7ccPduv749rrfz6VDKxQXT5eF0ECCrBoMMd+t1php0QQTauhJJIAbCEACkA3ENFIesFlAKQ7V5reZKueiJhGqEsxnZUZgfCjRAOCLAs0H2oOX0RGtUQtQZzoAAdrZlx5MEH4hzy/VT7AvxkD6ew+imGJQINREYXQxo7Ifu8BpUsFJDIgBBNCeChVpSEkFR9dWat0CGFqbivqcQKuHGnomcq0vxNOvb3xI6nXyKVF0Y+IjNpCu8/0ZFjS5knCk4n8L1x+jH/w/OeY7w8KTWpIcvARShIQYEVRAWQFDpiPBQMGkoYF6MCZ4ikgpE0FKE0gWeTRhc13aEzNi0Jkkky4ESYfv5lDznksar3d3tra3rfrUUD5m4HHOrBovpYsybXAZmeE7YTDxV10i7NK4eTrhyPjyutuZp9JleXZOEkKRFAgmKBCihiS5VyUzJaVKdxrQRn+Fu1oKQIn5siFCVCkRPmbvPPx2WSAAWYYkGiIVV0giDByABNoQLEbLWmjUJtbWVY44xz3vNIkNBng8akpFnSpPB9QqpRayndhiGMia1w+zrWquFUlVzknpCa1jWKJtJmTdq9vjI1qRriYjazI+zNffZnaxu61JjtfUtZFtYFGNS5ERflpNEFk3hVdizXu12dvYFDyoJgQ11LisKNhpRQAw6rbZUW1OiW58dFgLeR0r7DHFXtBTSI96TTnwemO05fx8X7BzNm+Oc9kJEmYdqSMEkMcScTJLEionUhlHYCCwWrfQA6W69r42JTGRDuKNa5JyKypTa6TG8malX89XcHKgNHnB439tXklUshzZdTEi5OhAi0UfF9JxrhrAH5z/0pXNgI0LdsiOFqFt4WIqhRQWcAnhvNeU5kv/hjT2zBiOSeRMRKfQVJJUKepd0yEB4OM20am4pOFxyeNbqQXTZ1fkTu08NPOSy/WwvPC7wvHNM+3pY63H0E2rdbDbDuLu/vSMxFqYiRlb3YhQLOZ1Obx5Ph9lzPSFWwXg9kS7hOiTTWH391b/94/bor/76zU//8qua8Ld/8y/jbLnGxXZYnc1DmQBEhCqFRAi1yylnZlNz0qsyDtPLf7X78dv7xx9aOm6GFMx+jEMQWlI71AgXlWYBuIo4GhFJRQPat6LAnBEt6BAROZMCJnOzaJq51mVeTpc3F23199/f56Qk59qaTE02NTYSuin42Ysmd2/r6zcbzWW71ctdZDVYszUpRQnitMwtbLMbD3fHN9+8/ae//f3bH98fjvNsgTKU7TYN2YWrx3R9Vcat12RLhFGHQaeye3755//uV2nMj4clVokW7uZnExR377XzIEKArKJZck5j0USwHQ8Pmyk++bSc1rUaJI1BQScgvXZ1bmrtFVSJIKkqffC7nxTgwQCV0l+WFA+3MEnSrNa6TJcbq/b47jEPAsXSbE3TkrYn3VmkIvLZTQzHO7l9v6WmMmCcQsXCW1tVzvR5rc3Dy5CX43J/u3/1f388HOZqVgmWnMdRcw6yBfJmq2VCy+1kViMNxYV5Kr/415/rUOa1eqN3XaEvvfjQNXiGDkAIUWqSpBTA7bR/LMWubvJsrQVESu/3lT4V/FRKJihnisC+ci4r9d//6X8ct8PFi+2p1ujtQ60GopKrVUckzRFGxXRzcdwf1+X4xZ/ctHy6Wx7tk8/vdz95O/789hEpj//hL36y+e6HZ8f9kKZ3j4c3d/uNUxCEtRpUMispLty3ur2ZpstBa/v8T14+/+rZMZmFtIrNODjEIOHFTJRDPZpXbja73796fXf38NMvXrx59eNaFy3RcrNkSoZGCIp2sqeR40xzPHz1Zb8kp7jt3z/kUXXS28MB6tGa20qEuzdEkG5AOBGBJXqi2+q0y9NVSVbnugzLcU4pmVtbqlBIt2qEAKi1KSmqp8NCxXSRT6dDayZ5OARcuUwlrds14vD68PrrVw+v769/dTOoDSlSgoTBPW9GktUjjyOJFZ4upoY4mO6Pvklx9fzq/taWE8DUl1MCTVWZ1RmeXba8SIOmdPfuvWbZPNtm92gMq+5n7arBAJKC1scREJ4owYRqc0SS4HJaLaFc5HZodrQs0pwrAhT0uvBZamOYMKBESkxFUvhSl9O8H/Kzm3BWX4qIOK2ZiATY1qpDFpXTcZEk00U57veiksvm5NbU66Cbaaqod9/df/v7V4e39y+++tNx65uCrIFmsFbKrlnU1TfTSES0Wbdja/FYdXi/WuAnX7w8Hvan0xKigkjqApPElFMVjxLc+PWwDcHt67fM3FxtMHub3dzOgywe1Z29f75CIcpAIlOkguqzRRp1t5zqCW3YJa+yPFohg9LDKcKFYWeVp2MXkjJlpsL01S8+XQLLvLgZBXmT/bS6Iydtq7mbgGQCs5qEhDNEdjRl6M72SNW5MoOC94Jf/ud/E0vFJKhgDadGEFFmywCYvbkbXMPXubrL9Sc/e/P6dz/ePdZptEh5KMfTCXTSVVNttS0tbfO6+OF0GjAw2NiCvi711a9faQ7JYWiSiqaS6CquAIwhAkG1FSGmIkqlRmgcgRW6lQQfN+V0alUShuzHPcOzePN2ZmLmdB83Xoqn7Gndz8gpD9mrhUgqeT3VCBDqAfcI0jzYQhzRAECFgISpNqUY+KCRNOSxUsYUwnmta5DIHgAFguBZwHYJIBLFzYOx+3TU8YW3uboBSsLCemJi1olO+NLY96K4IFCjAt6WGi2YocIQUM7FFwARDkl9fURXbcIj+pxfVHHS6YtFO6siPffTcMIpZ2FbWeBH8brZaOn/nOP9d++3Ly52u/Fhrcglj+McR3cCyQIWUGGz8LCdhQTEkekWaC4ok/giy/00TgK5PSHCG3z/sKZpq7lYNDKYQEgvKLkaiMxszURw/cX48+0vvNXf/sPv6F2Aag4i+vwNiIj97EokWdrae5Bjrb62MeVcoGOIuIeEU+TppEgnW4RqUKQ32wWixVKQNKQeWlBJEUF4JAvAgg6BeTLHwJHtIcXp6upaR6FE+vlXOxmzFDudlghqKdM4iHPeH8QRAW8mJSNxZRNSKDVWQWRxdw0mSbv9MQXEKM0qgM3zjfeuh94e4Z5hvb3ZlM2xLjYUBuy4Hk9vLdxL7NzMo5k2DzrErbeyW1YPZ2vibiBSMWmuinQ5mPZd1SGU0HBAKUmS9VE7VY9Kb4kZK0FBltbczEUkAu49vhmwSJZqPKyuOuZo+e6Ha3ncjPHsk+l+xePBUtkqsiBxSDRx2JK1C24MozvB6BvyzC2ojmhhqTduRIlgREKkJ8FMSUAJc0QjI3qeFOd+pXCYww2oFWE+t9PxZNUUg4cFa3jnKg63YADmwcB5PpPR/zlNUOmqLgoGwZCnaiZ7/9g5J4unjpUPyj8cIWdxLvxjbQGUoBPMVkubN/5wvfPpIpmmFXJ0JB8hWaSky5Jrs9N6m3R0Jai1pmqhBaw1vHliF7pWOLCSoIczuxWVJGRJnqUAPrcD0EDHOSEKBy1oAW+BCJHQtrJZnOz+m7vjcd1dPeOwoDQpBQ6YiLSzGuwpRBApwSVCqxUViiwQShJR9yA96AxBL+H2jhKcdc4QSKhAxUL6Knc/35QhoEk+1QrnBjLO76f68FLe3Ly80eebf6ry3rcPGFP1Z4KszMFIJZ6Nib5OGrbE8bCc1ta8IIsE2eioHnWVwcEayClg7rbmbIme6wnOoDLlbmSLNUACan7WDrE0usHW03LytS3Htr3e7m4uOZZGaWzow5m9Ikl6KJjhAa+93BiOGRLQlckkuQjDCCcizDus9zFURN8nCQf7E0TYB64jCTMKUNfawlZrijb4uqmPN/Juu11uXl7st1fv7Pp367NVdzaNiTr1fXdujRRqVp6G7NeX3Aw2L3aqpgGGeOsjOBFuvUdTzUggKKxKUztGZGMKLe5wAnauO9F6HAttFd7gi1tfoyrDUCRlT+hTrWd1tu8eAhzovsIwigMw0qjGVJ/m+xLs3AIWrgils+cykaNnyedZ9rOAef4BARppSlPxzFq4XMT+sqzjAGx3e7l651f3tkMaRYe03e2ohtTez+ImxyhjLFOOL7+QZZXhR//1b9/PriJZeV0mFCJVE1JAPx6FTKQuSxIbNVq6hKSGcprX5jGowAytMhKtsS0JRjSPNW2nnDdTuTrNy1xbXSsJUunnT+GEA04kqwJPWOHuonMa1jSZFtcs3sSaCFNvU27HhJbYWm3CVMp2dXFJUXJADHQBNETCvXprZrVkGROup8j744DDLt9vLnMtm39eP/86fflWbx5KGbQVaWkrh7BT1MMUl0varOPl+3072szHw811nkYt0/Tm3g6nWNrcDr7MsZ1UVVRlGEq/mFoI5IPpCZvVx6NpQAhGq/TG8OxN+oaVDvXID0dp7rXu4Y3wsWgvtqieZTh7ksrkXFqUGWgiax7nqrYCqAUtR6vrasnX5ANy8yQRu4vEMJuPCSmiLkuNlCFqLTRcNIpAUjAJzfxY19OC+UTYnC4ecbXH1W/1F/fD80UnnB43qV1lS9vBfDnZcjeYmuZF9Bjjaj6cDtssu428fCGmVfZ2fHRYeHOr57GhpOz6YJPSRFcvByuVeSWSuKI1nyVMwt0IGNAWhIEL0n7FWqPONYslQRGFBOik8EN7AEPoETREtTgSVVgT1qV59UQHG6NXEyICISUMtiJdjIlr8JBqA0FtDouO/eYQ7/NMBNtcbV7rfqFZJMUwPODZfVz/GM8qJwc5n8YhdkT68o9ezN8/Hh9u7fYe5ebU3LCbfXvce354rXYas1xvxqvL0YeL5WjLyWy2utZ1XZdjDTdv1mI1TpVbzwJ6iVOx22SPrI/ngkWzvnppgRhT05KHXcnlcjMOKgqfbYG1gGM+txW6k9GIOqbptMSb23WdkkkzHobmI/mTi1JsSdY0peOY9xge08XDPd9/37Zv+eLZ+Mdf/qT+86tU108+2z4u+9UdMp6W2epip/U01+Ncm8mQy267uby54jCsZXqLTx7r9naGPt4mn6f9Nxd89qxcpt/8978bbD81blIKsdbeP8IQKcbkdYs11dXm29aipgsxV4TkMmoe8hSew/u8NSdiMNsyKG7T6VBwylgpqU9oa8pGqZQy7VxTkzSqZImJnrwRyBz7/LdQYAELCdIrfBmGXY12XOrFz1/qRlt7uFzmjdcXacnrmqVNW71Plkodv3xR2uS/yPvv7+fL0J+V3//v37V3d2trRz9V2JA3oAGuotyV3ZWWaVOGXMasQ2lMlYNIHoJXNg+csy9jbN5+c/vt379KX/+vf3l+mX5yU8ZPM9Sr7QeIyWhl58PGI9XTcrifl2WdWpI8SBrSpiBpqGAUE6yBSDtEqkuWddHahnYaY80waHKqUctm2zQlzbh64Sk1kRFL9jWvBzYwgFQsEEASjRbRfAiBr9EwbDaHZVkrp5ub8brUOZ6dsK1x1U45aha/2kDEm7bNz66kXM++u5/ZNiEvLn48ttPbhwEyx8HYhtHSQC0ybcq4naaL7dXzKy1JsiwOM/E1KdMAiC0bmUu0Iabvf/3Db3/97f8DuE9CZgplbmRzdHJlYW0KZW5kb2JqCjY3IDAgb2JqCjE3NTYxCmVuZG9iagoyMyAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4IC9Db2xvclNwYWNlIC9EZXZpY2VSR0IKL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMyAvQ29sdW1ucyA5OSAvUHJlZGljdG9yIDEwID4+IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9IZWlnaHQgOTkgL0xlbmd0aCA2OCAwIFIgL1N1YnR5cGUgL0ltYWdlIC9UeXBlIC9YT2JqZWN0IC9XaWR0aCA5OSA+PgpzdHJlYW0KeJxEu8nSJEl2pXfuoGpmPvxDDBmRWcgqFKvQAEl0rygchOwH4IY7PgEXfENuueKOwhXZgHQ3SKBQVZmRGRH/4IOZqt6BC0+QIr5wcRETN1O1O5xzP6X/5b/7N/vfPh7+5pvn+7+6xvS6cp6/Qgj398+Pv/28lv/tf/2/v18u3+3av/2rq51O/bKt7797wvLF56Ip4TL6SAETTTm23vt4OZ1+9Vf3Dx+WZP/86fXpy3l3fxSGIqbtzH3Q1aw8etn3wzcry+b0+cXWde++v/vu199+3H37YXmgq1zO9PQqT5u32DqN+z0tMh3puH1dtqfHn/6vefxcxiv6GOW+18dP68drq5etzMvEhalijd4zG8E1QjBEpB6lLPsdaV4lzus6Nq8nO7y2fTiTp2BL9m3BZz6esHuyh/h6ytez3v3lQd/W4FzXvqV4zEqaY2w/f8X0btLj93/zbXz608+X9dNXX0BlktjOwrEI+UhkcAaDMokDVZUyEL5d+uUkh7eH+WAHD4lgCw5zwMoUx7tePgzeX+J4XbN7Osf927tl3n/3cT7u+IBBl+Zniyu0a0aSMCfliHEa69az+eITj8KDtZvGFUHHeVd0V8vOtp5OaaJThaqXKWpCsmoqg9Hb2dbeo8faa4+6pUQCSKEgoVRJgRauQpPooNkn0oe/vhtSGufl2hvqUJmg3lv//Bl37+e39bf/+jf/4fT86eev//zJvn2kt3cSlxepvlv4MpLAxMIZCWLnMqlyMnw9b1C6//DN7ghS6j+/kg220ZVH2fXp3Va/33x5Oul6bm6xu6M33zx8fH/8q7c7DIvWX19XOw17hXclIinCnhHWz5do2xg228KjchdtJnZhaw93y5i9uXy5XsegoFLrG5ZlLHejAiWnsqkZWXt+ua6XXC+5xd6pOGmtUA0tHsxgJHOpPE8074Wn3TjO+sRvrz6dx/Kzve+o7iWz1DI/vH3zxz9+uvx0xu+mdx8f9sfpn/757631vvYiATKJM2eJlOaRDBbmUjBXJr3//iMzifLlpRFFzSJcDdK9nKd3K46n7d3LjzKaWeuPb+e7d/VXH+rCWk7j//nxxxpeImIdY8t+ieyZGUTW0ZKGli1jpMeP6+7O3h98/lXPOlqx0V8+07Hxm3j/n9y75fp8eX699Od6qm8vu7tepqIu141aax3GS0y75ImJlEN9g0fr3tbJWYcotE9lfHhrb949HL896Es+XLOect6oGjSYry4OZakKr+b95UlpKpX6vFuZToE9d05GBAJIZCIRjsyOabdApcyTEIswjMPgI7YLjVG6zRc5rrlfTWlgAh4WebPwYaK9p4ykyOjkQeTpq1vLsAyPTA+MkSOpu2/AyPQRFFg2kOBhj3XBFsa5El7GJMbK5Tgda5SgzE46VhYnoaKcqYKAgjkBQhBZegcyCXF7GEvuBMpxPbXXrodn/Sk/rFkuKI0omaFycm0IQu4qSuDzTz/R8Sil8vGwgp4ClK0SihAcmZTgyAg3G13uj6oimCqXwqJG11O7nu3lCQPT4P3ZH7qVbfX7RQ8zf/tG7xauEnnawufMWnWmtExq6yV7phHcMn2gG1n48LEqb0ThvLzk/ETzhe2hXB74qnDbqF9st677x/ntX94fDpGcj6v9uI0XkxerOi+Sc7GAUR8Jc4Rnds8NIGhFJDyzmfqEgZdPn9e8EG366ntPysCEFkgbSGbLeh4o4Rm5Y/Ju7kmZmeRJwZycGRRUPMVTIkYSIHR5PUvr82GfzlvHlx+f2tbHiHr3nsu+1uPed3dJ8zHf77BT2iloCzjREKhCdTA8PKKXkmbeh9tolqPlZhiRlmHDGkcv+aJUk0pjecJ8IZp18KQk04uV/Iz/+Pnl3Z3v9ji+rbsldGahaevUB3rrxL5wZPgI79bTkQG3YX1kEMV8uVy9x1zxm99+/PZXO7WUjKAIIUMkMSI1ACdiAAQCKAIgASgzEx7wJIFESuD24czITJiDPQZsjD6yNUvSMk/TcghZnCo5KvJAvg+UgVjTO6URWVIdVMmJEkEM0oBEUjjc0yLMo0dahJMFe3IaCCBPEctIEIGFWQq7aAS55WmYrUkXZJqXRtLda3dZo0QgM+hWuzMtkZmZYAoQs3rUUKXHh/27j/u373eKJIogbyIDQCRFIJNSyQIIWMIzEVk4JZM8RoaoKhfL4lBnyRiR4aNNZYbxdvLnp+u69fluuX+8P9zdEXZtzcvZddgUcQjDS2wDp1P60AzmBNXGU52/u58OWXfc+4A6KdwyEJkjvLlb60ZgTk2k+pDoysFMJNyZRbKgz+92XHeox37qrffL57PkFbyNnV/K45UPX3yCE3vubEiEENaMSLBIqUJExDg+1mmpf/233y4clUJjHSpeNLcIIzYUT+JEZCQBlEhQJiGQHkEjdYTWYHIqbgwwU7MAaCpLWI4xLu67h93D8eHdu4dw9kGXn7bYct5iyhT3aOZIB2jm472WqruHJYoa61N342gRXNQEI8fIMM9haZHhkWaWnulb9spZOCeEJCRCBieYgPb8LPO1HNbleCy67OVuhhU40Fe2K/uP5c3V42qGp5+4bzzG/SQJygCYAbK0aZZpzvVy+fFPz6dPr5oWRMGUicxEJiMpMyPpFnn0/68UApyp3Xl2Es8aw5ED1BIgArEHnFKmsn/Y3T3u9/upnWPtFhennjJS4OyRw10yGFSzLDlNmGb2ysSUnobMRFVNiSQCkEAERSAS7h7pke7pmRmURK6ETBBJOMI5hjFnDpZ5UdZadUc5UZTY9swbI5fHE8op1LBgS2zGkZmIoAQHkBZaUzTW0/X0fHn5elWPMDcZvTAo080ZSkkZTGBCkrukCwtxcdTIGOfrEjbp2Oc2IKsvg+YGvbSIEtNh+s/+9b/azVUIn//wc/ti/TnLdaZMCgt3AMKCYlSCF2PVtHz6j4FlyrnM9zsDeZAsCw3OmjEGQjtKoFh460MZDHhk28YWZpqzxiSoooSaqCwzE3F3//rcISu9LLWztuPyzAJoedR1PXxc7z7m93+xtfPp9eeXT19H9wwJVw/KlkqZo//why9V53ffv1GfCsE4XOECnohGIEG3zoIAZaJM8kjmzBrErc1eu6BTuzIK6zSYu2jO/OG7h+P9blfndlrHZbOvhiuJCZBAgklEMjACg9gy2tYvF2mv17//u39wHlT448ff1ON+utvr7+7YQgqpcoSoFJkO5sVz2Lal2VSXFE23zN7Twx1tlMAETpUKZqV5liqlyi5APcyezpOtJcY+n0LuNrn/+vaD75Y87HbHnUeMkednt5GZxMzKcjzuRJgl1ZUp2AISyRQK9+QAJ3Ek+Fb8MpGBJJAm1dbrsEg4IYGMJCMNrbqf7t8+3t3tOHlc+vV5i0tkV04GIZCZAFFymsfIHBaXGPHEpy/t3//TH5K2WmjBNJ3v6nl786FWEeEUYWEWFhQhpemwM7OIZFYiShb3TJABI40iJZw82RFBQlAhrupeehZvRu0i/TKvX5tXjWU7/XY8vs9vvi0HFZXgiDSPYC4EIpAWZUkSyH/13/73KUARDCOgCKV7IlM4EwgwIjIDOSAke/Dhxz+8aOHlbjp8d7fNxx+3ut7fTW/vv//9d7u6RMfTn5/6a/eWmRrgAFMiPG14G72N3q1ft3W9Xq6np8vruF7bds3ffv/rv/5Xv/uv/5vf9Hb98x/+vN8fwsKRyhqJvvXWrsn++N1DMkN4vTQi0VKXXZl283xYll2ty6RVtS4sQpkaLWOEaJtmm6fDoc3zOk+Xytc6227x1zM+/Xj6P/7dz5dtXNfOopfzCOLHb95uaz+/rqen1R0IUiaPRE9WEkZkgABGWgYygcxMTteEeBcNYYDqxcunJutlNI8vkce7x+luB0z97Nky15IdMM8BBIDswzKQxPlLdjbY4PAJYjLqQt///uM33x8e38+uvUw4HqaiAPmIVCEu2B+nPHd3uz5dCwvvd+LJEZQRcICApDKLUlWe6qTCtdBcuipShxEi/bVbaSmdK8lQHaxmwlrudrvlfiLBy5en0UW0jr5JoeVu2h93Y2utDZWMoLQkgzAQGQQiIDIJCUJmMEIzJQbDgwGp16SfWnm+mlGukg/Hh7qb06ifPdekVshBzrCgzEw3MyQThAgg3JwZ9phImgxa5M3ju4dfl/0jr19OJHnYTyqZ6eZuwqqySB29tBbraZuPtc7K4d5H2MjgyEQyVLlymXSqWgpPk9SqzG7wjNV8XMaYB7SLZ+lUVipXFczT3XzY389j+POnVy07AvV2Fa11KvvD/uVzNGtaLmdelHZlbNnBXGqmJWXhWxXORIIBSu5NfGNt5ViuiJfTWB72hze799/dHWYtluunNm+ixupEnnC4kblbUNHah/fe6iykHKrR0lKE6tu9gZCx/fzvvvzTutFmtZRa6/nrS6lVp5oeLkKi+8fDHDu9Xlu/9rZlOIRYK+O2/jBLhgrVUgpDgnlMO61Z53aIr2qXomtoeeb7L3/OP5/lT+fySeb9d8uH7++mHfEaWmiahYDzz89JlaWMt33/Znn76zuN9aplmggjPYmDOYwoUzlGAglALUcEKSPTzNeYhu5rfXN8+G6/LFol49KiZ91SDerJDnJKI29kliO8zFQKJwSERGRif9yHp7sDAxnmONa6EAc7KXPVWmsptWpRYZAgBcnCvNvvtJL5MOseERkEFkAIAtSipRZVZSEQd48xzLJzbOIbuY+UQfpT2X+dywlV93M5LkzU1mE9pExBRAhSRlBEfP3p2dMDob5eZYmZ6QQLKkEcCUEWpAUiCFTM3SJm5Za9+8Vnrx/3x9+/+fh2kTHi9RrPIzpVKyXBCYxEAMajRR9h7stOSQWFxq1qet7dH0FyXTuypxuv27HulWRso1F0yrLsq+pUhJUCbCEZIOXdYTdF9bDWtjbMzBBNCYWpEBXVqWqpxIIk9NFz9I6L+pVjKx6b1ytNn+YPL2Xph/n4tixzUNr13MMhdedhQMokcPGeX3948rBuQ6/mZYylNZVM8gwTOFOCKIidiBgEL9mFELga+cf//Hd0t+iEz//459Jzb6SYS1JY7x6I9GBGkGB5O93Xfals1lp0RK9QN9+2bg1ApBNLYRWZOYZ1Ny4+1anWuSwHJRRkWI9MSU6VJI4GiChzPZbZzd2TDJmUWYREiJQ7eaZn9qREprS4dG1j+tLl6za99OlJ73hXj7sy0YuE5wqVGswjCFpACAYjdCd/+ebXT0/nH/7wrIO5J/pwBgHJMZiCCA5JAAlJpxiIQaSQCfVIvMvO43nwSurQFAQiwt0RTgHzUIQy5rlUIQG1zUFZCjHDiMOVIjOzMCEJSSCBIImEkSrJTO6JsLAYA2DKJC4ESSISAhFRllK0aKRmBDKFQYzkTGT+S01CIJ0taiQ3YOOp62SQEkHeRYICnpTMCSJGggCAKTKYiCZM++pEuhXVoLpGrcJwjiBCkhhpZFB6iQ1+Tesm91QfaPexbwd7XX1bP+znWXhhiq2bOce4NZg2UimE6SgLLGL17ecr72h+FEgoscx1rD2RVXR0hBOgLIqSIjfjhmLdzHvaCk+GFJqJDFlYmKAAZ3idlAuNkRmREUCAIhGJBDGI4QRnhDj2zrjWycvCWfC65mgZTQ8KEgsNIWKIICIBImLP8BjpuX93fJzeqdzNY/jLxd4XZST5wLQk10CVuHKMpfQNZqBW/+I1P760t266CB92uo+Vh1sPifTMBm/ZGZiWqaIWpz/9/dN17W3Y/vF+qpwdY92SCUXqLOnhrbMnPNLdYZ7Wc3hwBLFbRo/YWApxcc7YOqKqyrSozqrzQgJiAjlxCmeQA5lwz83Mt9XHpZONmrq1MMPrMNOWGm/eTAAy45ogEi5V9BclXlkSNLZQZWJG8Om0jdemOpf0aD0iMvmmzgTEcAiCyTPNSJropo+d9yOnGlmJZie1hGVYIh3wIAcFGEHeR3jLbWuO5KrLw6JTEiyNApkZgKV7dEtDeoaPyJE5PMyD3CHWgZHogUSmpSAqJycZcTJDVJIBQAqYkxkEirAwjGG9j/XSchswD49weFAQe4Rbn1jAACQsiYgISUkAkgDG7UsQgCB4xgjo7jhft3Fee3cFgZCFK0Fk9MoDGKuNV91f+G6bPq60gMq9tLn3cjqnGxMVEskGjJBWFmbJ3i/PX85+Gfe747tv3j58eHN4d9jO6/nLa7+q29jOWx/XjFAQEyHTbSR6wjIjPNw9rTE5czjSyTv5tD8U5VJGlaEixBlJCaqzECWQGfBu13N7fnrZ1ut6Ou+EOeJ8vfIy0VTrw66d121rtIXOIpPi1m1H50AQ0y+DP2Kp4RYWppFT1aXotGirkkRrzwDXqU5gjah5ZWyD/Inm8/T+Wt40Zoo+eZvbpdoow5M0MyNH0CB2gvRuSZ7RD+8O+1/N33/3cdIqJC9//Lpe2vXS6r7qrJWqmYQN23qMkRaehnSEx3Ckczq7OayRGTzLRPNMRYjJW195E0tiKdOkVZOGu7v59dy2y3p5OW19iwip1cIyfQvfH7Qci80jM4jhEpFEjomUOYWCmQEBKd2kCYiYhbLspex3Os8qRViZhNbmEC6lIFPhC/fwYYlGu667rruAl/QpTG0VC4pMvskeI3JKR1JGJgUY01KX3TLNNXu0ra9fL31EJrQoFQi5esSgHu7hnmG3bJVxe4eQflOdQZkECKgwESEz3cOdMpSpVK6TmLf0cPfWWtu23rbIyASYItKRzsiKnGFqUQKB4ACIgsC4mZCAAIybe0JA5i0JahFhcKaGME+l7ucvX893xPcfD7heJfv93J5Po1s9z++uNDfEgq8HGju2moEUC0VuRC7cJDfKSKeyJFWqy75istf8P//3v7u8nNt1+/Dx29374/3H+7pIptvoSRksigxVt4EtrPUYzg4zWKSDpdSpVjootEKF1pEcvKvTPddjvfvwsN9NpfDTqV/TvVmzdaBjgrK459gs00Gph2LFHNERPhEE8ACQSeFBSQEBhIhvuwFEpINBRAR6+vR8Pm06AJ50uVt++vPX0ifXkjMlOOvuci5n1F4PVLjwWGKIjzTvURnBZEJOGORN2AXg5GieI3O1a3eYlGX6+P4wH+vj92/KrspSYpivvb1aPweNYOMcIKMCEqEEw4Yig8mQxhigNKIADV+01FqOD0t93JW73TxXpnQbkTaiNV+pBIcjhocHjHlwoQjpY6QnBwScgBNBmFKQksEJTmICA8TEoEhiVnYzd7fTBe5zhTolF5l2tXVrPUYKzUpELrTxWKmGTMzO5DU2CU8PgwqSKJk6pSE7JwRQ53ALwJOtE0Lv7g+P3909fHe3/9WRlJBop3WQx0ZOmRnsCEvy4FsoM5ICHIlkBBEiKDwonOFzoVllvxSdi1QtzO5m0SPMY/ToJAENiEdakBOHsJIjWiJAQZygBIGIGCBKSnCCI4V/iUHg1tQKh7t7YnQWmiprLU5LZGR3f73Yp8/24d98X5g//7BdNA286GzjkmbcDSTJFRlMQ9FAQziLEruTuVw3lUJaeDnu3++WQ737tsosPHXvV7bCrDxcKeeFFWWsfv2yDr946+mNYRRO4WkjbRA1oRTKngyZSjkWmjh4O188iF77bMWye46hrVsb0SLCM0IQKQBRgG9TBCImIZI0IzCD6bbREBBlUngCAMHCWUoSdSSmIhMXRykpCq1i06GU/bI/PJjzlx++xN9+sNAfP12HzyDRa/IgOJcsQUgK8SHpmkAggJYpSVNSLSRMzCmxzlsvyUFiXIMmk2NCM9nblTKEM3yL0RE2L1yr2Abr7j4ygmxQbxRnghMZz4oysSBHMY7cNAXEsNYth2GkBDIYbn0wstbSzCKJQYUDgoR4MkKgjLgVNiKAM5iYECRETAAClOlJwkvJZDfqL6f9jpVZC43dsuyX+/3x4fRyvTy/MsSjfPkSy76wFlmHDKJg1Wo0HCYxFCnIADxgDiVWyqJUCUKhfqnXkC3tnCOWkUu7hWQAsYpi3gloJAbS60QEGR7b8IjbiHjI2DAuiSEYypo0Z+EYcxJn36OAFd7MYE5ONRiplG0MEq6TJjIyAAY7ZSZxhFBwEhMFMomSb6M5SiJw3qZlBLDDQaSTWnAA58soonOBPn0+Rex4mg5vjm8/Hr77i+n3v3vbTvTjm0utC5KvL4OdKQXsJCkck2b2sW1DhFhkN9VKNnvUrU39VCL2hYSZmFtlVi112j0oauFJWKq1vj2vo3VKE8rrT09jvYzrKzOIkluXdtW+Fr8AIzB6I8PWZWCqwRi2VxgQZn2EWbpZ7g7Hxw/3//jy7yONI3aTDuIxhipDRCpxBRWMAFIpichv6SrACUpKRQhSgNGbG60Su7fv6658KS+vl7VfNu0Xjz1J6MOejkf9i2/38M06MTNlwoNHMsBE7kEUQFgYZRBDhYUg3kv24l16LzFqpjiQmgDqxEvleeKDUmHSZHHhgKUWcktfu8CTUeeSMdI90gTBlAF4wvEv3ZpkcoJwC5OMMDMuoqTPr+dIydCpHDy6xyicyTHSQYIEpzOMEqCSoGBmyptrQEiAAhwEyuC0wiGM0VbvjWe5++bRv8Z22rSfI+5QTL455OMb/v7jcl5P1xMIlBZpIAsRMDDckwKI7laAqcikwuE0eh1r8aG9TxKFkiIDFCyxm/m4k/1ed4UoM4258+RCsEG25fW6Fc0KmfdLv7ivHukEgPgK7qAGJqIQ9sIuTMyF5NbxWLdpnqTW1z++tGZt1X19ND+39lw4ggLwTCYkh3EQRTDUmBxCQInbxiMBJ2YGZYaNnSIR17WN7SJF3n3/zdd2ffnypB887r98Lm19vH6adHn+o/34/HBdZ1oO4zwwvCgIDhjCJUORxGUizER0ubJ39nVCLPClgBDOnNOdTw9Wd2dM/iT+s2X/yhQiXmRlCgWCB2CFZTrM5ObXE3yk96LZHVvyuj809pXNKnKuuTuSHAQzBsQD5rZGssgu/+Zvf/f1afvy+Xq+YFl29w/LZbxSGXkvGBTh835XZTBMrXXiQRKoNyUg5AFEyoAaS1SmOAv8btHz9bnZejzO9W5ZPrzT3fU8jVWuz4djQOdmunlpoU4ABciJI9MjHRxEzumEhGdk8hgMn4WnyJLEmcmaJD20G3fixowUQHRWYaiEMkk6p0s4kgGBZ1ja8ASRKmWEIxymMEmXaBSJKrRjqkQaN82EFNGxjW55+Eb2h3kYPb1uOtJMel+duEx0uWxuUcqckTm8ViQyM5xBSbc8fotEIySRkWoqAQXgcLbh1ki57Bc9PP04xRDYw3/5u3aYn/Whl7thNHJUMS6WbubDYZAAGdDJyYetzSbrc+W7ZZm3oaPDetQpoKcmp+aNG+1l2dfdfrl//1CqqIJjxehYV1wQvVlDu/bRxtZMVLlw+EhIQLtgKLlS6wafqh9YF1DNYI/g9GW3v/x8vqyXN7/+cH+/v3tz9/Sncxt5PtdTu/KEw2E5n34YHQ/f3HlPyXanmhRAH1wBQjCJE2VhN0KQOJdCi8TIWAuRpI/riVWnu72+e7TCXMruRR9e/OHT9WEdNc3YRvoW4RGRSCLAB5MTIi0VVJfpsVSx0U4r2pAM49K6eKl8/3B/t5f9vLvflaIiSukZGY1YSYR1x1qXNBlX1H161DlL71tv7fy58VKm3Z4u/UaRLiJEVbqUwswClTWsGemkctgX8j/+w9fju7F/3E87REcbtrs7Lgd9+3Z3+XLdRt/96u7rD9YvKTaDwUwSDEoUkDF5EMZuZqPcHCMVIJVkH/DwtRmTs2jdKViHzi90/5LHs81pv7DjFIZwJAAnOGXc3C1KYiJJQkZG2giJBBPXElKzVJ5UK5WSNYcM40HhjNB0RXXAOE0y4TcriI3IggdLimbV4EKsfjUglIgpAMDzpliTKZGBGO4kJEVt5NisXRtT3DxBcY6e26lRpgprLTzP5G5chJKQ6QQhEoocAggA90xSpkwJ0A0wpYw0z5JgUnp8OPv8Esc/0W+2uG85zdurtG3xZt7Tg1goO3IQjBIMqVLYLMd4fT0JogA6CVfO4zTvj9CCDB7n/BrX00bmHCmlctlxOSYnKAAjb0wmGjR6ju7rxZRcpb6733puLTeHMu0V7jHgrbsnMxgUokKC6+kErnWpx+nQPV5+Pkcf0aJf0ge9Wvun00tZUI9FvD+8uR/3RzutiKAM3xgTkcBonYHK2tqmUsv+sEVkxnAtnMox2mANEujf/Ynt8Ngfvh+7N3CVy7bb1tIbdSeXW5VNRCKIKDMiwjxKJAGipSgtE08MZK4Xz94gISKCEGDWg9Yo7FWNcuVYdRi7S7cc4+bammgwKVfqlt0jUwsve5nuEGYtRqQliZaiXIg0IhF8G/0EOECtjT68myXR1ravn1/mfY2MrQ11xXX76cf/oHORolJ4f5in3VT3E++U9rot3tbVXi+HZRLidTtrmUBI8wA4oRmjb56hP54r7448v0+d4KG9Fx/qlp7Im7aOm6t86/b/5RcwgUVYiIVvpIfdLuKshUAMpihTikOMeIgNjqZ9o2HUBg3PiHRHWaCFa6WUG7MBISoos1oja0jyJAYYqUghQiTljSQUBbN3NxtjWDBZerONPRNp8AyNEevLZdpVrUWXIiRg0WlyJzLWw97Stlfb80RIhBEVMEEyMxKhlBEWA/oDf3y8++7dr747vVz1uu36pcSgjC04IzIjY2M24oQlEZNSESuRGsmpHnZ6vZAVkTodHpMJwrLbiUCIWpB7691ibJOvs195+8yjcW+sSUJRBVjSq687uXtf5sPT6SXPF7pcdrt9p2mLhbgOz0vzHCwySS2WHiN5tWVeym56HZfu29Zb1gkL7z/sypye7j2QXlPuD9+FpZmfX9rl9QX8tNsdjcRU/4v/4T9dd/OP4+X13ArrtD+uNpBY9mVc1vT2cJjVzcP17q/+cnq4Dx9lu9bRJ4RHZhKYkQ4ECZCRHnAmAlFmYFi6x6RFuMjCvddghU66EDGabWmURJSIdEYGikVvLaiFurFvuG7pnhFcKkvNcjyznILH7n2hXcVVZjb31gcXTeay6A1+U5aiHIzu3reexPv9DArP8fXl5OaEaFvLDGSARgRWywyk0PxmZ74l7PF4PL+O09f+9I9fp0P86u13z9fPkYDw6JHAXCbTkhkjNd1yuB7/4hslgY3at2KuN2A6Mxm//BkSfoO1KRO4mdsBd6gwE3HVRHVSkGhh4uht46SbRLuxxwEx5xzQnhQhMehyQe80jGeVorIMK4dVFjv+SiFIUTWmHjEilUik1iRKZIL4Bnp2+HDwmOadFlGVsbbIYIGN8UtiJWTmcAMRsc47hSkSu3nqr4lru/xwLh+mu2/vXuIpMpnZAwFyUefi5D2ZE5wh/+P//D9p6/7z66G79vAtwiIjKHugJwxkoCBKZc0w967Kpeq0VIscyJYuy46E+3WlGDAj5Ug4smoWiSLh62Zb69tAd+s2zhe5XmX0HduUNsXYSZfJtPTP+vZ69fMJSxFkUZ6vnkEitWiZmWWYhxIVPjzuknh0vHy5jh7MSkhkttZww/E73XInqVKRZGynF1Gqtdopx5XJpklgp+vpp5/Hy7UIP358eDmNbSDr7jpyC756TPtp/2av1ZpvfVx6gUSIRRIRmMIzgSRQ3vAIRgQTqxR3p/jFq8gMC5QpmbiWMnp3xzTviYMywGFm2TdftxJeq7prmG6pwpph2AZ5gpCtL3x6FP7w7tPJD1dbIgRIVZSoljl6sDCzlKIOdqfeg7jUhT1ihFt3cwdSi5gHxQ3A1tvYFgEGFiliFB7PryfiRe93b7+/Fx0ZsmYoMa7bhAQzzGudylSSvOyneqhatm2sTa5D52oZkcTMNzTvRnAAt9OOCQ8mFlEbbpk3qgAZt8NLrChTuZ7asJx0wq1tyzF6jNajNRbIpDHURDvqpCXC+kbcgyPratN0kQkf9JOUdJ8iKxDCWUoJj9atTCykpU4rwh3RYtpTrerp4+Ktm5knQYskZQQoQCyJ9OEUyUQ7LWZk5ufrOt3r9JYfvj8qbJxBbQAW522GMKObl/1ERQZSph3XSfMffuSrFqse1cLdfZrEidetF1ViZBsIcFABYrTuVqVQEgKGJNWpzNvaVVAPc53vAJDB+ug2ejiDWff1fmlj83GZtfq0a7v+zNS39cdTfjPZPef7fY6g8drj0w/Loby535+sjJHmRqq1FJ5mAofDjaQWZvKg0cK8k6QW1MK2qSc5EQuIAxkZhsSkisj03Lq3MZzx+3/7+7uH/eE4f/rzP49r90vs5z0j2vNVSyp7sbP31om/vPjneMqAYt3gO6gOVheQCvDLyEIASrK4GalJGZRx4xnzRkqYEVILhYU5ts0phIU5xIMRFMnJkgxM89hysy1Zg0uX2WBDeTzgnJ7kulgKZeEeNUiEOQIQVakjAgl3sIAJyWAhyM3PyzQkZf7CcCPz1h1nZqZHxu1OiUBgSqFlt9OlTvNkW3++XOzcwgJELYIBgkjeao4lpYgej7vLua19KLYNMsc0DRUQuCh8IFKTFESARxCCMuFGmQwEMhIR8OgCgcPdPfKSYypLJaUQTklIsiRRCOVx1yku69XJSTLYunuUST48nNNW2NBtUqjSoAW0gIsHSZnqbh/ns3UbwwonUQajKLESefite6H0G8eYN4prxI3nGoFfDliFFmVhCN1/fDy+uQPr66fPLz/8/Hi/aC2YdR1OwCRa4JIpHkGhjPff3tHPr8OHvky7rksrU7Ko5eyca2Ozo8JHixiFEwEEwiBauPI6NhCjKPMMopEkyyJS6rSPnpvn+vVad6zTjjODeqJ/fT0r8/Lum9PXL5RTOezXEzP1+4W/Xrdm/EzLw7LfzdXWNm3zVDAzm8V2akUKFYlkKknqzJZEQUJV4UkBAlRpnjiiarBDhrUEMamo8i/wWYAgRXZTERsvn54L+LuPH6lsTtbpOh0UJEhtnSR1mu4TlpTX09e7O3p8u9fTcgieXblEMDnfnEB4YfcxEEMVfiMGfnnf4yZqiEB6G72CpYpUkUKSiXBz1iKFrXcthQtfTt0jGBqkrMyVsk3hME9JVTBQgBJZRIVSYnitjCA3ZynMEKWgSHje1BWBhH+REb9EGZgIzIBkUSCZbz4dkAECM03zJMzpmWZQISEjj9tip9EvMcxBbL9kmczW61TmKvrl7r0kl6TFRhmdbWMMYSviLXqGlVKij3CfZeppw5yZiYmESBhghBSZRSpTKTf7C1oX5ZnWa5vv5/1DWdeTdR/rYC6lUt0xtb1d+XRpC6YDQUTSQLD93Z0jrffpoDC28ctJJ9G09IiUMKFCDC63uad7M4+IiP9vPly0gkCgfm1u7r3rpGUqc60JuIUoBY2rr80HK9da0NeMRArrDOS2tRu6zY4687KwvkzLIXyOcbCTxJbjygqKaNb+35rObFdzJLvOe4oIkv9wzsmTWZlV3aXultUSbMkzPMCGrwT7CfwgfkNfCrAN6cKG3VJLrVZVlzKzMvMM/0AyIvbgCx69AEEQwWDstda36AAAZLWFOTj0iEBEZHOOYAhJkhAYgggGUFlXLIkJoJujIVlYwOVU11r3t/d9XtbTCReDCF9gGooiVaPuZuAEmBOlws5Qu1WLUVuP5EwIFhjOICkBETLw5v8SRAogF4Dood0BY7Pne+se4RZIJDntbvfjvkgWgKhr69qxbHO+lZQhEBQYBiJEREMMdB4iSQKgee4ffzjrd02cGMAlIlklq+4NWRzdwgIREF0dPBDAzfwlOoBBBEEeSEiEErYhgAROgeGAZhEaJGLevXoZM5CQJGCHsN4NQJAwqBtCADqTCIVQd9cIBTdwRw/afEuPcEAECibfUrSMGAQRQARAsQ0S2wBDm8/JIIklyTDmlIWE+vpCywcYoANumdkNaudNKwkIgCDahjh3cBJOMkgJn8D3EGldqLYI34jM5o4i4N7nJUVgxNp6EANxsEMAAvcOiSmn0k6dIobpgBAbpdpaR7DdcWyVWq1PTysTynBgGnVt58tVCMHUuAY4EtJYdCBMMM+zI4CwkwUgcNCABA7duio5ZQqKzAGjpKoBbgiO6MQO5khBCEKZhEtJwkCETLyude29L50YE8e1ziQgCXtdCVBQItABt888UhD5vMwaZkl+9vs/++YnX8sbXybV0hpWQ3NENA8LQGG3iJcLOLpDaJiGI1EOdw83CkRUSNe1ckjK5fly7r1T4hwsgad+zVnGYVrm2dRU7VgYsWSJ0BoBKXMPBgos2cChu1ugBKH39RpUAAdtAALjwFQ7kpeBKBElZEIRCQRulQiBMWiLDUOAmZnNjQwgIJxrU3Mnh2GXU5bdjg3NwYScADi2QyQgQUJCCFIo454T87SLih+/f5CD1dIttYYG4BgQFuCASARmEE6w8X2bWuceIUj+QrgLAhto08phZm1Z59oqafKUM7LqiocxpYRO0c1WCxYMIkoWdYuXBEEQIotaczM0Z3KM8LZCIkyDqhJRSmz6cl/EwAzMyIgWiJsVHLHJaRFbIi/MDTqCo5mpBwBIEmQm5kD3gIhAJIzAF/QQEIMAMBCdBBKDsOXlsa71Iq/mC1SDxQiSAVZrRuwQGEruEA5EYOgRwegW7h4U3WxxZ87AuEYoLW48d/bUNPrj+XnSnJN07Zdr3U/Tq9sJMLTW1SsQ+NYo4Fbb6hmJiQnXa9V1HqxCdrLwFJJK2ZfPT2dBHLkIdwtcehvLmBIMO/JFW1fvVdvaa+uLbadz26BkRmQBRpTY7XMZ892rfW21ruvTpx8BgIgkeItQATMgAIK7IwBDev7Y27o8P/x4fj7N16vQ2rAHmROCAnQPSIjg0ZTBAMNZzMKDWNDW2a0jBYA7AIGba4TmCbzb4/IFpUQCg6pmhJw59bo+t34YSvSAQLOXibuHOXrkDIkc4XK++lpB9SUxEIFqZMreBybEgKZZ2BE7RqKeqWZaO/aEjaBRKKPZpoohE2zZaQokIKTECBBmGDGUXIo4NXeNcFtsw+l0U+LQ3R23pYuWJ/zlP7rneEUQglXZYIPIA6JHCMGLVhmOEMFiFOaRkmCv0ANwg6pwC1IE2FgGRX84naeUQihAzcyAx5zXtfdedTWwiED1jRmMvgn1iZE5wts8b7Es5BeVB81IFa1lRkCIpnnEIIzwBD0DCdZEnsgYjNEJghACEQkRaZv1HBAQSRABwMKaShFiHneDeX953wMQiMx9C+5t9gE5pUiZvvnlfj/kMSWxaoKYiaq6GTgQkCMYoqN1DkzD2Dt0CJHBcwOwBhwp5amY5nAz7/kmQTL7HJiRkIFl6dpU98cc4Nr75bwQIxC4GWEkhOBwiCD30HAPtowgAesyl0BGFLKo5/YM6eYeAGHtE7uwH6KXPqY0FhwtiUcuuTRnUkUB81Azs9gMN2AgQVbMqZDi+7/88vD0cJkv01d7SAFi41QKp4Fo2o8g0FBvb24Q8fHhcdhJKnCpjw+fz/06C1rnLCnTXNU8UCgYIBBYLCwCCrFIhDsT5JyIx4YINLBMXpHcMzJ3SYojj5lKIKWU1+5N3VQISmJszSQTZermDMFE7uT4D7uDO7AHKFgj7BxBDkKEDmiMvidA0bbTmsAAmwhRzpgQHBwDiIlAGGtXwEAG2WLTGFt6DyhaXyCA93A77Q9RIIOBGtB+P0WFemqo4BRLtPVJw/0yn+7eTQOkfqn91PViQt6ZUAr3RzUHTBLkERiSFDp5FMIkzIFCwCUL0ml15InloKYSMcggDaDTxPtExQlLGdZVrat1JqAs0roHUyZW8MBIiEYUyMQABBjuLcI7QGNsDM4RedPAjdAXCRq07W3O1IEbyAjZu1AoOEEgEyEzAyoBACExECITOEFQAEHta7jvXpWb47EMcr48t95VbbefVm3zZfFqBj5HrfOzqSnMeY+YY32ofnKfWY6lS6ZI/NzUUs77XYcOZimQYxHXsl4zSRReEWmaaEx5DsacaEhJWSEp6mUByK/39xf2yPD1P77J33++frn0VYsMOU1rvyBQQnYhYg8OTjlIIjqxhWNEEBqTjmIZNKnmhOGmVTPuE2C2mqOJm1lXFbOp4iucci5Ezx9RG0E/7ickYA4KA0AHroEG4EzjIaOYp35uz4/XlTZnN2B5+CSR331zCOiUKR3vnk5zD6Obu+lmRyKtyvFm2skgw+gqvpqvwEAiWaAbh5bQjE2giWrknUsy45AUuQglUsLOAxM5soFbAFFJ48Ld2XmQ3e2OgdonJUmShrDVkRwQRIJdwVMegLy3AHBCKCVxZQwkRowACBJ0NPTOsRIyJlPAAFHJHQ8ah66F8pAz7Y/7iKt21RYR3l3BPYA6YtvwLNSUG4sGN9Pm7oC4pRxQbUM+N0kQjZg9GPJxVEbter6uOAgCy3CIS/fr6gtlkpyTkFYB3/ky4sJYQ9nHqSepkJ2Lyyi7HVwdqo5CtKWpnAEpy8AMymYSu9f7aTd9Oj1KHnIeoV9iy1am7GQ9dBgmRNem5I0AxmmIuG7nvg2CooxggV3RZ0wJR16RAZKVQ6N7iztrw64MpcirN7cRsS7L+WxtbW2tpm7AFV+gUYA+yCLURDQJs5ARAhESJgCEMGwO1SP83AwBRdJUnpd+udYvX85tZ8vUZd0Pj0/yfpE2jXkUTLC7tKlfX+vjCCcinT3PiX23N76fGRvhV8fCYgDYrmZddTZ3ivDr43mWVqlfH6737+6maZS7UT2useZjBtTGjUZAIWIxDADAnBOFBKM2YwYR2u+9r71XlyCEDAjVTAa4efW0ZuMRDm+NbqMXeVqwqY9pd7/Dd1yOO/nxsXVt3Z7XvjTtc0VQodiVlAEZBvaGEQhhjB5gjoTb6Q0ICxugAmm3Wa943d3c3N7c/fI/fdPWuddVLjyeA0+dsIgIsvekrVgrqHmTzTAUqKHgNAWEk5MAZ8SRq5hzKBsSOkTzFm4A7mZtVRaVXfYeps4oDuFgJACCIKgBhEglg1lsUrYIYoakAQ4Rzi9tReaCkSCNS8sdR8IhADGMvbVFXSsMaACSUtmVaNKbhRRUL5N6f2KomSqah0Egg2vEJjkgEDj6xvQFvEh+TIiAtkLzbjMO9xMaUZB8xFefXR9qe3ebRm65XoZ6HXQt7IRuGIY0O1wM6WbH5mSK2KiEALURwCDMmQLcoi6cqFCo5/VSa7O7V6/aqq12QAEgCApRYACBpsZM02Hv526KHFTKkAndFwQEZMuOASzYbECfmA9XoBZZDBM0ARXWdbF+ise15l3JUylDqdDXDm08YM6vjnl9/CtYa14/rWfQxix3BE6g7AZEzGxgiMLIbgEIQphAIFA1v//uaV70/tubYaRSUD5fh2ptHPyVLKNd8uXTgEEMF5gaohPE7kadfF54vqIBBuBOwM2ja1yNFXe62sXcla32rmpm3msEoLeWcuGcHQQpCwrCiuG0ufkItVUip4zAgpKRkQDJnNyNOzELyuVzgJWJx3RMGGRtUQhHOFtBGWEo5+ua5jUTpuQD0z3Ld397Ol2xVt4fdExIyRJIZlp7JyahTNHCwcNJAELBHUACoAJAVGIc9+V1ntYOHfzada4hqkgIU4YdrMVm7rNgCaJL5JXYAQXH3j10ybqMlJBZDTG2CqEG0IBUvRu6MWqv6uZqpm4OFlGmqcCEhCTMQuhMgIThQBu+VgQ52AyCGRMQA6mjehBBSpRLf6xI2TkFUlh4N4xwgL6ADIlS6to3eJFqTSPnfblL5BDLk4M4ABqjEBICo+OG0Adv8gwGIAS6AwUAegRu2gK08TAWSM1pmWtdu0yoJesI/dCeZb1AqzSOa+SPTeqwdye6rn55Zjjd2fHm7q4fDt9/tJHhKEy+uC2ga5haQAuK8HBvdbVAs5gvj+U6DGUs0+s0TGUYc0pClJjcutq6rvPx7ZiFP52+DCPTkMtYbO42N2DBYaTjwZ9POIwwDtfnU++agJCzGT4+rmkAyT0VQRZCrp++HCPevpJf/Mff+/HB/9efP/cdu0hQ0abhthuiN9WGyAIEDOHuWzTLAbfti1OGsPnp6e5tOtweXn/z89/9+PnDw6Pcycy6JruiNg1QHmrI4vRsUMO0qz4+HK2Nod//71+9+qd/dLi7oQLuVs2zOJGGdyF0QPBAckZj9q6gCJTIUZuvCTtgB0weFMGIZM3MA0HMsTlUhZCBhxxYJacEk9YV8z7d3MkxqtHjj+u8NHNTFmAFlGHaEQoYzdfes9Sch93btX5++vUP38andz3+7XH9ELszpId0UO9q2m1F5sQSsFHwm0L2gonC5htYEOKYbr/8dv7Q59/eLDglLCITK2KnaBDugI2KR1qCakR169rn+TJAcNjj45N8/bZ8U1lGULNuhQxJLTpTphcXCTYrBTA2mSfQDbrDhq5rhAAQIcaWeUO0AHAAJmBBzgFGiYS4dwgZoUyyW+vVrqfW1RwjUoAHUOScICgcVMMJVIjzoc3n+bnD45cd6k9JvR/Zdyd5a4iBHFGJiMh7/ANt/FKbCBAvT8sdgogp1+t6PXefnw5f3UxpL2NKLtU5EIohrUGrTRqeafZ2tbosy+NDCKr9379//71N737wP/zTfx3gfV3JrxRzgWU1QMwkxTACQkiE3cCqtUAEotZOL6zmdEBCTJsSghHUekvkd+9uKeHalTNKGUgGt9JkWDTdvH0NX+aHD5+oMDG5JzPywPW65pQlpcSlOl7XXg+3h8NPZCjn93/m9XFcn17LBXH/vYLcvYvxkJOA1mgdMBAJkbd8lwEidqAAxEAwxKstt98eX8vA035rPpHeGEIiFfPuEWFufeuDDKtN69L6+tDUmgJSq3U+Pycw01bnZRoDwVqduzMANkzAiEwOIQjBZMBEwAjhDSIjGW2IJtgmD6lWRsnMEF6XtYbmryaRJCWVu4mF1Wl3u2+NHD9dn67dQpHG/UFSJsau1gx4ECBPrF0vFzSQMu2+vh3K/T6LlD0MP7Hhoy7Xa+8JGICIhTk2DW5rTQhGZAjHMGICAEdq0R3gfn+8XNa+VPGKAEIpW3UHQzA3DQ/08N6tNfc+17nVhpi0t3U5JzBXtWUddkBmREv14sALGBAYoyEKAUR0pxerKRRwm7Ac0QLdQ826aWcUIbKOde2q9QaPidlE8nEXHmZWpl2eOjDOc11r70BIeZxYJFdzjcguW+vEbJfG9Cz8eby3kAKRCRKm15FOj21Zq9GADMSEhOEO4YjxcuZ82TOMAjZHrLuFhyQA6NoXGZ/P+S6n+7v3jx8R4nib9eOXHhGpdCZPw5vb1+/b38/L7GFrf7qukKVWb/OltkRZIWk9LM+FqpT4gtyYxsM0r/PaFPoaGM5YppTFJTWnq1E2jh4Xx1YGzxkZ4vPHs6GByGLFGjfwN3fJ1rrMi0WDYvwaBptwdQR/uD7jev7Jz39qiQMociHUrH0vFw/ozu8bf/abj76bTu8LtP3d+d39/i6lj7Nfu566aY8sUgqHrh4aCD0SASdEVw10zsWqrWt8/7cfs/AuF8kf/24cXo/53XcGgUycLT1FKIUJ9yzecxqGcW9KQWkYd7vS19nNOec1CtM4HQ6+VPB6oDYTg7N3DOsRmjIRIwkKAYGBNwABRCQObAANw/q6OOGyVBeAwC+frllkyGknB+jmDc0AkMt+9/RXD3XR/Vd3sVZzW9cVkBDJHZUC0UgasrFARkGgjimGY0S1Xm1Rr8EzHNKwL/nsZuHVrbBAILgiSGxqMhEiuKkQCXIiBgd1k/zxN9Nr2Mtrd+goSJMmiajUamKIFNVkGkdCyMR5LMN+qsvVLMlYqmvhqRyP/dOP6FqonUkMbVZw6xCaC0smFgoNAgttiAkJkRi3J+VWF4eAZW1RGIDWj+dEMqR8u1sSIjboq0fwcNg/fDkt13Z49xUwWei8LBlBiJxUgQORpAl3SX0Yx+AMNPJ0JK99fVBTc5WZptvbNN4A6rmta1ukZApDMPCAQANkZgB37VlGliRZeu29df5vf/LucNBpt2gVp+GLH2zaexlMlySSJDnkoYzTNFn08TDtbnfpeGRJwzToaRGzicJWC042TtdIhjmlYZho3DEUCPJuPTREpAwjl5yHvNuP1y/PuqzWFgvo7tUpcgpOtCm6DnW105f5+dPyw3fv52t995N3f/Fnf/HjDx+Wz3OGkqKcPz7ZdYllFr2SrQQdE257jriT9egVwzSiYx5vb/fH412jL7/6ux/+4lc3ZWBmnHanZhpIAi+tIiG2lQAx165Ne54GM+xGIuhi1zR/ukProU+Vq0yGg9IkYhTB5FvmrAyFhwHyoEaJfcAWvpRYyRSFIZLTCMwIiMDgGJv9CMBM6ESMRJAzF+GE6K1bbRxm2QEJmYMIEZmREIlIQ3POeUiny2xmuyl9+9NX3Nf54Qmuibyz2yBpGngqJtJZAAiJAJgwHAOIXnAoo9TCCOLuze7N816iTbKC4bqGQEIkBwBwRCAEDQgABCRGQHQwEBYUQUHSWS7LG7iE35zm9qX8vkZpdByoERhjBQoBGHd7mHY27LrJ1HSgddDHAlW0o0hgUb5BIKJQqz2wWbRuLJyFgFiEiWAacsmSI+y66HWhRG4RDChMSIDIgolZmCNDOeT7V3eXX5840+4o/+pf/Pztjv7Hf/9zvobYKIfb2+N0czsMfCU0QGjCIYzCqMoAScIRABFSvtSTQvzBL3++n0Af9o/rk9d2er5ON98YijoANkJAwm1tYUTKQkwanXMWGeT6z/6J1cc4fRru61f8kPz629UvfLPcvWrnc4TevCrg3V0XK1qGyMON0NQWmZ93fMrZ857nMnQdnlS6MLBHvwzDOPBOrGtvpj0x5jFP++lwtwPT9fTk/YrR8rBvjIYIzExIhESI8pKKcbIG9fU3b4js1//vN1//JH999/oPy9vj6wMPw8O6e24ydwhI24AgG98WwYwEBM4egOhZ1owmAe8fe2uTUs53xZ+eeTnn+aSJIQMAWoB3BUpMRGGxqkNgSTRAIpT42S/Ov0tPny4/PaBwHPf18PwA4QB7EPIQiQBDdxROLAmEi9XUF+6XfABK3EhqLo1LZ0FhBi9cIjgCJRAIiLEMmMecx8JE1rzPVwF1duQAxmBEjm0MQtrWPFDgVv+T8gCB69rojqa97H86TXtCNoPWA3ugBm99nowAFPEPw4nHVpce5J3Zyfk089MJ5gvfvoJKLoN5KDlQ8Ja+3340EAFI20yIjMl7NO3C//zffX/Z/83/vPzp6Df3bff1fPf0geslZJRyqznX6yWiRRhzTkmypN31IbWnpI/l7V11+nLC53RYy2BUSgJhKJIvD3U5d2iRsVDK05HTNObdIRz6si4PjzvxwtjYIAMmRDQKZEBAcY8Iz0htVdPLq7uBuSBIXZ9zgtff7uH8bHOFc0pwO9C+UgkPiJDNbd5+W+JowSQZUdHPggAgn56Gv/zO3n/yb39xfHPc37+5sS8fHYyBNRCRRLJ29TCmYCEhGcb9+XG9nq/8y//8X377I72/vj1f+KJSWPPdDR+n1k0RHBTJygDjJLv9rhCItnT9cZh0/zbH7f2TTt9/zn26gzKmiZkBCYJzbxguuzxlSSIp3+xxmCBn0Rmuj/HwnqMiRx1Kl+IkQsTMLISpcE6cciqchzyMBRhQIE8F0bV5O89t9t4SyMFoCORmgACE5Lq1nG31PwJSNLqBYoFVYXZed/fT169f/+Lt9XwlbIJqUJW5QXKUAHQ3EiAGILeADhGZh4mPd4P88Hdflsu+7u7fPy6w2uH5/PpdAaKcsRAgAAUnAkZCQjPz6Jw87XO5Hy80zkaXHllFBLO/4LIhGRNw0cIUTgEGeUBhYkx2Jbuaz0QOnEhomyK2qpUtc4HExIhMyETMDuEQjtEc3cS1DDqyd4QUQBhB4YH80hIRAAEeW+VWBFigG3HnpJA7YznIkNPDdyt4h/BgDCcP2pqDCBwhNh9t66p2dM48JOKfTX9EkQ5v71rii/uHLzMu4ZZv33w1HI/jYZfHnRBDoF6X6I3Cjl9P+5++3X37s+8+wsMpPZ8H612X1eeLhwAP480dk4u4eBv2ebrZNeGUYZ/t5vmvx8vH8fQZE0JJ6+HGKAcSWmAQAAcmpG2zigC0QJYcCKrVQjWiATZMq6fnp6V2NwukBC8qLAMSINpLPt1YggWdS+zexvTmYuLWfXmOT789puVmcg3dKAUNQETJFKbuHpiQB5YyTpLRyJt8M0lONfuXMy7lEMf7t6fP7+v78+WH8+H+deTyoblMAw8yvRq2T7Ds8ozp6UP7u98u64LoGfoaXQ3s+Wl21uNJvnqbb+7TKjXQO+k0wEHqrcyyfrD1eY12SQcvkw57pkxIor6VZikiQpgbEQdsNTZAEAzOoQidMUAYIPGuhEcYLLU6SlB6WVIWXApsWdMg6ziv1i5Lx1iB97uUC969GtjrvMwRngVy4aeluVPgYCiAmNOuLc284phqrbV3eXNgyopwWWFJicthiidp1xk/P45BOEwdBMeRU+E9SgpmMBqvV3t6ro8PLZymgUObh5rjOmuL0HY67m/3+8KH3A0s7GYHB663cPL63Ps1KCCVyKPnPQkhQrZuRh7kL8XUAQxbE5IRBAJuJV6w1eYRomBJW2murd3xhRzbYoOEFIhb8aYFqkFz79CBInoEYx6Sd9UOrp7Is3hiUwjzCBIERkhgDdwTurpp6/JHfyjV/arzj58ul5laS//+j7+6qYP86lPUH1B2X/+bfxmvfm7D7cPpYZ2f6vn8/LvL6UmfH5WkkETQurQFPCTSMI1Q/df/51cf//727u3df/ivf9Lt1Prz23s7tuf95bv18swW+Gofx3d9eGO7b4QXxjpSAKeg1FFwywpHBLITAQcSkDB6hqDohihIFsnyPpHIOFY1VOPuzcy12/l8RqYyZtOQnL/69nVTjOA0lIfH88NlAS6H4+ubfX749V9H06nEu/vh0vz7j+e7t+8I0+nD890RD/vy9ivsa+6VBGE15V7l+PrufG2ffzw/jHOW69f3COeKg/BO//pvfvfh4cNDj9t7PBzy8vSAK9wkwZtoEJduuBvBvS5dZEkiP//jn//44+W7D6fd35zevqOvXt/uxxM+1Otf/ti+qFHW3WiRwSQpbmxpBzIniw3JRqJAhNjmjDDtti6NzUC7Xa+7RBw+P8zjfswj9EDtob0Pex45M/P5vORSXr25/+F3z+roRPPl0qveHA9CPk7ydHVc3cVhd6dtfnq+3B32SSCLjswM2FyPOe8yXR6ftvZKiWhurN33r49zv5wePz+P681xHV4DuWJuVPTLdx9+81f9gfZ/8Ce3x+PYLlcJmQrDAS7qrfcyHcBdW0Vacxl/8nvffnj4zY+fnvj76/7V8XjYjWnpc7/+9lFPHgMFDuEJjMVecuAatAGqhED4IjdsHBW4ufY2L6hhra9Pcy2JI54/rfvOoxKPpM212Xg3lqGMY7HwcZrevHvz4ePa1h6Ay3Wu13US4iEPg/STRnNb/TAcVH25PN+BMEESLowcUNwmoVHw0+NF8iRZ/j/OJ/WmCmVuZHN0cmVhbQplbmRvYmoKNjggMCBvYmoKMTc2MTMKZW5kb2JqCjI0IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDggL0NvbG9yU3BhY2UgL0RldmljZVJHQgovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAzIC9Db2x1bW5zIDk5IC9QcmVkaWN0b3IgMTAgPj4gL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0hlaWdodCA5OSAvTGVuZ3RoIDY5IDAgUiAvU3VidHlwZSAvSW1hZ2UgL1R5cGUgL1hPYmplY3QgL1dpZHRoIDk5ID4+CnN0cmVhbQp4nCy7yc+mW5bdtbtzztO8zddE3Ii4bebNrrpMi8KAbFRYsqiqAWKCsD1BqjFD5ogZfwYSM2AKQggLBi5sZMCysyqpzMr23sy8ETfii695u6c5zd6bQTJa8zVZ0m+thV/8p/+Fz9ku613+4Ke5/8u5f/FH++sP+NNP6r/83/9VXsuf/Pm/xy+N99B3fXDDVt988fRwrg+Xer1NqVy6w9sXN0s3WrjCy9LNtTus1yfsZgynEGamhbEFR0WqyItiq9iyuQAzj6H0ViPmFIpQFffhcSPnLZ9fzZdUMdQw63OFrdFth10E6t1Vm7mpOxgQ+CZqJ2vHc6D3TS+5HY6hq5xq2MQwMVcOatahy7bazk6jL+P2w7/++vP/+9ff+vH/mr/dL3/66env/9E/230Y+bt/97/+Xz79lb/6/b/4d/+P/+p/ePNP//Xv8f0//ief/4d/+jH/58+/g7kIOH/z05bCclxbh9zhzcfbt7+9b02vbrceDBBjCELAQo7BHSDXvU8bvFz15+21YYRz4bt1eKzDCXaLx+LizmgoCgIoRgxCIiwcAwuhoEMrLCrYxJeAJWJRI7BO2xba2HQ0jagRlT2znq2e6npf5kNbjrpcYJ1tnT0XXbPlCohATCkigjIYgQsCA7FLcAoGnbmYm/L98fYXX6Rf/tT4ePnOy8Pf+zv3H/Avo83Y/H/7V+39Std/8vt905t9evzpz15db/e0keXruz6luBlvfu+6vS3Tbx5/ePayR+1eyrjh3J4eT5vU99iNnflIFHn/aiQAOV0289OYpv31grswVX5/x78pw8U3ELdgiAaxuaAjmCpV5hqC9kLoCZTmyXJeLzMHQnDTiwM3l1puM29nHivW0eYrPV3VBavivCyPpc1YDgBOjmRRMACIQ2exo65LdkvXm7gfg6xvi9eltYaDeySnCE1Ag4FpXGr/xevdlz9rb/76zXdv7LOXp9/7O+/j39zDY9PjxX751HYta/v+n38f/+jFf/M//k9f/irfrjP/Z9/8i8d1fvPws83Dkzy836QWr/fI9tO376bpyNGvnicZhANjH4xREQas3end9ulXN37X4+Te/vYr/MXd8LPpm5N81vg5KUekjmAQ71EHrBvQ3jWpekNYrVzaNsqQ4th1rYBmjNKhCagQbYJLctiWZZfX7ZThvbUHWd9t/LKTsr2OV9t+s+mHFEPH0qGAp5b7+TzcvUv39/z0oFfbTR+HsQPCLmDseNyFsJFu4M6pU96k2x/M57jc13/0J/RHu7ub1z9MeA6pht36/eP6Az3//NfHj8ehd/hn/93//NXjm3/z5hdCf/C5PLi9zQYErZI3sYktovnmikOitCPpCBlXtbqYFN+GzNORlxNoWQAf1/RufXHAK4sfECQG7FkDNSEjIgYW8IjNQRMqSszGK8TWCpgnjiJuVlWbIjkAVwqkQrqzqSu5W3NexXOA1pEnBgYnM3cACIToiJCE2FlUivamcr7Au69P2w1eXzVOkVjQE1pFNAYKgMZxwF7sXvP73e5ZD9weFRjQjFZ9UU7c6I+PP7x+vbnIHnx9/vGzF69uJf7Z73e/eUa//Ajuf9wuj/l4X2IPMu422+HFEAfoOkZkRzpXtalSLc/DIT08hPMxK7zX/mf16uvN97S/GXZXVJ7E5qsuIymQO45MLBgGmBgyQunTsGC8wPjw8B7NwnYIKbjrOZ8c2B3BKWBhzDdwlLXx3Eq5Qe2ZNoyCDkW1tWboyEgBKVDXISERcPWbnNs0bX76k3w12ne/uds+7ySJIitkRA0hhBBYElTx6XF+/LmkF6DdmrtNWaE0fFvSY/0Qp39Ex9/+/PzT9UZg+bt/7wf/4M/+hP94+QGRP//eB/l0XEjm2JVvfAiv9vpcCuTcaqt+vrTzlC/q+dLaRePxtBzmy3n9Zd68hld34x/a8IJFYnvYxtMY5xgKsRJbiInZhKzjGqUMvGheAUy7LowhRCiP7xPWiLVaASIAqtkYNKB16nWC+clPh32ee117NmLglLo0dmGM0JMGrIi1IGSnbDhpAB/GPqQteP/4rpQnyI8kdWdT3879/B6Pb9vh9fr6J8uXP/v127s3g4QvXud/86bb/XTmO9tsGr4zrEYvWvwe9Z9hm/6tTz95njqV/PrX53R+2M11LUpS9zdLn9aIjVqtbuauVqpWw0YAGTn7YzHJjNY/4m7iXQ0bJheskS8ihcWMiAmISNgYQdADSELuALU2hJI1a9cBiIoRFDBEMDQFAG4u5JE4X6BdME/cWoeQQgwxYGAKgZ0dGYiACREIEbk5K6C7K1gFhk5BtW3KZeEMq1qIzERWVZEaGIHd3G4///ZHYdOvunnQ67/56mEJervJsioGh2iB14QTqD7dHRZtsjv96PBX9vWPND37NL18MXzrs9d+WHIprbI7Aja0Va26uWXN5JnWiqg9EeX+hcUdR454SLzud2clbCTKu5EtkXWsQSgIDTB2Bp2XK2qn0srlWLrOutA9G2metDRTdjD01rXQU0gud6+PefKyxM1m3w2bq+thEGUHa7C26q0yrqEnihyk4wy4AmFYVr+cFgwikrb7V3J5387L49vTuNnEFCgJ7z1tw/XnN593H0j8YwjHN9N4erj573/x/vcP+Idt6WeV60Z70nOd7k7/z1//VbEd0Cjf+ba3cVevrut3/vhE4V1ulwuoAQGbzma1OTcwc0Mz89iIi3RMkbknjowucEpxiqEAZIfeQUQkQo7QegFhF4TOpEfZoAR76ogj2C/z9VHCudu0VQ1KElyyW4VYsZ5yWed6aF0ab17edtc9sRke1tLIEbGjkZPEmKh5UaitERkFIqE1JBpYTkdts83QhhqDcW8bO7eytLD3cNWx0OvfvtncbK6eb73W5xv8h59sfs//wfXpW7n+Fb77JdMFU/j5T8aff51mDJ99++OPPvpENldmN6m9vH14cZ0XfZoeijWwhm5q1aw1RwNzcHB3cCMAEleHJuhA3hiQuCKrOiEwAQeC4B7QI7swMWMwiRAiSqJVHIjwfZsbDssQCrEiMpg31wJWwCazuQmkLo6b7YZ6d1DVrOTuxGQoAYWIkEHBzYFIiAC5VULuCBtqUc/NXMWMtCICuDauTRt6xfmyxiFas7ZCl+yDvm2/+yJNXg5vYJiwLU26txe5O8r+tr9+sbl91cmSFr+N9dMXP/zyeH+YHx7f33aVqa4wmbgTOSZwRHBABHLCuulHzo6z1nXiFFKPlUOmzrDbASSA0aaOKbF0IccEMUjPQ0eQcOlghmnp9fGzhlu7weHju+BtrVSnOuF0Zm0sFUW7lx9+HIbAIz9engA9BAn9RjgElJJDnanU2u23acSxY2qKuQGWoLnTedxSCXSZaK4xr/p4nG83cehTLYflYW6zcz8E72SV05tAx3ldvvjw0x0FXI7p8vnfX2H79vGDX16fTlz+o++OU/n1Uv5G1pvPTvTi8XHzq9eHVuaBK/oFUblDxOgoDD2YITh2lpAdOVHX8ppzYRGU2DBVc3LqmNEKubGIs6gQpcRBWCLErXNnHBwGoiq+ju/uW6270j+2o7elLqXlaI2RMA7ScYCOCqjORQSJOEpkR1EfqO1TCmPqrrYtWGOzSGAGatoxllXXJZqjazmUbryB4HeHU98YKw0YzLJqBdDz+aktp0Ab9FQv8fLzi+XlfBfbpy9mufrisnlapvk4Pf6LH+23vhlA1vGDJ9t99USPhznScrVphBnJKXbgATwGDIiO6BCakwCJWKiem6rEgEQO5AbgyAgIhmDECMzGQszMIhI4DShmLG4bgIV0jnDpFId6CjajF61mzU2RAoUkKQVgV7XaShxACAOSGEaAgXQToOt4e9Ofvc2gWcAB3KE1VTRrRZLqYmsrmy2LEPVS0bNqZ9DUamukutRaTK/3sZawXvBSijddy1bhZuWrmQJ1SQK8/tsv6HYfr7fyNn7yy7flx6+/Ip76sPYy0agQxMMgNTLKGETdDN16byqqIVfJFjPFRI5epGrXCSFKU4lCIqooFCPEUOvQ4Wbk8GyrQK1t8vxNoRBwkWDJ8jgfdlxL8nvsVYOr9MMQhYSwnhdC7AS8FjKKjs9D3CR8fgWxFnLHO2xBNdgSvTrVxk8HbbPrBa+YZvWvynRN67jf/OHn33r7k9+cHw5wqUte1lioWQrUsdx9fSJc3tDp5fXm+sWzV//BD+L1lbF8POcePp/ej//tf/lPv3xz+JvfXOTrw3S8rJ6Xq+u26WqM6imCJIcuBGFkQXAkJ2dkQAbkWX1Vnax1xEgWsDhGAHJAd3MzAo+ae6zb7Twm6bqE+NoaabFmBg2xOITgRmWdgRMwny5aTUgQg5trrm4GKMJBnJ06HHednbBma0vl4m1d77967x/v7dlQmp+O6/mpru5m6oYhEV4Pr/6gP1xKs8uz65TTusCZSi1YC7R8zIwQCLb9Zrfn6xfj1e1Vv+1bMz9eHAHKmm5D/+H+z//iP/4///KLH/3wjdydLtOyUpv3kYakIXiLCahHjUmEEdi8MQIBIhAyA1bT1dpirSIKOXAzB3QBEDU3NAKXlqPbKKc+UBJxba0yFLSWtSlld2ZjypfVx9E5nKfZIYgAkml1rQYOTEgSXJwidbtYDu5FZ2lYXS/69c/ejpHimHK18918//pCVwkiYcSZcdzE5x9t3v2/Xy1a6nBVZF1w9paNvLmdpwnRmaDvYxjx6lW3uRkDS11ynTO4qmbabzbX/Z/8J//w7cM//+XPFzmeD+zt2b6Mo8ch8GZjtCVMSXqA6mAWRJkVkbW1YjlrQc+oi8NTtiahG8ZpLWJys7lapnOjcnU7lKd5nha4vkd9wPOTjESYOu/a0XyucF7a7LnI4RyXvs/eTefT1RWMG9DlCBbRIguiEAgDY3Z7P5fXd2aL3x7xO5/e9l146OE8RX6zPvg6Haaa5+cvhEa2FB6/Ps+q2EcFa62+e/N+BbNRHh4eta0GDQPurzY3z3bf/PbLoRctp8cvTuwSZYyxZ2JSePfmR499+faf/tm//29/7/PhAwFVIovi3DOm4JwCBkZJCA7uCC5O0NBdHIAcglM1d2/Nz+dCyPt9KlUNsDZsFRvjyYWwSwAvl8Bm0VZsKzOTRD+TZTTjXDxXLCEVpAYAqEhGZN7EDNEwCLpbKYUT5FLXp6cqG+vkJPR60eh+YO+1hdWbZXbtE6KXlmteQRcrZAc8VzUzPx4mZZAxhrWLLERKaJux67pU5obZlCApRyYefLosTDR2PUzkl7b88Edj2Xz88SBoxsFiDzxEDMmw6ykE4OQODEZQ2UibmEUXYWACbgZmrfi6ZqaQNZaazbGskCui04Ox0xA5vZxO0WRwC+uZo0GPegxuycNuKTirlK6vSM2dyJAU0B1JHdGABavZOq+9QC3lNF0k9pjSBPLrS8ZiC2vV0mU0W4U89eItl7Vepgx1W00fLmtTMofD4dInl23q2iZFCAKkaz+kLqTpcc2ACRlSBx2Gni6XCRFSn8Ka6LKc//n/NX7n9/effov/nT/6ftfBMGLa9Cw9y9ixRKRogCxAVCj30TcJBnY0bbW+vT+vS20GmjMZYDNyJhWrSB4Mwn3RJe6ntPv160XqZV8v8RcPcF/x0OoB89Kd6s0Xh+dv69Vjv5udl1znhyORmDO0WCbLU+264XSa372967dDM1+WrB5yLg/v7xs05ba5cRkMpE3z1LRV81qqLpVri4qCiqRpkJgQzEQMoJXzwa2ZKplE6jsasAlTDCGtpnOpT+clo89uby6XGDZJBvzxl+HhUb76Un6H2kSIiJGEKQAgILJQA6yAKkP2UmvtrWkzr0paBSAKaGAEz9OKiZxBq/ZdhEaLVw2Vu3Ba6SGmpzCMHq0WOVkNafb+ftrd1+2ZO8WASIyKAG7gCmZmzbVCadq0NavO6IBq7iWbNWIFzI6qZFrMqy61CnBghLkyKrMLVQdCZmR1JO5ZgiNAqAM1QwMqpAVWb81UGFojJwcAd2IwZTo7bNnJWWjQdXU4CYtLoBCJSJgDh2BVHUliOBddQWq/n44PurQbrr6qrtaZNXQVwD5Y9TzNUJiomDfbjJRkXZrLRM3PBe5a/9qvr3Zjd2E+l/XF7lFvvzi+eKPXJUkijYKu7kjg5AramjUAhZxLtYbRsSdQr2ZaFkIZt0G4IKxzqeul1dk8Sy8Rha2WKB4TSCgoHAMYNRCWMUgXmFx2pJeqU13uW11sucyrZiZLwdKQmIQwOLTCeE+BuE0ou91ts/fWZpFOOBIHYQoCGKEFcvGG7cJpNEqv11GvuvjK/+DDMH91P339+HyYh1rOpa4arZJniNQhgEPtBJHAKem82Fq6AA8l/uhpPK2v/DS3pxn4G4c2/vpoV8/K2LebuDYcz0ZaRFKXYn98OnhGaNLzdtwMw4f9PE1qHoeuIAMJDN3x8dBKDZutAYG0XoIAALbAnBL0PUVBCRR6oRQwigydJQSGhFEuBad6aheOgYd4fzySt0j6+PBYjbqw9dARyVZQ7bIw2WfX64PSgQQjo7CjIDER/f/Njyu0WfqO0I+HBkPqepmGsMRppSQjpCZaM1tvDaGgQEAAAwpgAJCQG2ADh8iFuifchvjCu6WNs6QPZgmletrZsGkdzwVSABYKMYSUAgu5EiITYYgigyxPBwOMfWoKjiIpgLCrcerQ0REDMLsTeCDhABgQAMAR1bFUcgMiA/FIGriLMRrNOMVO0rZ7OJ2smdZiZQVnor7V5gAMhrRCINzf3FcoxyrcRxeuKCkkIAFwZiY3Ww/D7W61dv/bB948j1fpr4+LHxte+OXzHUMdtEYYwBCbCwCANYiu1c1BwSgo8uJQqZv4+nX6kL2JlS7sGexDnV/tDwPNsj5S6yv323HYbvpu6LxdeSaoEoQCcaBkhSjJ5uYqW3agfjdaq1p183xfLnNbcqoazARsjB2iK6itVrO1SwUtgA4Syna0PsathD4NMebynpGwS09Paz6dcTp1YY0hhFDyZM0BTKPUrhf+4IMf3p1++OPfCAysLqvHKOJMak4oYpG50+NScuVD4yPAsLw/r7Fy3OzuTaGQr+ANoCmUQmgAZqAUEAkQkSIEJhDuuwBRlB1rxrLokgmdI1+sq0T9IKL9wPLJyw7EONYPf/BSV2uz5nnlnmQbId1C5H4/OIoqDB2FbdAKkE+E6skFIBIHZgFzdwfjUdhdDBIFJDBkHGKJMRtcSgO3p3U9PhBnOk3heKqH+7tnI3Yx9NnSuGPhYC2vl0vlnLx/8eLFt4JgJFXRJo0ZGJWMjQJJ4L5maEvtoGCdfcHFFtPRXXx1Kk4rUnNQw2bMimgICr+j2vC7vHIFRGc0MW1Q3Jfm8+wE7mGOsVHgfmBFAbjex6roDFdXna6thTwDQAQSGHtxRobWkTcDbqVnN7CSCwehyO4QhVIk0t85BUJCDqKQAhG5OrXExqyuClqsKXtuTafVQ2hIx5x3m54QtVY07ZxYsFVXcOulu726ykmgDzXHbH2fuiYA3pbCAtz3r9p5rd6+8VG3SF3mU5nymutcg+eWGHvBTiQF7LexGz2wdlgYAQ1sUSWthtMRWjPTpZ0fYD3h8rSNVWM4d2P76JN0u4sf3dB0l3B++SLm1bUinCduRVpNg1TT9XKGaa21TWVlDehYzLY7kYgL5Ovr234zPtzNfd+NY4JWAdwJOEQw17WOURm8NYPG4tAJRqho+erj/rjakpeX332G/fL+YXzx+adM9Ph4WTGihOvb2HJKfQyffvBsZ+lTlUjQ3L0ZOZGZqgJYI5kwTVnLYrnVfGqFPYIJgfQ23MYUqBPqQmBCBoSIhBrUglWyRt1qbIqxkQAxUGD7gPLIy+YmPRKpsz5sJx9jTAytV/eyXKp7c2+lJvKUKC/a1loWHQWHpBas78Aczpe6u+kp8t3jjLa07OenQ11iW1OZi7krIIXoRq14gJwErnb9+TA1hauPeoC12Zrdsta1tNEujqsEWKGEmNKzK7SkTAuxBXGJ98f29W8u719PEtELKGkVNzJzUwMzgApxcinWgMhaRdUxYQraRdzfpCAYGVJAdHTFKuKO3EKwJg5RDMQaWmHAQBQCUYeL4IWv4hRpEcqU5pJSCOASnFPzS3No7qga0ZHNVLU1y23TRSR3sP0VugO3th0RAj0+Nm9rdZ3Pp1aClrhOVQ2aAafOnEtmsrlPOA4xnyetmj7kYrm2nI2KWtXW2gxQQsTsFSiE3WBLcMRKACE0idOqp3M5Pi1yTUvnbdD2TNUgzIaLx+peEWzfyT5c767QCkPbJYtWglXHi1ZvsxGKA5mz7fcuUvth142b4DvORKxA6eir+erlzYM8vp7vf/X0Sbx7MVy+dT2/+vxCtDi9ODqvJgVTwbVhS1A05zLl9WxEcr1Pu2dgZvO07ve9q6/v51C6Wnl5fFoOs4Esx2kBuBAG6VUt17p55oaxtAikMfDumk+vlzYvAwzTPB/O6+m4ycqA8XQ4a2u3N3srtXFJI2AgBibCFKUf0hj1e9+//e73XwqV2muJXrr5ZHFwHlUJnM2D1Vybnku2fIa2VtJoNZiGSEiEzP3gHJgjFNJGnFGqyVS85kKo5vXhPs/F5gbHuj1e2tMi4rultPn48O0ke0u7D465dFpwzk1VXZuWyaGRaxcYCUjczEq1aYJlAW9+eioVFw/SBVlWzUVjxNJqVg0pulXVJXBysOwqSVMHyCtRQazNqjNT10NKAk6ovuaQiLehQg2Rh01XSVDR3YZIG9Hy2y/G57f91V6olKBFIIdlMiPox7WiGhBiWzWvxcpcL0+ep+otmgb3cUyhi7GPyBB+N+/wWgyLS3Yu6nYEwurWHu8u56VcspaRpgUuhUh257LcH8v1dk6he17OqXgtrKWaNrdm6wUZhBCjOIKh1WY5+2XGaUGvcDpr4yKddV2cp7UstRtjW622Aqyg1X1J3LvbbK1P1HWAuJA0EmuqLoE6phSZgEQXRQYiFMwWgnRDAkcv4NX7gCNre/1r6dq4B8FW0dGpPxyFEona8ubry+yHhQ95btp69ICLUO2GyNwRxyWlQrg0ePr6fSTbBbwspJLo+sZlcBDKRCkD10pU1GrO+5eX6emUz+/b829jf2X+6ovDqgN+srbOZnOKWgiaiG52OETuYnh38uye0aH6qnSkngoyCX/0LBdVwA8+efF0/O08zZ9944YuWJ/MS+tAdzu4wdxarcU+3DwfN8GXPAyD0CbbFjlGJiqX1GEXoLASYdcP8ETMiZwxdY1wWRd1C7buz4f9nW78UcChQVIeLrBlTL0l1sOIpd9QH3NVDUhgFaF2fajmxa0agaE7EIaNGCSSuURom1Er1qa+LIKuANqaLdNyPk5jCaAT4wx2AlIa0knrU6FFvaIZmdUlBkusScwN57nePUEGqMxma1PIBY/HKQTqh7Dm6orddgxd5IAhUddCPyZZKYlsupBIo9izLV4NEBOZGwpDpKIAglEoYE3CQxeEmZCiSCZjDCwBUdyxcLdAnaF0SGQl6FnQIeMw87NjuI2E4C1g2Xbz7TU+5VoM3OO61qYVBzsubVlxQWhGTbEfh5BAttxPxy7Rq2c4qy9Z705IrCba8jqdL4en0/UirlOkleojJ5ZNOD1JX/GkQOSNrZWJAyTxxD6f6+UIv3mLBcFi0DITQophXdZ+kN2nN5dHVaO0HeOYQi8hYDfICJ2pp4S7vXd1YcZ9n3YbxISXlSG4O+XmqYMUsKMyhDQOGIIwYuyiUGMKEgKRgFMJckaMXrccgSp7FqGuWn/w0a+utOXl8vhqr9vQrnbl/heXeYZw/eK0+Nrw9nbb5rWs8+3nz9dGlwWGlx8j26PnPrYUNfIqQ5LAry+X3V5k5LdfHBO26zEkgJH5pk8D5i7y5lrObfCYvl7hdp+ItbVJYkqjnCd6c/Q3X+NDS1mtXi7BLtuBn13j5ZA9N0YjgFb16y/f57kIy/x0rsREIVNoghqore+ZvdtEYDJCiByTInrqfOhUxH3w2FkMtgmCxH2KOSYSDtZ6R3cC5ScbMsc6fAPsDqYnUd40TU1hjE5abb1wVBZHBFMwJYpJpVWzhqOjItaeKxgVAkCuTpeikXuQqs1kSCJS6hExCJNbC+R9FFQLSGPqEkFH3gdokYJgq5moEzFoC1OQwKv6JfthcesQUF2XEE0SYCgpQhD0VvpeNMA8Z2RKY6pNLTASupCSFAxCPbOCCAoRQ0Qs1JB8CJq4MtHQB46Bice+dwRmjokRkbT2CAgUW/baFaK53x95TrrKGp+XilrbdVx0OV3Od3hbHKEYq0WnIJsdZFG0DFeOGrkNbUbFYlBKLcaXmfZpa1LW5bK9GknCkl+bj8wCpkkoCvvagvN+3CCvibxHw05idMyXxF1kl3yKOIYYlhaOa3uc6/gMsVb0y3YXu85c5s1uCMS6zFfXW8T47ilLHze9TMejAxATRKwik/UkOwqtiQ+RJSI7KpUGdZcSsgDydrsxFke+vY6laS6tHwIYUFl2nRfyh3xu696wz9vrh5ZLMznAaJD3tH5Q31k99OVh36WYyAx326FTGTovz3dhpbdvHzdSb/ZSH9/uxuHVs91rPBUQS7Lf8Rgjck8YQpBnHw79KEy42fctu1YHQQd2EnNKCbvEFHOk1q959D6Sb7xEd/bAw1b5vGq7HaktqqdJV8rKtdKr7ZaAjneH8RvXIcWynDbXQz/2UavEELo49awUnSNvbzhqGOtmT5Fam07ma3Ube3UAA+Dr3Xn1S279btOmZTk89btBm06Xy76njmwLh3XOpv3m5oNm/OgbqRAD1cQt1WJt6qkJd0SkzWIgIgxt3UiwRK+XOVzTZiftqXZcr6Ke61owmmASFAZAbq0pWOhAteYVRMRbQ4MQxZmVWA1CBGaOsUQG1sbeGCgiijEbJ0lMMwAgIxEwOag5MYAgMgK4ORGSYGsN3RlQDEQt1JYQKnhxAOlAFMnZC2uu00WnpWUvl8kdDQS6q7LaZdJ0daXAuXg3iiMWQAUg9EBa2groiVoGqM4C1HVhvukyX56w5jRGl9QQm+YUPdQK79/e3OjA/a/0uNvtn3+8uYBsgm1geQWm1FmgBI0dgWi6PGU1o+nxwVo1dyJAQnu+H7ThunpxoeAkFkeMBAwOigjc8Rg1xRKexbANLAStIZCEIdFiEXCzGREUwMcdhw6QtdZS51wB9LiaawPX7VgEF+lQ9qlW8LPhYynn06/e3t/7suLpeCZtBJBerO8v+PWFhxfPlwqnxeJt0MAT9xeUgCCR7ZSttZGKYStmMr25v9rM+62W+4satKE7Ye8Axjhsph5qqgXTsYf5s2fayVJn75PEWuGw7OLQcMl1odRTCLhJIBARnm82y1lb9kgpH6dymXuG0krTnK46DA6hxYgEYUE+2W2SPl8XT4Og34bHT7aX8029tERxjC8+8ddPm677+HYv7oQqYUihutfnN7LfwdipugAwIBaOFazCZSdlDPk6PgxdK2gn5LqJmvC4Ltexjsl6fjeBDBZhPmCzGDTnxZC5Gxbw7F5ibKTqqORAgAwS6pSwjL2ea3YSTKFKckJwIl4CwBAccBVrz/e/Owm0TjjVIiWHJErOgBYiJuEOQcwIe4zgrQn00oWmWa1LiRy01jASsDZvgQiBzOPqG4Oxjs9NnMATn2+75cNN/Y0pUgj9UOESgEdmt4JkqWeE1hyGnoYEfXIfCAmAsAGYV/e67+c+lFHOJCkXeWrdwkNxnA9LYh/AoJ6pibTOljMaxwCtFKcQwti8gP+ObmdzN3BAQAL5vY/mm23b70ulqsI2StnvICRB6hfr2nHQirUatW++2i4es6fE0IOOsHY3DpFajOtu1JRaH42smedJQR3NgyOnod/1t68+aLUs88WGqbZpPl06DkjBZLfCdrH9erOteDA8dvLlJ5tlvG166s4al9rPM0mt891TbhMF30LvEsyJhRmJHY2dBDnA87D0UkZZNy+FQNs8H+r1JXf/+v2upuvS4Pjb0+fP/KMrf3Y6Tiu3HPP71zjsrrbbr99dSLrrF1fLPLfajJL6rNYMCBg5oHA9Q3GdDZsLNrJF6qNpgAKRagQiD87ixuscKooRoxFJ5HGwxq1xvsB5KVUsh5UCq8Pp5K6IhguuNrmt2Nbjuq7TdN58qBwaYwzqgiCB56VoK1e7Gy7WmoJ0aViu9uvn3XSOdO748rFvE370iah1joAxLQVLhVZhbrYCNI2IjagEPzDMI5yxooPbyR+m6zdP4fX9NlNXa73cN0M5qHzSF2wELazT3Ic0XG1trRC5T1im1lrBBoJABFCNwIVB8nzJJJnYFYg01iW6mHJbNfUQCQnZuAOLTdE5IkSkShwRvTaoLaxFluaF20omXTCn9clEhBFzXX1GW6nky7Kul2kOV5x6iCmylmAwBCm5QMu7q0E8Ny9OSSINY3uZ1k2UIcXNLYwdXt8iuKjCWrAVUANxqNWbeYWAYARWdXY9gx5h5wAIpzA9lNPRTms3t1CKrQviFHLkTpZOISmXXDqtSUBrRQpBEEHB1JUIAAldjdBFUP7yX95/8uH15589ozUO65ryw0ffltB7ezxQHAGjt1R457TZ324wBGTE8xOUspZy9r5CqtTTAD23DmeWpEYZK0GDVqfj/SBpe911VwYUHG9tBCBDN397j4GuP7puvz03K8+/+e1ig6FflufRssR5U6cIOIR0GgFBy9PJprVlmyfH2PUSrjaxpdiC5LghisLxefIBhuSRbwklsm9vf7R7+S68Ang/2WURrN8Mu0Jjlb3pOV/m0lftXJG9mZlr5WYiJiFbw8CMUHKNPXUxSNw/W7rd177th9vz+fHw+mn/87vdDkQKGEMgC9cedk4jYnRQ8EpCgJ1Lb3zdIK4WUyoEK7UFHNzcyACAAg3X48A0BAA5uQFUmN4bxtTtdoVHp7BUbCUDlEQH5Nx4yaW01XjG85v5rOXRp4ejkdBuE3pUdndHBmNnIXQQ8OCihCauKOSyqdxB6JEYTUDnwdfvdROtxAT1KgtPsS0DaIVW3EIfMQZ1APpd/+ZEREjmjYSYsRkIkDPJ+OyD2vdfw3i1Mbgs7d3y+c+WeIObV2Itehc1Dg3HQkNDt7p6nTtwoKjU13SdPc6NkWYx4wpuqgbNlNAZsd/2kU2w1Xq02mxp5wflcS/DbuGhUjytmGsOqMHvkQpRnstS1wYLHO7W96f2+qRv1yAxPLvub0foIvaJkBo7oDcyMhVhYCFhMOdKA8RhsT0qipZWHlO9fFv0hKaI7Wrjy5HrPOCwgBYw6TuKoTkgEREhOv9OTFmQhZuBIQKJvLgN91XfTVP87AZaKfvbX7x9PD62j5/sYucsWG6X19Obp4o1tuBT9PlZrLX4muF8/dFEw5MN+430VLd6FHBzP1Rc5lJKg+KQM5Z8FeZdsOtgVNQWfYry2H9avf/lG3/W+DbNdv8vkh77OscCJcXch+H6g2e5pbmGN7F6wKFb8lK1zU3pggHwipg6gkDweDJAB7gPrch2juFXCyHz7ZbSlwueHmg+3ywORrjZWjJKuB9Hq3ZZHIYbpbTOHoAF2DKIQ0AwzdKlkMSsODAQyuDziLRhoRabtRLSAWKMfLuL2cZCmyyhCjbzrACEEpBHBHEn421N1MQ9dEGQSbdtyq20mut8LsucWzUvCtUW9FmsxNYHx1BsOsreVvc3d3O396totL6Nfgq2MAroJrfx0eI502mC44Rr0+U0h7yQVmxKLgK0JeAAHDCwJKLE1G1QExRFCh11EQaH6w2FuR/q9aVx8RY0KzWQpaXiaIIUOqKABsLCLODMxEyEjsxBQlQwNABVGepBOWDs8my1rCXEA3dhh8tH24o7haFZzxFjtmUG7jX20N9WytWXll5RY548zDiYMdbxko91mdvSlnO5XJZc1Yxd+aHygfTM+vkthVzs/NR1bWr6m7vzy2uz3sL8dSdTwhIxtKznlb7Kw8MJHx50utNpqQ/TDC2DNVdljIzSoQhbYN92cYwyJn72YhBjCnj1cpSx67ZAcMuzdgs8f5rHqZ0znavMmg5rv3qwKCwDE6JVkcAcyEU4BK7oxJJCSKAFzb2oWM77q3R73f/kJ3dY2m7ou13Sgb60fn9zKxztVMnIa/3xT3718efPPtzffpVPsbTYanh3RMke9Gmu1QNz0OaNGXve3G7iLhavjp1BV4wxn6f56bd1DmeN1eLTclGYDo/mHYHhmzM+TThValRLu5Tyt218N9nT04rrYqCNYLPpUoKh8xAGkTikTsiEvA+BiBBp7XboAZ48zF8atQLzMj9ZXSEjLISNYuLKo8sm9C9ZYIy6oRrAwCsQALMLY2F06bBLGAKxglQDLS7tdwGbQs3NzdMmhYFc6DTJ9nagEMwWa9RyO52mx6ft/9fCu+1qll5pWmP3beac/3atFRHOyEyn7SqbguqiaUClBoFAfYJaXAy3wo1w1mfNASeglkAtWlXtxsaV6cp0RkSuWNt/M+f8NmMMDswtvEev9L7PEyb9VObQNTYbY0+RNmNdytoJ4hgBEwQGbXFk8ZSwqYfuATl6ARisz2C91lrosZ2N0Uib92L1Ylrc3emIseNY8W2LNPA4DNSSuRXwNFAIMKUeZBAOU0rCJgRBgiE5EGJGZWw0ZnB0dnOcug6ethxn0hqCGgyOGQQRjVhjNGZQFUiIKXIMfSkIFEMQQgYIgZtpaSYt5h6Th7g0QOH9bshT1OZPn9qX7ycZxNdP7YzlpV7Oy48/XB+f06cf/4SKAcPdFO4m+ua2Va6Yhd7EcByYHRSHaCEYcl9LX1qnTXIQ1yE8x3a6nO9f5+/WApR405d2Pen5xEPifDT5L+LOx9B2//31eLHNxUcsZSn6MLdizb0lW8VDQB6ZQnRmUA6K0oFbTWwUnO7eThi8+bDioCDeBdcTtrnX1+cZTiuprWxVoA0bAcmrZ1yR8pC2Q7/MQDRNQ2RkMMnhZe7LWuXmi10zeH56GW7vOsDV8W6zk9Wov2jvBhRvpvI8X1bd39yZSPMlbI6MOYbtsM95iuGYp3GLcdC03xwGDh5EAzTy3nohyingQw+ra7FmYYbR055eH12hH3Yj86yDX/7668yzQtFvdZ1lXarE77OzKhadXAPU6IIG0FzOi2pXQgRXAJdAEoOksDsOeT8e9pvNPgBBsV0vYM2LmwUBijJO2xvZooxxywAM7jHOPawlaViJsWq/rEsrawqE1rn7iHwti5/PMg1wvrR2bcN4sxqs1jAMqApAvWtX5Wlofi217/bjolasDduReYxxSttBBsEceEgg0SSwBBEXCdQdDah3BgaUaNzBKwbjhGzE1ktzxE3EGMGjvG7erOssa2k/FSxGHYb9GtyzqhoF82jUVBAAnd3Q3A3JjcAdmKyROqxzF9I1uVkBQqOwVGvdWzdTAhfgiETEbGBEbMDXhWal5c/9zKG1puDOiEjoimhsjXulVmQPL7qW60t99/79Y4HHx97illxNzpdrw0yHL4+z3l/X+etvDk+ny+tlTce3HIMEGYkiUiVU7+SdQN3U1FuHOiMWFA0jhyyhSAwiLLz2KwCAtfXyJBLebd7sD0m26ffrz/7x2/XhY23P5Vf79S8O638yvGasyUw6RkNsiGrNiUDCPrgI5YhGCBRYlku9ntcPvz8JLzFerqcTS9gcj8ZMgcdd5MDIeUZV6N3K5fmZKBLl8xoxjmEKgRyhlddLHANkwYqojmbWXqRdcl1lutv2pno6t/agyidxIjPmFvLqMXmkMFLIFOMwysaDc2JBJmC0iUKkGCRTThhEokNsEClPe+2MintBOV34PL/F/mKtrz4rdE+OO8D7IdvPf06SuZb+43eXh89+qXzzl+/y/srb08KzI0Ti2JHIk8AEsXS6zHipuHZbLqUX1W6AbIbufPzFXR5yHodyPSBxHIbnh7k3bU1Pr63UdlmuyubkgCHGHMNYZsRi1q55C1r0/v40vZuQ8fz5erPh/ZRv349P5+vr+VUuNRnlYUxQLrnLDlmgV5SO3IG7s2EATiSZQ4g5ZjcEYkImFGRhIQkYmCJxNBCDSLwZu0ZzyVPgSIQal9JqO/VKiAZSDJA5ZToeYXVd53a+L22NCDzeRNmsOuDaCElQBAILk0RAwqCkhGWhXrBU76q1qYM7MBDnw5THnIZEOSCS5AinauaGVLsvq72+NBcEQYqkTubYG7K6YaVtVLXL65zfjMy4llpzbE5hN9AoHoFR/lulwxe/eP/y++/9etlJ3dxMvfZPH8p0M8iYOeX7j3VeJG1HJQEJjAOHFGIGzMABg3h2j44RaBNgjH23/9TTI+Yv3t/sDpvD3dY+P1i9en1p07QU+vBjyWJ3d+mv/yqcfng6//D6/OO8HcPtkd8dH2D5ND/fE4ZicfWRhp1SrGqN3AhoSGnK4ybLkMMY45jH47EbLnO7ffdGO5ye5+uqRd2CzEt35uE4pv0QN/l6bmHYSd68XE+1lVZLJJHgMdr+3cbJHh9f3ny1G7cBra/XeVmW6S3jiNsvN/Ifvu+zbK7TQS5hG/StaIJ50Y61BtnFBNa7IGWOIYxuDBRCSIAERNARwU3NCqE7IFxfFl8tTTeFZQX+d/94eevttld/bq2aOwNks7oWvHn3Jt/qfLrAMqe2HCNQXij55XSlrqKxjFOr/Lpg8QhupfT9l/swRibyTmR8s9/2p8tyLiIpuCfGy3pFJ1fsbg16v66UIwM1kGk/hFHn+lBe564mR4mD5CSwumpfV11La91AYJlnxDBtKZqg9pfXdSl9LSAfzmKn3F9275ZAVIKYWJFu2JuIi4D3Lo6RJcVsHRQwcXYHdQcicgBzrY4AFOHSWu8wFm3gVf0f75cV2qI1nZUQKUbV0Lv1jvmwi9uyXB6gluB1IwixWICn88qG0VPVURXWxZDF3C4zRRhRMotZ74aYtwNclzK7AUAUmeJ1LewSIFU3d1vnMgwbRJlXGPcRoxeV0+u1zOvbN3vOIgPraqoK2pe1mXUKWJZVqB/2MSS0RsvclmZrB9n9i38Bk75M1b8bIuoafT3369mxmJiLu62NWk3e7m7GTw/tdPGb47711suyHTM5Q8OlGwtsEhDT4vb4D/dLY3W+2af2unx4XWjlMO7SFL7/qV3OEDfDuO0prtfXa2IPA9FclGszfLonthwpb4attr7MyzBEZyhMHz57vOi0Gf/x3/84X8q7X6ePHy+f70+vP3zY39wc3tz2ooFDirlwrd7XXjJ7m/Xj7x6m4y4Mo6R36/r8+vzwhr+a13K+nPu9iVDacvt4HyNutrGeVlxwHyG1JfSWLZYcGmfZD+cx+5Q0DOwprsKmuSgzKzmhORIQO4unCeXkQN3czMzUWumBMUig1qzrcrpYAkSOc7CC5jTG5q2q1av1Zlg71t5R+vamj3jJPueAtXI17wk9DR5zKTMqdsTHV3W3XvHp1EIOnKbPP85I5XAnr682X6z+8amacxxqXeYLkHgtztRiWHRoDdvSlzJ0RMrHjQkp+e52wz9gb6WcqsHS6rm/1O1xuznclfXkikmSc2DEVnEDMKLxy0O+mXAzyG14zIEGAR8JU5olmY7VSFjJEBUoIglQhDQaJwXu6qpu6lZKh0hpjKDada2nE4+MFONlhAJmMCTSZt30xaspQrNmlUPZ7NqAT9nKmPly5otiGzLmyWKqtXinBv54akQAwP7aJuVjHh9+fGrdex3PF1gWf/r+cfvmEMbR4LKu7C9eCiAqy0KH3rnNtvTsMebpZ4e6ViTcvBlDJtVezkV9bXUpp8u0z9vjtn58QYPI7IEJsTWKSCOZP3yedj1nl/8m//G0tOeXxsdEnO8bDTQ6A8dVu2tTmCJtEyFeyklGPbzLbW6cwv7meP/Dy9ywweZCURGYLCjqjA/fPU3TVoL8428/VasdW5ucNEiN03CdcL3j8+b8lBLS7s39FV9WfvNXXy+tztfSF0QCCHDp87Tf7m9uH7//+Pq6Xl9LXxOizdeVBok5LadWQd163hyC7GM65ENEVggVvug6KOceAwWjeGV/ZlDCsY2H4/HNL8a7fPjZ7fb2N7//X//vmKLVutlsyXR9XafDAYVfavlqKyMSnh+3y3lqSb7Ax+DWm5fxjQJf1bMEIhWq7A2Uu3YUphR618A0DfL5p0sep5wjkhn25qVxV7eu5C5uBGTdwLt1J41s0fmIxEp43dK8sXmq56wleCRO1a14iIfb6+fHOi9MwinIGD0UCoBsEhIpW6MQkrMrogcCYMrBmR0lbbLAKBQ5R6XeoKtCb15cddHmBJ0NiIhra+Nhe/e1uRbCIQ2yvd0GofW65BzIyersqM5UhQtRBZyiBlqDNXmP9wxcPd3HqWhYVr0dAosGnMUzGS2FgIWT9LrGwHHk7x4/koHstkFcsVW7WICu0Ao4RnLhgbtqax2GTJsIG5M7wHrB+fVWlnG9jqeXgTRBQMndsVMab98+3Z/LuUcJcZvTMVd1juC+jtOATaQJj6OxNVEL4AgyJQzJOY/HWyyCTWKW1a02WK5a51p8xmKCooMECIF4Xurm7WG73/7pD3+nJZCPxy8OfS7X02U7vRGkVnqH5kQ180wwu+83GLiKqsR23UC+TfFeWSFpCMolso1ZCaorqWFHWo1e/jh/86u377447t+eEOx8fpUNu/Vip4gxEnWHPpfWFHw0Z3M06/VaalmDE9kqvekOS8dy0cMXIw/D5bXGELZxiKCiLXh/881gA1nupBKAGC2khBxAxMfQRRdfcCIJmBGEMkMWYTwbXksOLgLOI2yGGGyTmzRjg8HJrmCrvv70OTqwmTjXV336/sJEaUwpBcfq2MPA3a7o9XizP7+evbzevN88nV6eP13FHZgpY4DuQMQhdS8KEGMAd9NO3gLnwPjwUi8vbbvRlAbt2JtZQP/zHNM6KOrq3skN1bV3064aDdDJQa8riXIQC7GIFsh92ErOa205BxZEq4EgppA2rAktoTVkIzJERkIkIcvo7MEJI0JwQCNHdCA2EZeg0RRJIMdOZgKShMhIPSpaAFXXgNQbes9ZhBC6AjZmTImiKJNL4OYVuk4UwGeFte8Ht4KmUikg54FH+NQ42bjL6/JKhpth6t14bXlySdsA9P/+dP3oT+vJx7hfXeeld+sdwFRLAa1eXmvKjEhd63JdWm1hCrLFEHk+nXlP4+2ou6lYfpT+y/07jHD99LQ7DJQdy2tOst3vfGwxM0Ruq0N1qGDiiBCC9GjIPHHCaEYK1q26dUVoMfiYDes8xHwYWMvFCUaI3bobsAeMDELTOOn1rEvdykBCKF4vlzDKcTsJq5AniefnC5Z6267Fn1FKu9vCTRDby0u4o7jDcMhlFZQI02rNEHy7sbaiNapz4POQpm/+o/dLaQ/PL+2yskQOabXVqHmoaqQdO3sURepBOd1lgqxWhxuJ+7jcbDhZnHy+ytp2bZOfZCrYOs/bgUL2XisL5jFasJhiyOHzywmBQhLeJuYUOJ6vF63dUetiCu4h8J/9XFxpE3Abl9MssWY7x+UJG06U52JqRJDFHM3JC4vjNrXzmgZOY7goRuy4XLuvXXvpLXsdkt52wz14SM8rhuEmjFmuso+8iTQGfRRdB1iqNUC3kLR3dCVz7Q2xDOOg6M21awUEYu6lOXcEdURAlBzCwIxk3VNgYe61R4LgRmOUbGnw5cpmjMNQODKtzoEiS0S1zgwhsTEn4cBCChwwj4ESg6N3NVM3Q0I0IgRBZg7EgqgU2CVqjyzAAgMboWftjqLEYCzeyLVZF2FmntEiWw7eIrCplSZBEZvrOkafxLJVkaDCjwvXMHDaynP6ZiKaALLOrHWjeLFmJBXHP5+4wXo7ldJ7nfVws3379f7z6G21XtWuauqECIFjTuPNfpsTdvy8LClTjOISluvp+ny5/VXeD+Phdnj51BrIcBgteQWzOMI0cGZcexyIAwLGwMJKAXgah9v3u2tty6WeHq9qjsycUgqJhGNEDoLEpajx0GTAHCPbFGyMC5iS025855j7gjSfoC21LcyA4ko9oAvaOEG/1vX1/P6XuxQEC9wmyazBlGqyFk4vqdfR2iQl7AWa6JqSkVSqlyFE+zO2Fxk8NBAOUYDq61quzZnO56VUK02dEqcQM1CMkuMwRDMzcx6CMlSC6bjFMcS+2e0oBdLCkdiFTSj2HhzdQ0JJiNpqcHEiBxUkRj9OEgcU6m1ZegEmGSYhYQ9CEomFBZERESTHhtRQG/aGPrtXSsCCYQfxqJUuzy/72Mah72+TEDPSJk5AHbnzYVsveMVlkI7a1vPlekYV2G7RiYFlIwgZaURRlm69u3EAJPNeQ4hKAGDIBMANKFBgZu+lrLWqLaWv3Uq3cb8JifNEHCOnkJL02sAgbxOQEEvaDJxYexxHF3EwiIxIiOJJVUwRIIEn924NEAAZyAkNQaeBOACBeu+oJEI5BxLuyCyCJEiI6ESAKIiEAI2dAMypYFZMzkfArbrN/TxlhshxAjEih7wRVVWzNAZW6dFJq/cKrXRFDYz7jI5kMAggG7JKoGe0prZ4JlUoxUnAzdbzwnlwlhWCM6PI8cvj+Vz8UrVfkTgO8ear3WafdseAMTqighsEIt5tjyFmRKlzWS5zXXy/YwL1rodtB+tD6KGdg65jnI8+R4Ms2lQNaNhOy9rWZT3sxMXNbAoxOilITOxIvToLEkI3FQnCgkSJmZgOYgTCls7L4dLjSQ9EMQG+fbfZxs+JXi/zRygFux1yNe29aadSz9d6Oc3nOQrsJ8nOQ45v3u/KudVSbjJc9LSeF8n9OblntoagSEocAxC5gbM3NiA20OLegHDYcdyNgw0dUAGnXU6ZY2KO7MSKaOBEhGiklaCJ1kwtBOVuDIDuAxekPrLiespQ7qY6sbODEBeHDhzDsNamUHfb29LtfF0IIiMoGgIiciDOEiSIoUkIJNIchYmZDJbIkJMcj3ng4c328O3v6+dPrx9/93e78XUaluPdMghnpgTAgOTCbmniw88naJVAowC/Fq4FX1r5WObZ57vbnx7Wx04S+ksiHpnP4I5oTMhOZNH+/6RE3LWrOyLFnDGGnKICdkcmYiEiIEIgRBInQEQwdTVwYKtEDYKxgQCQQ+ZKoJnN9ZpoPY4erKE6c0bHBsRkhB2oDaPotfVSmYMTEhkjAlJASSyB2YmJBZi7IREJopsn9CnSZkpDHvK78bvf9fPj/OO//e3hsG73akCHTcQhthBIInNI1FPGaUx1ZlBDc7wU7orz0p/W9YJ13D6f6MMFpL/+KUzDdjN+WFajgcfNdTkx4SZN0ARdCEZyFdVlLeeX87Wezl0dGUXyfi9ROJOkwsLEIoQMSOaJJTDl7NNAQ8xQVuuqrW0mQIAEWNuceN4PpPdnqyrHAwepEGqbM5kPhLVhVTIKkyCG7RgIk6rMSqDW3UtryADkC3EIKYYkpsHUoK4PL32oPvDuTVu+7J9iffPzw9sv+N3P7gdpmS0OvE24yyGlhqIoq6dCWmLT4bZGsGHwsaqtSb+5pU+hE4u8vAyp7bJJWTqx24BbYjZ0Q23o5iqtgxo4k2TMERAFkACIJ6YonCVkYSIhyYyCIO6BmBFFNLAxKJJ10o5aWwFTN1ftHdURzdVNwbs5GmBbF0AQhlav7hyTlN7N3Jvrar3T2jkMgYS6OQsAwwq9VEdQKyWCDmBPL9jSzOtai6Ce49ADXdnQlgWGRIyETt6oz3koEirnjrFwX0OtEo0M1FBzKJAfT+n0ivMrSHp5HW90nyCWueGoLaVpQ9J8eaSuqGbaqlI39MAxUxDcZAEHV9AhYAycY0jCRNF5ChgIAqg4IaC5MXTUjqgA3bCvtYB27Q6qjaE7qoO7o6k5qWOrsyfiwK2cHcaUNte51opadH2y3rGhBE0UBQAlMgqupl1762E9F6pVarleoQv0xwfYbWw5pVTIV1+tX2YjAgnkhloJasSeQ8lDy7RKX3hdrVOv9HIOq6SrTJ8ewvODXh67vG1ld9XwvHw5pu+eXv/+3/7hZ+k/TYcxkB93kAmCyNJis2BJ3Iv7Wr2AEahQYBEOTIJAAOwYOxA4W/fmZt4dqnW3rm1uptUdZCA2jBrDG7T10/0idYuuvkaVQTk6ABISY1m1WW22lLIYRtnlUaIbahAQMvD1otfaerHii1METrhj61Qr176s83L5/PLw0/fL+Xl5/giXdN2m9KsbNoNet73zhoedpDGnDJmXYX6hy0yfannieY6/mw+/07sP5fjtdw9N1UAlj8IO/do2N7uhEn2axcE7PRfyFBJD8FrL0nWxIIQVoXZsYIhKQRRFJAbMCUjUwwXA3dyKq4F6NwB3N2utNLdq0NjBmvdlnyEany+wjTEIeAGv6OC9dajoK5YCDuQoTEAMJN68dvWGCE4OpI5ARAgChAhEBq5O4gFjazxY3gajuGxyG7c3U9yNYdjGYeIhQ85dojv7qoK9Jekoysloa6zMKVB6o+vPKh4wfL65CeMEMtxkoF5ObfPVZus8fbtuRFf1j5/tdUiBgNYTzBev1QFFTMQpASpQ98FJmSmK7A7AqUF+NV/diq/oimbeEZzcqenSzIth7drqXK5P799vA/hy7++/HKYN+bVQc+itl0UDaiRHCQIxUtoFEFLUpVyX0lY0ZEHkSJlDDjEEjOxEDthWCwxZOa9BcDvtD0++ng/tp/Fu5ClSiDhlH6PtB0vBLOhpBYU6cMcMFIFHlLsQ62a7/Co9/EV82exP6y9+Ke+/FKl3h9m4mYybX1t+3dMf/urmW9gO22yvad/ClALeuExwHbyoBTVWid6715rNxVGAe5sVaoUWN/sexzlMAN1N+6XYWq3WtS1VkTvH1sAUdnI4jtr49THOcTSGy+efRoSEGFLEFDFG79y699kePzytHa5VWiEkHg9jyoGFwXq/zkZYu0eUSMzQQurYe0pFGBKXn79lvN3CHeFSqPUomkJL0g1aAwJCmSINApux2Wz1TMt6Pe2ey+HjdSrzOrj+5jd0+wa2e5eO8eTDi27jfLishbxv5o95SH7g53woYhRk4zgYDNZq5dZ9djZyF0BFc+pGEAIDJ0fw7t3N1UgNzKEw1xArx5aNu5E1BwcAyuK1O5MYcHNvwM6Egs5gQKreikJzbLZWX6rPa6+zIZKptiGxCDtQIPqze5wNJAgZKVKnDuhd19LJHFRxLrCu1JvG3rkVbitqiBKjheVaI/RBLy5/Zg/Wfrz4UXHI3D32TTQyLLNLnePHevP78r6c7uLny75b/O7/edP8F/8s1Vwqv32xX81zaaVwO1mhvspyke5szqZsjgZyezxmkaFpfTq3sj7ppUZT9oywj7qNOuwRKSIGMHQj7eHysGKlMYhr6x14iHFMKVKZr7X1utTLsxKQiFjMwEgI5fmpLuvTT4tIZg4x5s0uDZswbUUkCackjBiwSTvjUur1XJ4/PdV5gXUepcWgw9iQOqAhUg5hCJL0ntzIdTMi4QSa6O3P6XDMXx/fhletc6/19TFeV5K+kEz78e6bn+a9qMJXvylP/5fNr+F8xocr1Czh717i5jGkNYfesHdaIV8KnFZ4WYe59NO1kN6zl6SnN8E2Ax6/GmCSGqUZFluvtlzqjOrU0U0d0Rm1Dd1k0AxInfw815OzOa2lM3UhHdUwiGNKuzFHuQnh518dBS1mdWIH0bplAkCva7FupS+Xl9k6mNHSHARkgje/ScJpkmPkIlSFlwBdwMiFHQVwn7JE4IFg99V5Tt99D4cv3g9TJL5oPZfrXDQjbodhI8ADhBGHYa2Jxn2+/Xp9+Petn3le4LR6oTxexL9AOC7paA5mgCQOXt1OFl8bP1ypnhbWNmHZ3sFuwGyoPRp6d3btpg2XmbUHVTRzIg/RHBVDiK5oHbxiayANCQMxa2AdvQdxSWxD50xxgEQxBEwbKIbdpM3Tn7fs7s3pz/7azgxiiMEpQtpj2nAIPAQmjogsSIP3BBaJGVCA9hPKwDRKm74szzx/um5SVsFalt66KdTGJCIcRN7+0nFfWl202eaoN//88+63B+lffrGkf2IpeL7z0PNbv/uH9F+1a7drie31qnrbDcodXcbr/RZ+OMe2vBuf//Y/7+938/OfvmXzGWwNElkGie/GtA1wiJYZHaXhMK9D7bQ0dZgdWoOG28HHdA17gA7e02snNTE1XlC6BFfPytIozbMuK5WZjdAICweZaMj0ZsBt5psxBDeEgnCar09r1csaZhyV0zbeRG9b7DejD5s8bIe8ewNhMB7PZXy+PF+evt9k1QD18aecN0j7tWA2jWGR7+7Hpzyuw6B/qvN5fjo9/+/T/nT3xS//oubthUTd2KtprQ+nV2uBGsTL1VnHgDdjwXGAu6H+5ZFrn65PL/GDXtf7hybbgacp3h5i8pBM5FOAk8CrtGLdem3aW1fqWkdZIpcpL7K74MjX+tI5dBY3QhU20svcT1Avl9/+2B9Weva81Kgeh9S3+zhuhHN2F0W5rFahXGGm8wvbmuGcYBG0QxCRqVKufbMYoYFqAzg74It/lN1uePPm9WW8vOqmbG/zRpL99BRKJ0BEMwGNoPK0TFcaLeZ2f798frp8/vj9X26227sfTg8H6SlUvPBavPW+6GyWyRhKZ1ECD3pJMWzGWjajl+A9PRdZCp9s2MooafI0aaYSbPFT0DV3osW9ea/a0TpAR2fqA7UDLYmAHIZ5LpKLDNc+uhqYh1ZxtX7y60t7nuWnzteFzOnupgfCYOZVtBs269XZuujCp3OyeUfXGNcQNI/Eoa2UL0WxR1WZl9a7l+YfqqYb2MP2xz/MbQbqAAVRyDxqJ3dAN3RjV0m3X1nYNJpe/sO/ur5+Qny5e/8v7+vhf/qf//4/y/Je8Jvom/fIt7b/+uWkPCvvb9+U0+ny48MP339/aeHix0/3vq7We7//+ft37w9/+1//Dwi19frHjy/zutSyDqfXY7m+K+u7WnKkYUvrW9ZNbIcJo7G5fHgOnzqb6h+wwrxi/F3fzpgLrr9+79MAmzv8H/+7X/X9zx7i3/yb//P14bH++uu0fPft/OHH+384XzvOTqvFMMi4ly/u9sdNvtnKLugOdW8zcgHimq6lDUWHeX/owy6Pu7DbTfu7m5uv/4//7X/59Mf7dSmf7n9xvNvvvj6UWs3aFFybVzfZNzrfv3y4/wBl/dn73V/8zZd/9dfTy337e9qM/+y/PL7b7MLL/OFzO12met9l6HH4cGJUp/3213+TmvJS0zSWpQjk/TAMHOm7bx/JG0JH5nEapkPavoWDnY59syuv0VUQS8Ym/mymhU5duMph9DGhvINxCDDEr+LhqQ6PyxDeR+3l4fF5c10bnB76j5enuZ5d6Ljb2U75Z3f7grJgeIWdBoYMQS6O88ztXJgVts0iO7FRLhiExwhD0jT2vOspcHCg5T/+21/s73b/8O8+378sl07fHH42X1btlfZpvNsMh61MHfv96fNvP4D2u7f7f/rPf/3+i/wnZw/j5p/808Ov323lx9d//W/Oj09ftOcSbA34wxPnHHeb6Rfvb9BxXaD2+dqSHH9el9rK+uP3nxlqYLj98iaNIe75OKUdjHvIm5W5FpwbdVTws1npODe6aTyy5Qz8BtOe+RjebbdwHeenHN5v+uv55cMTXEpt54fLx8tTb4UJxnG0zHy7H1uIRdJnvFsQF7L5St5gqZfrlWJBq47sLI7SfFAczfehxcwyCiqyGiy/+puvUt5++tY+Pfx0afPba7y8Wm9tigPJmHeH/w9gszhBCmVuZHN0cmVhbQplbmRvYmoKNjkgMCBvYmoKMTkyNjQKZW5kb2JqCjI1IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDggL0NvbG9yU3BhY2UgL0RldmljZVJHQgovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAzIC9Db2x1bW5zIDk5IC9QcmVkaWN0b3IgMTAgPj4gL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0hlaWdodCA5OSAvTGVuZ3RoIDcwIDAgUiAvU3VidHlwZSAvSW1hZ2UgL1R5cGUgL1hPYmplY3QgL1dpZHRoIDk5ID4+CnN0cmVhbQp4nDS7ybItW3amNYpZufuqdnHKW1+FIkKKiIxQZEqZMhKUUhqIB+AZ6NOjyTvAK9CjgRk9GlgCSqQ0iURFZqAob3XuKfbZxSp8ufssxhg0dmDTzdxmx83N5xzm//+Nf+J/99//N4zAiMa+Qligo9aitJ0sQZ0pHWYoRUQ0RXbEjtixeclBpi42Ac7ia7pazN2ddZy1KFpyq0CbgL+/lR6OQY/jOO0lvrPVv58+Otp6pu1lvnlq938QvvA2g6PT5Ucl7SD0zzrtlvs43ev9m/MoD0f8+hzO6ieIwMbc1uH8vG/rYCtPmlYSh9ldmKpJxeNNzsucM60uXerSZuiSMQMZKa2VOnE7igOGqNGyzks77+9eyWG0++OlBQJu4CYIrWJ7KPn42uRw+QE8/87Hlx89c4q1KauyNTYxLUvMk28F83KYKTcerUcmJLRSTNEUAMFJ9VJ7KgAgxq4H837tHABmoNxiLXBQ/eJ2HGDqYFa1M0imsuKFnR9iXDmMEBZblwJa9HRfz3AuUM7RBssrgy30FmXYwtPOnYWPjTJFBSiW7so01ZKDMgBabWl0nn0k5IG194rU75AdMlfUaqjqmyYFr0VgPgPMrWVpi7Q51tlbSZ2GfERk9T0A5+BUY6SNLHjz7r3bjdQnp1iyhrkyCNOiYZzi9BDLAtNyv4exhSX5bp1CIsGSs+QqVZlEXGu9LmzKZpv1HAe/edqjusWcVZzOeprq4eFmDXVF0qW+Oc0+by/Og0MJLrAF81NZ6yKylNM+38/tXAkYNkkvevj8cuiS9YNGxKlBmvGAq0X9acFpvOc65bb0iBEE3ei65NcdbzbIEV1HfiUKy1TmrFUwt1iVxRBr0zxLLvXhhLVwKxf9slm3q0utsgck7Aw4krriYoiX9RR+/Xff8uZEEfG//R/+67zEPKcu07DM29N+NT60Uu9yi9//sX/6Ir34qC1HzaMe3oM5NTcKSRWpNcmZmmIxmBeyRtSKQQNaQqJhy92w3nV5PNdxcjUgAoCdD4fWarNaEJBdiD0gAiIBYNdBjMXH1kyapPm8wryj5XJtPiIN7tYNix/q+gPRqq3A8WYVqPe46h0zIuH5LLnxXN00ijaziookQMUIUcHUlYYGaEgWJFub5f6bLzo8PUnjP/sJ9LHqPC67j060+8X4pFZuWeZXXxCMhAv/8Z//M6uEC65zHvK8ySdbzhYdf/Ly+nu/t3nxAofgLHsryTIBouIioGBKBlAAjRmJEJmRCdih85SCAIpZt+3AEXhXDJRQCUBy8LrqmiONHruuByRECsH56FxgjL99DgATIZqRNDAITJAiBd8osGfnmVkdMwKjUS2QJ5vOOC80LVSzSQMTVENVUzM0QRMSQQBAMABltuC1i43geBx7zqTlaqghMDMWWgmwGGIp0JqWxn/0n/8RLRbmdj2fNmXc1NMhL/jk4sV/+S9ffu9H6ydP9of3YRlTzT2qLDWf83GsRaQi5HZWFO/Nx8QpckrcJd91aegPh/m0P6d15M77VTqVpaBU1C7RZudfvohdtM3KX+52akjEQ98xA6E6r86zS8H1AwYngPk4S9YoMGx7T3Q8TI7IOUqDl2Y5Sz7o+NCOd2068TzjnIGJEYkAzQzNGJRBCYwQgBDYFlmsY7roLn/w3dmFX319d3r1Hmv+J9/zEadEpV9vFqOi2ApYFcvGf/xn/yIsbTjPuzxBKWOW8cVz/9nvfvLTP/nFN8svf/H+1V/+XN6McjvnmwOdJDXquy0SzypxSIhY55nBi9JcSRCrYZm1ZUILYHS+m8b344uXz1KIhjTllkVyy8s5S8WI/bu3d9NpfPbsYrw7ju8PKWA513yqV0+vUu/d4J+8fEbOv/7qdZtMJlh3l2++unv31e3pUM/7toxWZm7iDQI4MgJD1Zal1lqqmpmq1SZNRKw01ypIxSF5tNrK6J73H3769D/703/xD79483Bf3DfHiw2sknlYCDF6KJYA1Agcq7hWXcsIVgEP6vTiKVw8Ve4fbt7df7sPFZEJGHzsuBZquS+5EizE1RSAkdgRgkEWiX0iwnlevEPHnKI7lZLnDHMFE6vNgAV8UcNWTG2xrCUT2bDi8VaL1nWHdpZaBJeMAYyNu4S7zfrFszovWNqa2SOSYcnqmJkYFAgMEdBMTNUURMxMAdEUDVBN0QxMHqcArYhBQ2rz3b0N/fbl5dV3v7M4/PVv9p+ObrWi4Jc1z4r+jn0LqJ3nf/0nP4rLFM7nGMNR/TdL3PzBH6bnH5FPv/w/fr68uvsn332W+hBW3cvffcptlOONP06RcT2s93NBs1XHGxecQZ7mpy+vNpt+ut/3idab8Pyji5bLdDzreV6O5zzPvl/50AXXyzm3uU0PC3Jeb/k7P3gG4ym0/MnvXUJr5ZRlFC0Lc6UYd9e7H/7hD2/evi61XD+54HVKm34x53xg5xFErFUptVZpok0Q1QjNeREVNTAAhsftRmyIenw4olhEfvfFNwKWPrr65Ee/H9a7v/g/f/E7m7hxrrto7LxD2B/ACCB5/vP/5DtcGwqMtHrQ9T08+ezHv9/F9PD1m/LtbWiFg335Zv/qftx9dN1ddtuX2/e/+hKkJcDTeYnstpe7w5tTnuvqstusBmz6+uevOuc8wBe/+no9+E8/f5qkBS8utIvrFZby/jc3z5/G9SpqkU9/+NHLz5+Veppul3aW4Mt2t/7wk6fL7fnp0+3v/v7nv/7ZF/l03va91jkmNpW7h/PxsCwT6Cw6VynZqpooCaAiGIGoNZXW0IzMwMxEQJpKRWgA4qOL0UcfPn3+cXTh7Zu33/voA6rwj785bdEA7PpZA4dIOmczZ+aMXCtoKsSjhpl76HcxJKc23tyxVk86nufjuezH9vpunCjQk2vcduDRyhxajWaB/DKV2uTiycaB6bzIMgdHXfKHd/dkcnXRe23BWs+y7SiiTPeH1Sptdr2o9KtVv17v91MTIkoPN0cQ2W07mSeWuulcQNUlH9/tHWLwXPJS5lKnakUsV81Vq2gVawb6/18CJoZNURVVwQRUUY3MUISkOUJQa00u+k0Hrt4eO5OhC8OzZ3vt38++oQNQgpq4RK7RVXJtUcTJD7elr2775IPnwZodj/nVDWgTgjc3R8f94Df/2//yN3//s9v3bf3kT/44fvfjgyyrAD2KTdM0HVyAH/3R73GZpzdvAi4vP7v87EcfU1OvGlBvf/M6v3vYij0f/Jak3N69/Pjp9QfXb28e7m6Wm2/L3/79w6lueP3R//03b778+f357flX//HLL/7fn7//8mc//eknn728/Oov/nF+e2inZTpNthhXIlHSSpoZEQy0qbQqUppkRSDi4BybogqaOEJPPFDohMNi+DCd3z3cvLqZTmOn+Dur6yC5S/b5j148cPp6dhOuiqFKTZQHt6x9diKYIZ3xosiw9unpzsPpKOPMgoIsLAIl4D4yPN91h3fHv/t3X/7OpxfGG3361JYZHDK073zv+Wa3cqXkmwc9nn/wh9/xrh3efYuo7MEldJ0PkQJTl3jduavOJYfAeLXxyaP3ePG8N2rZ5k++//HlB1e8TtcvXvbrMOUyoJq00+n8LK2442VcqlEDLqYEhgAqgkCIZE4BFdFU1AxMDQEQAEyqiipgBVRA1ZZP26fbq5fXuycRhdqih/f3lejT63SgNud21qA4OxBPNYGCVSfoqsVsvWL0zm96gmnWaSbgCiBgRoYwMepuCNO4vJnuLy8vPATq16DN0NDk8nq9HrqyP8u4sOrzT5493O0Pd8c0RJccOAxDdIzE7BxF7zZdJDAiuNglT8BgV8+27WBlmZ999Gx1uYbA68td6Kw2a6W2UkqpQAhMRawqNsNmwmCEJmr8qPMfBTiqAZiZgjIwAKKpGaiCVPXADEgo60149sHGgUIFcjQdThj89Wogtmo6iWdCAGAUr6rW+L/48z85t83+1Hfd6mIdn2y57XOZWhEcp2Mpi0v9nKdpWVbBRR87n+YF5ikvtVKMGfg4qSic3p/f/NVv1sP66sWz9Gz3i5+//frbwz/90z9cX2+qKrrk+k7Jd+tNXaCdYf2UybXtk+18P9ki//RP//nx9fvD25sf/tGPfcBlOh7OxQ8+9en+i/u718fTqG7FS27HvU4L5mJqglpRCrOSCrXGtVI1bOSJmYgZtCEIkEGffN+54OFy111f9R9+sNrtOgb9+f/z63ouT3cX48MEzS4v+69+8XUpeXs9MFVCDVmgCC3NHXNYMlmVYafJC0ptAk1QTKIDAp3LhOjA9edizI1dCTWDamuyX9RMTNsHnz0JTY4Pc3x+kTZ9GzVg2HSrzfXF669vXn99g6KO0Xuu34zYzF1s727nlP32+vLL19/OU/vwJ9873o77m9O3f/t1tTnLGXDQbNNtHe+mJWvcxQIGouw9VUNtHpVMEcxU0RiBGBGRzBCVEAyBQ/RmVpa5luIUNuuwnM7nh/0yuH7o0tB5CmQ4z+dpnCM2qeuYXE7xuOAq+kjB5yJFtak71ZArQdM+WPIKUkVdUxSV4IzApmUmjObCdJ6DScTqtJhZQ53mZijIkrbriHC6eAjPtiHF6d0pmF/3Q78Z9g/ll/9wc3mdulXs1ml8O/UxXl1s7x6+TVkuXgyvb8eH2+Ph7f78MJ0Py7tfvqmYK5fLDzstMo31fFyUOay7amYC5DxSJhJCQ1MEEzMwNkAiQkBTAH20wRiTAzCp2GoBtVXfnW7m+5ujXqxrgZrRU0TEaZmWZQFvLecQnU9xzJg1NJBWTlJAG/BP/tWfkXIyuLh2ySMb1RJr1TyeVJsqILAJQLPonfdIzjwSECCzD0mqHO7ug3egcPXBdVzFWupXf/31UisG1z3pv/3y4e7t9NN/+fzTH7z47Mefvv16Tpv15z/9nb/72W/uT+XqyZP9w9k5l3ovQYen62ff+/Dqs6unnzxpSLXAfBROAT03EBWFpliaSkNQAW2AxRgIABWwVZsEFuACroos8+nE2gLZ8xcXy2ms09K7VM/i0f3+T7/LnsdxzPnR5zR2EZHKMuelEOIy14tVTD7Iw1ExmOucAjiy6JURAEjAiRbVAqrGbIzWlEDZTEXFwIzUMQCqGWgjs+Tiw5tTPuZ523/w4WUk6rYDQ4YIUiTG7uLquuv7GLwzW+6PiaiLvN2sylymh+XiYt13Xhb17J1nlTyPIq2d9qVlUwFgUTADQEMAQAQmVICmRoiEQCIACIjoicAY1LMn54bkbFEtRZdlM4QhkglI01LbeDxN43mZ5hR7xFaqcEhqOp8LO/bRLbOZOQAWY6SAFJyqMknnhRAMSDCInlQWVQXvFE2hogGbihRFEmXtHICJipWMpkPs79+e7szuOj903dXFavv8Yl72zbLW1nfD9ZMYArKizXl+d79ylEifXm3P++l8c768XAEP4+s59J6clfP5fJyn07xM5jgGn1SrERgwGgEAEJJjFiVVRkAEyqJIRuydQ1NsktiF5IZ1eHj1IKXkw3l3GV3o725yFcml3N68z0tZ5mWz6oyktBaxgWGehBMH8CCA6sGggUeMiIl/+NMfD9h20YwHhaQw6DJqLe08Y/RADEUjucBewdB78h5BgoOh90Rq1IrMq4thsx1WfTc9TId3+1ALLpMvhYvevd7fvLvbv7+1AttuM/1qv/Fht0k339zdv9v/h599HTpfc/v3/+4f66nqqMuc22JkYdUPIQUKQA6Y2ZMnNTATQVAAAxNjNAZgQwbH5mxRLEyabt+eT/up5tOTJ5fD0N+82fuejO12P6Y+7i7XxK2J1ApdiqJWSluvV4RQ5oXQCMEhJ6eoZfBFgZugC6zekw9YBY0QAUW0NTVAImBCcw6KiBkQAZhKM0ATtmbMzqkRNzBQMwNacquqhyqhLR6qU98BXG18heaAPPNu60Oy5XjserfadsM6rrZ9iC4GHoa4WvfFTqoIQMQIZEpgSmYAAGhAhoYIZgDgENXMQJFZmrVaCcWYDK3rCFClLt4hA7OhZxccgzUmFzwAYHXsPKiqITCRtEbEzpGJGGI3dApzbqYEZg2kuE2Hg6fgqU6AjIHpVLRUFXaOiRhdCGOeSxVwLG1pUiGyZM2i3Tohu+Ypz2c0Qe9ac9Dk7WEM8zlJSTNeP9s9eXnx7uG0Wfdd5559EJu06XB38fyqu+450UffeU6OPvzl9UcfP9tdrm5ultqsNWy1IYJjkoamZib4qMSZFETVkGmRKqohpaXO0zwNAwIBOHh+fSFS9oejZ3XAg3OblELnGBpbdQousEQUdSJKTMH7Ms/e+64bxtNoSKsnuzI3qcsmiLXZSnZ9EUJXXGwaGMhRzctca4t9X5bKJLtt35xAQQKMlbU1Jw7ICXqXoizLMi2OwDkIqcbdinmV5NodJxzPv3n31ZBrdzzvM5339fabw8uXq67zLoVsSEvmubz6+1+rad/xeBqXZSmzGhEgmTVRK9KweURkh01VARDAEJDQMwoAqvahaS7i88ff++Q85ndvHqChA+5dKOdcpE1zKWdx7Nb9ejzkh3Fc8hJijH0SZ+S8TzxNRQxXmyBVATUNfim+Smj94Nrs6+wiCQFUZQVWA9MmrakKEkhVJIx9Wnl2tZ7eH0Htt8gVgT2ZqomimvfsHBIBe0RGAfZdT0h67DKi5iI0SIN2atvZqgpO8znXvNQ6aZbFUEPytdS6NBQABmSAx4ojBFAERHysOoNHKgdGhJ6RiEg1EGhgUpIC86jnUBwrGJsCmHHE0iotQITs2UWPtSIhI4AqmjGRiqoaIpoZAjACECv5xXzP5CO6dSeLwdTYkNms5KWWrKoAtS4VXVhtdrsu5Vr/8mf/1hMFx4iui74boIyjlBbJ9Skyo1pDE215f1iu1qvVevN0+53D+WG/nNLlFhpLhldfHut5Ot8f7/NC3l9fXUEEDhg7yOcmiw7owBl4BQ8uEEes0szMFAmMDKEBGCAiOfPBA7o21Z78MIT9b853++XhXav7h2Hgi+sA7HxHuw/jtJzGvaLH7fP1dUrzfq65tqWWRcnQk0fNIACPxhEMWiMOwHB7Pj4LcdUnF1LKJbTqhsE5sFqKEYtBlhp7ZsA3X90Roqo+2V7EVXCdf3ezh8gh+fevb5l4u1lXanOr02m56LxPvNmS2HLKE6PqKqV1QGetTmVafCnsYPd0ezE8IU8hkmFlhvWml5VpMZjmJtbU5qXqIorCFAAJmIAaIiCDCQKYtJr64JyTsSAjEd7evfMx/eiHT/x6cYwR3entnh09+fxqmWvJ9fwwnfMZ/Lwa+lasSK0EZJpLITAyrcvEjgFtGceYBvLp4RYn8sklZ+bVnAizI5TWagVkQGtNOucd0iPzMZEYYkqRO/fIMhCh5BK998E1bQAGioQUHMeBWy5StYICkiGBNJWikgGNHacYwjqRJ+Jm5ogwuACMkEy9lqVBbqykKiaqYICAAAAAZPhIUgzMhAgdM4iSdy6wWQ0+7nZBUmbGHtPh1fgoSAsiALFwldZKSy60Kq0Jem8ItVYiQLBaKxIiYivVd4DMKtiUs3l3OPqpulKZ1mC15eMcMCC6Mi6rDfSDv3jx8vT+YTqM07niVLg1WJq4nBMpqJIJteS59/6SN10KIbqud9ZSLXpzczrtx2mcUmgOIXkctp1jILY5n6hAFxicF+Vxj93axYFXn6zH+5Pdny9oaFJbXQ73s6mwkVV9/EwEBmgA6hE8EuWSNm71tPtcnkuT5Xj49tv71Xr9vc8/LnLSkqfb4/1hLtWuhitZppznb355Awjk6erjS1VZpvOqWyPRkhfyiYhq0SDgCZOSVp4xOErsCDw0gGLWVLXUJqKo2prNc5O396iVA3EhVbBsq653jrTZ7mILZtN5RlUG7rQrI2ulWiifS6sS0tA3ZdBEjVEdKjbRambm2COiFgMxIvUMeiplAY2WOLpdePf2jkAj+RRV1FDRBMxACjAoofmOGYkMAjkrMB1bmaxmqbnUjFOr779551n91seNt/NUc1naMa19vBgApJYqIqRCZkpMj3sWjFARQUQNCJBNQcBXAkeeWCGIEIo+Ei9RVSEwNWhV837se+c9hd63rK1qCglQWmkxhlbbsiwMCABirS1OjZ1385xb0cttRKueWpBM1sisVjU1UCAiRDJRADAzRtXaJJucMHRdTJ6bmhl5duwQ1VBNQQ1MEdSQzBGTAap5YhUsi9RqrapkcRRB8Hi776LvBs+RyKERVF1671wfQucBFYqSqQEQ0G+r24xAEUDUDACQDFCAKwD/6//0Xzrg5FxMHSi36tDAETJL6jpm12aJyXdD+uCzZznX435cpZSn6eH2bjlNdSmM/Pyj590wjMcRvPmVe/njj10E38Fmw+vB7VYBpxmbaGkOyTsOMQhWIHGB0SmQYpPAFIjkYc9NAkAipgbzfsm5gZmLJq0ikE+D1QoinfdkACqOEAMaW9U59LB74j7/yWebi+7+9bsXzy82605yY0op9aq6jG28X3LW1Kfd9dZEpVlrEEIEpKoaHTCYNQ1Dj57zfK5WlpZdPpt3GB23ReqirT4SaKhNtykGH6lJnnMpCztYzrOZuoABQo9DRAYFrVqWQkDeu+12NexWyUG4XrVVzDcP+TiW07g8nACBmQwVzAQQGQDBVM0jEqlzDR0Sx7gGjyLNJ8dNyDnPzliAKyOpgpUK1hAViaWpqEVwDpCRws4vy3Q8nPxdros4Fzh4I9zfLWHoApMiiTSo6j15zz44a40RgYjMDIGQzMAQCBFUQSUE3yrWpq4sxhGZuSxSs0oTVVCzVtV5H1JnsczHMZfFOVqmDGbsMbDvuO/Ya27LYc5zZuYQ/XpYDX1PtQxDoj6+/vL9cnsa3z+0WlwMcegAmwEqindIiKYCEIDYnBN0SNzFAFbVig/OBSbvYmKBKloQCA1aqQiKbMTcimqxmJiNSCluo5Q2Hkt4OwOYd5EDK+LxIV/FGINrhGSIAqEn74mZEIARmRhNwYiRHy0s4qOulhj8XEmaue5C+wBdovPeGhsmsKmAiOdwvJuPkPe3+9/9g08un+9uXt0iOg+1zvk0jfvjYYidJx9dLEsJwV1uttOr6fCr4+108/TFk/V6KA/FMsWue/LhZbY2SQ5dBEOpQCYIRuRUzVoTMEMxcpk6H2L0KTI20E5gPQylLofbvc3Wqi1lWW18SiEEgtmaSOjg4f3x/uaUhhT68NHTD37961sieHbdB0ZE7NCvu5RWoZYpBe8gDLtV1ZqPkzQgZO88khgaoQGYARBRK82IwipZ9rmRIwVGZGZTAQD2SGTARsCpCwAUnMNmsrQ8Fq1KBK1VAuxSz0RM5IhFBYl8H25v9q2060+vQ3AKFaSRQ+ddAzFSRpRWUJHUoSECAhKoIRirEhmptVxLA8fIgaCZd56ErFieGmJgNiJxjhxhza1VNVXusNukTcOSFxdofdWvbwIRrC+SSjOFGDwTIhg4xgAEZKKPvVJmh4AGv1VsaPgYXEAAa6pVCQNRIEqOKlIkRmciaMgeKxsaILthkxhd2U8yt/PtON5Nnsk7qrWyc5vYaSsM6JFqRWZyfdjXg6L+5I9+cHr3sNyNpBUjWHTTfCYmH3g+n0gxYk/oABmQ0AQNHBuZAVgrOauCqes8GAUfpYBMOp1qt+ucQ68leHJM81g1NwSlATZ+GIbN229epYHXT7rr9z0x7J710zhKsdRHRFATDI4UjaAu1bARGjk2QxUjAAQkQ1RAAgS0pooC6IiS48FhbTXXs8vn86wAPtFcwQQD0/m8OHKxj+NxspMN2/VqHbqO331dTMS0tNqAyJjO+3M+53UXhi6gp9P5ePf2bnxzxDu9+Gyzerl6/bPbyH5DQ++TAaklEQU0F4w8IqMRomN2rhvWkVrEul7BvF/mt6f7t/M4L0Wqt4ZAxYxCZBfK/syBMfDbb+89dsH63eXltCz/4W++KHMbVmknVBcwwX7Ti0qbBUCJDB0AEYAD4GZACC6gmQAgogMDEAA0sAYIpEiGDOhChxRJPVFgNCMyREMGH6jVYiQxBfIeCZpRa+V80seUG5gAAAACYQiBmaSKI2dmd9/ctakxuCmPubSuaRoiC5o8vgKJIREhmmoTBQRkdWgIisoCTslDWCVVSJO4+8UFCs4riWlTbYiACOfztElD7MOiS61V6nxxkbiRVvXOM3GdqzVARA4EIGYWiBpoAzV4HEiEgPDIBu23isp+e0MBIQBiRCZ0q2vfvG8+pgvUWkmW4AyR+t5P41kBN1f95Ytd6P3rb97uX+/H21McEqIZqiNHTOZod7FFRFF16OtSv/rrL14+f7Zbr2/LfTzM4Y6fPrss45LvRiMWwGLWR4coUubSTIEjeAVwoGAn7jGtKH5n5UKPrh8PgsVb8MfjqSxVtSComd7u79fP+vXlAGMej3l+OF5dhRh51fcxJgQ735+dQxcYo5IYAkZyc60g0EzV0AyRCMBABRAAUcFADe1RgBsCIrFjih7cfg/NQ/WWF8OmLOYwEBGxu7i6sKZ3b/b7+0Po3IvPX7Sx1XP79Psf1pLn07gcMpi1toxTQYCuD9HFSG632YVtolV48fmzWqeHN7f95E1BzFPsmDCoAixIGta43V4SxvltiYpewWm1++n0bq6vvzDfidscT1h8ws7trrEuy92rpZYmgAK15rGc2WozFUUBx9qk5nm16gEgC5Npa228G01ERXOuCmzIaZWcQyISMAMCc2YVDAkfwzLGUEXBGs5NFYjJu4ahKtf2W4OuTUARgLSZgoIaMUltlSCwe0yiEhA0a7lpMwQDwtoaIiaA9vhbYC6tWjHfOQUWJakCxgDOAMEMQQDVUIVIGoApVUnRd4FZKzQH1eN0MgHkgK1Twzxht/aONbjQioFJN0RAyKUiMnvnE6gwKDEQABmAGLrH8GsTEzU1MGDn0HnnHSMQguojoP9t1AMMzAANDEXNxLCqKhI67+Di2ipIsZRIRfO8mHoFtFr3y8l5/ujTD2upYAaLeMDAfPvr96fjeDgc18MQuuBTMixIGGJ/eDi2Ugfyh9cHQXl59SSt++FyPZ6OYMzg6jyDNYTGay/Ec+aHb/e8yDXY7nvPrj4YrOOwugi9a19+Xfct3+lSMc/67n15+gHFEC+Gi/GsTfTjz14WrYelXu8u1mxDr/nsTGAdVqaumlbFwIwMgMSOmfCyW7nYs4tLy1Kq5MpKAqBm8FhyaqqPVLc1lYaWrYlzir2bndfWTGvyVB0sarGLIYShj3c3CyDEwZtJmfJXP//GJ9dfD/MhDxer9cWqiYJqm3NHjAhlXILzwfveYTCnpudxWeaFGY2AEBXEjJwLKab708mc21xuL1+ENYfnL9fJCk3L7a/uHxgbU7/MQUuC+vLKr2qKq6djna1q5I0sD01lvb2e5znnPO+rJ3SM9TQSgffYdPaMcet8QmJkx/QYWKhST/Mis7iKjOgJVREA0bA1UgL2ImSmZmpSFaTUSX3UEF1WQgVSZTAxM0N25Dz5iM6xqrXWTNXMzuO86zfdJp2POXrfpzDNueZc5haCA7MyV58CMwGJQwcG8zKDqZn5FBERzQgJEQFJgJjcZrW5OsEW+dK79nDM++PyupyJZ3aCfuVa8m3wmZyXFPRUq1rkzumoCo6iAxUzWbIP6JiaVCLy3is1dBiCf5QgxMSIqKZFTNXE0AkAIpsZGD6qYAM0MkBDNTQAUzEQkazRq2e330OvOAi2tsjS0EIT0TrV0xGQTeDLn3293q5SF69eXO1ervvL7v2rO1UDYwYtzc5n2V1sW2vvXr95cn3BAW+XYwwxeL/erZAAyULP0BSyYKXc5O6wXDy/vry8+L3Pv1v/57+2X7w6Te8eynk0KM/++Xhxfd5dFJMy3dDy9fD2NoTx6Rpdo4xeyEG3Wmqdvl2QMGICbR1Kx6VfE0aPq+RdM1AwUDFt2mpGcITIpsN6FbpUeVryPM/T0pqSMxcetQK3SoKm1JS1mFHDNhp5jcF5j14gEkQlUShz445cpGGT5maM2PdxdTmw57df3qBXqQ3FSYG5tOACi2oxAEREQEMCH9zV6lKKmqrUaogGtkyLVpFFUhyMDNme7C77Cl/+T/97+8dfuofDJzx4vkguLtgKTBOwupWH7WyfpLJ1CjS5To2x5XLcdNIlLGrIiITcRR/UR7Po1bnmAqKAGYERIiJQqASAAJ4bqeCUOcTB90P3bGg25XKYpzMBoAUGtQVFgtp8biqV80TaGQVHaI7BI7AhGmg1BGBHIbnMYgQpxdRHdJiXeT45BiJwoNaydSvH4BB+2+Mlh0CGDKnvFsgtV1MVM1FrS5aqWpQZKKKPtE0d3o7f/F//QNNNp9L6lXUrdOuG2nBuBpVTgZD1SiWoVirFUwMSkZk6Ckw8KxKhQxeZPCOjsldyYqzCCIamAExoAYlACdWxWBatBi1x37FPgCq4eNOKpmTGhnVhUEcIolYalUKaAYqbT3NyRt7yXFUsdnF3tQoJZc6H21OeZOk6CJA28fLFJQq0uT65WlkxmSX0AQLuaFOlAujV06upLONh8WcOwYXg+s2Qp5qn2icftzH1PXQUe1rvOLx+OHz57ovzqz/i3bXvviV8DzwCpwBIhwt972320uXSL9h7VoZSaKlUCys4USqgBQDNMBdp4Br4otjAiomDRmieFZkdkw/UxExlocmKs+qnGU/Hb46HN/l88/yDF9//8Q/2ZT4FnzdbKRRgGZwIHGstNrVQatTsrBF7SIHmOqmg867lCgpMsrvetAL5tJQpI1jXpTpXadKaohCiL60padr408ODqvrgKRETbbqOAdFgOVSpQs2GIfou+I7VkyOMFec3d8d39/faXrNkhBJXxxSmhMbZa/a1Bpcj+i4CoQNAMbbEyiVbAQYgtKRqZIBCoRpXcwoeDD1gZCZ8NL2ECsspg5iaNCreD9RtdL1++t3N57tP8q/+12G+X3/19x92/f1m9x6vztg1ppaq+CC4LFk7QY/OWSNGjAHGaibmnKtz0Wohwvb6Eozf5Zu2VFDZXl9I0WrSirASGWdZwFtc+Zu3s1TZxI2L7AJvhkGzSJbxMDOaY+hj4uggEDCxAs96fHN/uHnYg31jMoLFMJyizxGYFrDCVYKryUufgInBWNTB2hlTzgyEiOY6kIaiJD4UpapIRGTgwVJgAjUxUNQi5bSYkYIWanARw7DT7erpT55//w+u8l/+df3bb8q/+fLDFx8Gr3v7PEMsxDVk8VHZL1lVyKF3wYHn5qiVPEsD8oYkREjAS57Y+RefPlmOY1ny/c0Ukxs2PeTWlkUaYMppm3Yvd8vDqIvuNlsFkyKnX57yXEVsM+xWW+o37BxVsWWU3gHkPB32X93d3UwzxGe/ACO0F1hRR1drl8k0oE96EkiCK7BLr4BLWSTmSlWIymQmtgrewKM50hjIHKsLC2iDVkvFVmE+G1tl00gaQiTnkmeM6wbxN2O5Ug7DZfzj/+p4+2/uXv2PF8kwlNuxf8BPsutGAwsrTDKO41Ump85FD4TSWjZSdMjRgE3AlmwmM3G1HpSMPJtIrc0MIjvuCAJjcsawnLPjoKTLSWoRLYITBUqceL0ZQq8UBOgx58Me0WFhVQBD5hT7RedK9WyHwZo35RbASIV9IGxW55wuPPceORzv3oiUbkjWqmYhQxW2SlZBwcS0+gJarFVRkkYlu0iAACJgpWITq1XKuQXfPX3y7u30b//qNx/lb6cv9u8afJLIhebzQ0/PiJzV5pyDkMbjyQTY0A0BGGqpE3pDRNeBGrSmdZZSCxC10ro+uuSollLnZcnxcsdd50JQRGmyfz8yRgM5vp+nsUKDq9httn23jqunndDUcFIHyM67EERdZUfgmIJ3A8WxLdnKbO/XwAkcN4CKChgCU7XSZvck+OcruvCHv/razsvm8hKnXJs45VZVF4ViTaRInXFSraZVkME8GrtICFCbybKYCWDLBuLb5Sff+fI393/x1//xz5af6+uv9xiebxMMyPl+FUcHjLVE7zl1eQat4AzdaqjYylQL9mwGGbJjcAwxOMaEQKUWMDWgNLCTVJt79eYAeGYfP/xoG9ApEUUmDk/iOmEK7IbkBLJCLdQUG5KqNa1ii+bzcTk8lNev3h7v56oXYXU1JHPdDLAC6xB7jl4xmnQ+ej9QHKhUWDIo+5ZgNn7jwg3SyXBhao1Fai6PXfiGj+vhO6eqUJaljC2rilhtE6I+ubgYTw+n6f2P1t/vSwELb65/5N0T4PU/smilBw6sSwfQtHmfMDkDhJptOTrmqrXV2hDDo6NGAkREQzQ1MHTWoDURsqao6gwTBu+7PqVIDgiNiZAbB++jsAMKgI/HENAEUMAqeSBTs+J0FpmhLuGRCmthZVImF4IJm3mDYBZMJRcyj+in1+9hjjgP5b7JAbI23Ds3sU3wyMCtGhCAQ2CUpiIS1UBBG0hrYEZAqgIgpZYqtZnUcmBs665OooyA/VBKJkLqOpJKBqaAHoD5/+vp3Xa0S5LzvDcicrPW+rZV9Vf9vZme6RlO00NrJJGWYAwIyNaBT3xgCboDXYCuQfejE/tMggFDMEAYsChDokiRwyZnetg9Pf3vq+rbrU1mRoQPvoYO1g0EcmVmvPG+T7pEJVLXQFi0lTo2ochCCCRMBHL1abk4EDfdtMy1NLRJEkkM+083N/ubF3d3NB64UuyTLM6N4sT6vNjk08LGbuzUKaS6LF3XMSlbSXJRnkH6MqcT6Zt5rI0khJvtwKbsGkmzcwdcnp5jnHM3Hf+/b1ontu3tuMEc6HLZ2F3Sro1NEkskb+4BRMIic1lO43mTA5O4SWuNibZdNkazerw8VRUK+fHD65Dw6a2++83rtjQVOh94XeNP7jaxFaA6JY9sHL0bWowLU5jLHMl2QxSFEi3M1Qxq0ix24oEvUUOWgcOa4zwvZSnw6fzY6rtnOZ5i46xdWCxo6HTFLQIRoXetzpViiVFDiqEQ10bLRI9PejiVyxjAuyw329vjPFdHDkbuBDRAjVTpYnCqtJzTbfYorSDIQCGjOdeeWva5OjVjSd3+0p4O01O3YYLojKm5MKKIcyqmry+X7bqPkp6O73O/7Yfh8GQhSwhc3z1mYL8a5qGTxH5eUigiiIzTvBQjvr19Dvz1zKEaBC6swQASAgNC5IGcg1hgBLBAyG2eUQpKU5AvpU3UjcVU3JCquzfxwO7ERkGcilMjr3QdcChzJa7wqWFRBohUmLvExQKbMykxCGwu5mSAXjVva+YCdVVlQJzJmDSQBgaKW3OVlMww15KodyIQNYMDLKTg6n6ubZO2IaMe3vbCKcSpOLELQRwMY9MuRmLWohIskQevlzrBEVd9iXwgDjN3VOdQnpmCI7utU9pGopUuC6Myd10nevbp/Nv/8ss+9V3uZ0o+M03S93tQKBYkgYHqCkwAWbhIIGEEIV1MJ8sxBENsNo/CLa6H9elyKl6sTSEKgxcUkcAcHLktrUJTDo3qhPk8TQ4C+EZuuya9rdiFEbqczzSdfNpsBgdq0UmtAmBWEzdCtWY0Kz9VfLK9ydvU3n9HMcUYAgyAEu3ub8s0vp+mXdcJoS4at9Qn4/k8XuZief/5D6dd/zR04XgaVpt0/3JP52PzlGmzFGJVYTACmo9vn+vxtY/Hu5xi3lHcfTig97TL2RTOQiGcyZg8iQk1EreOzQ1ApBCjJIrDfsWX0R8vU0VTcg5psyP4onAYkecQVbkpdzGFGBleSC0gxCQdm3srdtVwWbi25lJjjkZsEbyy3mWjPVEQ8dQNl6nBESNCFDFeKJvVqrh5cXse6/Pz409+9vPzdH4+PLPRpDgs9Wa7hfPju+cHjqtovZfd8znq9PDi4e16eOpiGM9s6z4NKysVGhxRqYEcZg7SZsv5XA9HXk7b273TqmINpcCxC2mpixOxSIMTO6IHUhK1LOpmcGeSK6RAjNgM5hLMojJxEnFgUUIjhqTolaEiLCxMV+e5IIRgUcjMvHlzI+dIquau3LnBPTiSSpZuyJWcOfRdvyyjw1MUy0ROq5Zca6u23e0O4/vDNK13q0WXWmsvERyqQ7psSlOjxWNjD1GCllxsy5fRV5dWwuO3x40ON7zuaixLPc9P201m0qmOh+ZjadPpwz6V3Sb+6IsffPdt9/gq3/QPHRbgLAMjQJJ5K8QIWagayJA4JOOIzRDiyeLh8vy37xMkh7j9+GWp82U+LoAQbbYRzE6YUXsLQdlOJNIzd33g6mXRqXmlSNSneh5ZhPttPbem8PVouBCNo6sP0uXd+PQ05Hi72X2YC8M322HkMcD3eXu4fLjM9g/+6A/ePo/jYcq7G54W4/hwe7vuj9CSoy+wCjyXJIU3/f50+TA9PW/+5tdVHifehM8/Xu5uPGXd7aJqGhY0a9q0ttAUTt6JrbKs+lh5XbwvlgfKRlZdEALIW2sQBnlTsHdwr7PbbKBqx2PfQleEOXnf03q9HE+WY96tUaupmaoaORwsRIkRgidBYuTiFrlLsj7ZUYOFXrSxNx0xeh9hwftGyWOIhYj72OfUDh+4k9XtOh46uMftyuYRwGqTxyruCEFWabON7me6Wd+E35fl7w42xW2+rVNzpvuXN6M5V/nkk0908wG1bj7uHhiMJXx8M2+2WK3DZtOZcpzocNHq1FiMQGRdsCFzl5PxqlGvSJDoVAxCEgAztRAF5GYEBABaW9Pi7u4LcWZIDNmHNd3dtFJAiH1n02KtWlm8wtwlBOJEiKKdIIrHUlUC5yzj3BCMMmMB2BcUJiJ3y9UHcIpltK4LeSvOoCh53YUhOcBD9sZEltYxHJK2CuYhr7dDqEdbPax3H21/+dcna2mzvi3tTInvXmxfP57Oyrq512Hr82W4X90Sgrfw4vz6h7/385/+4o/e/O4/P765PL4uNe+qpwLuZOK4xDQOiXOX+/2L9T6MF+p7CjFIyMvMDO54Az/DHZxIK1GTzlU6UMih5zrU0p9tLbc39z99cVlmHWsrAgwhUl5h0dbcNGmdqi5KMbEkSMoVABTU7R4a14Kx2yVCNM/m2Y3meuEcEcJkYyDpQpA8GOVpgWyzu2nivN+CfcxRbj4hpQ81vPjxT25/mL/881d/8D999vd//qM//b9/vb/b/8HPP//qN/8J3O7vby6lQUK8eRi7hzEZ3X68l8uWxvBXf/uhDV+vbvPh+P70WJcTSLbutsx1y0vCglpCWEu/sthbMJMaMzM74EKBIOxiHkHOEgAFscQEAYRjlqg7aRviVRwGcEh9bxLFuS4RBqLKgYQMgVkYncmQWIWMQx9NXdVCBkDmxiBcE+vUGIidcQCxDNuUMhP57mbVxUSRNvvezbIHdP3VftBtB1c5zeXmPg3Dxr56SsNqf7P9gz/+PW5EOdw8vHArBGGHuztwrni+0Ie3cbqU6XIMf/WbAw/f7HdThc+XUMeUNmaGspTULb0vS6kcEvdrT4OGSaXETGRo1QNHMiFnQgTZ1aEKIg4RAg8W+y77LtqtpCEN4uA0DOhaCMznYNW8KgkzO5ikEwZEoy3kC2JOrZktLSQmYjOQNTeQOkkjRkpgZ4JIShLB5LubdWBGwjb3Zo7JQxzMbano8totvj28vVvH1f1K1uu8Wm23m5//k98/vjk9f3W4ebjTMo9PZ3a4w83GSoeJ378Nj7+rhzen8L/+y3+yvfHuBWgiPbRIi0kl5yFgz6Xz8ow4h7vaf5oePpNL62q5XzvVc5ufHQPUvajmZKRqCxkAc/ZFg5qFfuVPrufTJ390T1mdxrxNjMDROQQYScjVrJm2y2ytmRpRyEPgjVRtQUKKXSmzU+xl0FodRJKtFDNDCraINZJVhIOM4lZdbWqK0JE7muVVIKbYKMcNcaQ9bR623b67/+Lj7na9qG264c3j05/9ydd/+I/3MUTUcLfZcoS08Yef7G833eanD9hpepnD3UdrzsvMc/FYnJoZkRuZaXU1N1qQNd/I6j5uN3NXPohoD+ZmLUdPRHBUF3OCxODWnIi7yEogT6vOj4q6kM/aarGTNGU4w9QMRq5Qv969jJgFVOdmYgwuVglBYKYKIuBKPXBn+75FvH7kTg0u7sTBnQFmEiYHIuBytd4tiwO1wY7P07xwrfru8fLlV293m6i1BrYgIFiZ5hgCCS5PZ3bkGKalhPVq38ewuc1jK6da6iJltrm0tHYFai1NvDqfqW/Dfdx9Muw35zx9Q/hHaw5SWs2pZSFnpuIVYrGLRRdnyD5JEyb0N115PDWb6nQsPJ/boSuDwIWrNnIDOQzq7lCSEMCylBlsqFZJyUPwRBAipmitFSMyA7nC4ZXZiRimBRZhUaJCCFEgRM6c4lysGlXEOtamzVI9nQ/Nx3nuf/P1+O34/h//9y+0lZttzB3VotPp1O1WxPT06lkLEejpw/Hu09vdi234z//+a02mnd2vdjpaGxt2XJ1HCy0PTPH5DO26YejvuvSLfxC/+Onqh2y2dHXc0qNTUa7V60q9EqqUqLbUstjxoNPl8ZvFDuYT2ZtaxWdvWzVp8No8EJiYWIP61RE3ExxhcOcGruKMBq+oSgY3NScCGNoCwHQV0hhEDHEWF1YpDncTbWCX7LTMi4Jl29VpYujt/XZcaKlY34QwUOxdT+fp+cP5+HqexLWxaxTnQJqEmy2lvf3N5c2b4B0Fy52yqRlBCOxOBrYrnUjIiIsjBu6yZOG7FfWd9K3WGBE6lEaFuXpaol4jX9S1hjpO0VvwiudnX1hdpkmMyUCuZMpW3RMRkzM3a86AR6+AOsOMm1EzZzIjdTMxuLOqs8NIza8+AiJyJiJrVw8GTKsD5t7cBWC21swIgZ3YmFXYAqMBrS1eyAONT+NynuC6TAu5EsFaAyixkSgFv71ZPWs8zxbu/vD3pvM8HscoTKWyRHyPQzAnV1jRdpf55UoSeSe0Yzrb1fgI7pmDcaVEMGU0Cbyqi8zz+1VGFIy/OSwcWkjTtAhC9MB2hAfzngBnArHRYgyRG5/hxcs4Vmhzg4hQiKROiQKQrDU1c1TWdqUlLdSElJRBFIGg3eLMYC/uUYg6XypckFglGqh5PbMiKD68b7GXvBK1s41zF+VyHAkGwnIZQ8B6pTEo5/CzP/zpl9+Vr9+W8OU37/U8+Wlc3cV2mZ/PlzSfq9np/DRv+wQtz8duOa7a6bfn92poqlJP3poXjRfmatxqLU2r1qXCY13q6WkO64vgOD198M2K8+p8aqGFQfMo2ohHO+eOCWhLoSGCgy8ISuzuXJRIQSCrrotV9eIMD1bJwUgsbkKQGCKRQogEMCJzN/i1lqZGeil8PKo6zlVRClsbL6c+cWCm89INm912tzwrMXKXy7SIYNjky9Noiu1nu9/+xd+Nz+f1Jn28393/bBWOxxKXltUYlaAECoFMyamRMBl8rLnUXJfz5aQGM032iKaoRiVxM6qtNW+qtc1kQ6utLK2mGlBarWgFGttSqAVrXqI1wgKmKuReS5GYIVEXhnMgqFcjNrCjubMbmwkIuCodTCrqFgADrnsEKROZw8ya+pVUYgpC1WLN1cmWKnAQLVW7iCCOtpB2BC3z4kvjhuU0hkhh08/jEgJRiKCgjc6vHndDvHnogh15tx4+fTG8GKYaJJa4u7+btMznx9VmJ7PySdeXurvM58s7FokMom+1WatEdY0KLbVSMm/mB2lNqzfVy6VWq1WCL9UOJ0JjC2SlKJqQZ27VAXfyqtVNzJtwAFP16k4AmTUQu0TixB5EMynUbF7UrLkzfHYjgFpHZJE1WDAwgQVoRMzBU0qRg/a03m1C5Pl0yBvuE/y3x3ma6fHw+tUbnz3UMM0fUqK7F9tX3z7HHF/+7GH78Q/64cU3/+Uvv+jk4VbC5fXjcR26MTzVY518OdOr6dWC9v553tPSqcMllNqNY5ldOSvzImZQN9LLxOZibbbZXYUmq5O1NuyeqD7X+VRiMXNdoNSKwhubswUxC3qFaRGjMligagoy6DW4TgImZzIx00rG0sbKZFduKQnARAwnA7VFYQEm3tSJHQJ3IgZHU1Gn8txsucl9HqeJWpyinGfqYqO05MDV5/l07nIR+OVYM0dr/ud/9qtPP/3RsN6NvK8Y3FKop1OVvg7D+blYJdSoh6mQzS2cFqoGcBRVWWa5wMiNY4kKUhC1pYgbkWo1g7JUa7NbCfmsbVSfLDRtZupuTdWhrhbg4hRQDSDjACcwE2AVpFAVsBAZmE3IgqoSGYlyBYOIhBwMMPH1pKbm1V3gAqjhWikADC5momalLLpJFmDmS4EqGksztFIyQ70t03nVOcHGyyX63tXffPd0+/CD1MeLxcWTIgW3D5uHH/zgHz78+m+mJPn+5sWhzJXoJq8Ckp6WsH90d52OmEbH4Jy9mx0VUFuymxOUayOYBat1sTqZP5ke3ca4XqSRNXgxGDiQNrgpFg1X7pHDq17TWV0YQkylcFOrrdTWwETM4CQSOEoAOeDktRQ1N6AZmYPo6rW/TiuvZE8DwRkUAjNtGHfbuHqxnTgvM9UFtz/qqJy5HLah1XY+PX33cHNTSv3u1ZtP1iqSYGNdxsvc/83j+a58+kJuwv0m3G7DfhuGTcoxr2/6y/uxGhx2NjOnKa9LCA1a23OxTcEw+0xUBQW1mqG6QR3w6lpcjdxgVVur1bS1Ai1Uy5VACiUnQBgV4vAKCAOE5q20iVFIAxNzYg5k8AY1Ha2SVeYrG4iD4dqK45q0UDNzU3O7GhZhgZ2YEKTrkjkuJz0fRqTi++1U6jy19d69LjafxS9SJtGlnU/u2ruX8UwsJDW0U7K8TnS+1G9ejWGTeZWQxOWarGLW1lqzynWxUI1rXM8cKkzboakXs8WLUAEt3JobNUM0Nli1Vl2NDLAKrVAlLbjCIq/btzszEQI5nMy5kkciIhRXM4dR9hBCjBIR4A4zrdqaeWkuzgxmThQSMdP39nE3tWZazbS5emveIvkV8xxY2Wka23ipYW3ptmtqSy375EbVy8g6SZmjlTYSyHvyNo9OJD2knoPmbUd1qm/fjeHw1QXj69Pb8a+/OjYLMb6FFI/chrM//Fh5M8fVu4q7y9Kfj1By52WhIE6C1ianAO7HxQjOSc0Xp0UihodM7qhsS9AiPJFXtaJjDVW9FvWFYSBHbdXdKUhMRMRXo7jOC0tgjiJp6DtjakK1FFWtWlur3hDAQsIsoRNGjECZS23wqqdxXpqem+77PktMNKT1bv/w8d2PXg7h6RRxG8YmWtj1cIx1vOuc6sRMt1FeXSawfLbZ2/HDVKcvXqzNR3//ITx8tM4vu/wi7OW2WYT0fTYjnBynLlfq7dPVNMxnULco6olaldi7oAQ1KAjMCxQgZS3C1UiZmJGZgsQVOHoMnBgN3jwqN7NqzRe4uql7rX5lgIEMQIbZtekhODv4iggKYAnZxA3eDG6AAkZwAhGBAZaes0fV3KWhqm1c10FSSCnv1/tdXg9JQi9Qanw6hmUi99KquK2yjFrdEYiZnNjXQ3Cipp6CBNLgY/jk8z1eRHyUHj7bVeTm+ab3qorTcrx01Xs83I/pcLR2V5SmmcsxxJsWQoniQYWMSQnE7KwLkxKMwGy9gHPIxIli5E7IGCbZXUmVqy/qzbwZ1eZN51lLs+bOfIUES51Uq9VqqEZObCySSMjl6p9Hq61VN722ekKQ1GWQA/AVOWCkGRZCiuuHzc0uD30EdaTmlc6HOE/JbalNyFZdGC/NnQJzILD4ah3Owg3USVhTG6Dh4y8+e+L2Xhv1u1bpOOrT23eSUn//w+lbTKyf/uLh7TeX5X19GbK3s43nLtZJ4syRJThfXalszJoCBeXoedMH2QmtRNb4PrHK7uROgRpxAY0aGtgsqAlBKccYyd2tlIupu6HvE4HISds1Fq9WzeyKzyYI+ixXoaqpW3VvbtqcGCSSIsOFllXKknrffkRxaAWXN0d7fkrTh45micY9lyiVkqbAs5EjSrztI2fhIQFbt8FqyjxtwxIOx3gAnsl1rNXFjdQiURf7DeW5E/n9ffd8yG2Oj49RnFFV6qgxIEazxEwIBA7kAg/sECexEKQPvJa8I1xxGWRG1mC+kLGbuVUzI72ysIiJATOi1PVq15UicMCv0V8kcyvNzPX7pDCY+VopcUKCK1TNnYxYIAIPkNz1nIc2bFIXc3KeLoFGxFmaC4g9SIgGGDzGQkBMIVviPvJmLXNvJUV4ZE3Swm+/oQPzI7PQRfoctiuTTcjrNOziDquQ/vgm/9nUv8Lqu++6BEnNu+nkWXwVXDsN4hIZDoDIA0FAoiFIH2UT+50wGO4GNWoGXUSLYIK3ClXXCiNcNXJ3kHfblQLVfJmKq5M5SyDmHAVN3bw4vKlfk1JkIIgEYWYiVVFHM0R1cURAujW6AevtsElDdh0fKR0Js13ALEIsuWssMO27nthjH1NyWuVwdxPedV6447GTlmML/pP7vqf7gfr5GIhCTL8bhXNOkT778dDFqOXp48FW993xi71tyrLj81ePdanlQ9N6AkECxZQpBspxteaui3uEVJYgc2ynHCwFJ4lGbEQULEgMKYo2M7Va69K0qdZIaq56/jA7ubNLF5zd3bQ0KGoBk1/vkxAiIRJSClfUizmxU8whMGfmDhBw4FS5p9zfvFh3dZLLTI+vQ1iI6Hx2YpHQDTcvUi2lzn0fjQk5Vwo8rHL/o7K8Duenjx5aR9WaB085rmO6CdOrDyDkFKQGZ16WImgMfz58AOZOdNn2rFsWl5nCVMJSyljczGCNALq6mElL48uY+BwkRKALngMkds4EJiIjJ7JrBBFOjMAgODk1JiZocL8mSa4vC5grucGvah3Br4+J4Hri/TeIEOBwcpALQ5yZxCEskUOIZDRd7HKmeaakJC6cRSJLTHlgCRQ4DtGYWkyd9JyH5Dm3Ah83N7GdMJ8peI1DGoZ9/x9++SYL/6B7GfK2gN+9PxhqFf9y+fBiG1cd7XZDWoX4ck8ff0yloMzzh1NZyjzPp9Nca9VWGpa2+OVYg7iEKS9zFzgHzt2KhUgQSOEElatHkq+dcCJPTkZi1PWbMtc6l+k4qpmZS2AQOYnDrxFqImaiKE7fq4HEBCIsWtgkOszYDc0s3Ygw0XzWd6/tdOyoWjUXH1Y7IWEiElFrwTpaRRWeiVPcMGIeTdoxyNP+80/f/BKPjwj/9X//tz/9xd9/uftHP/79f7jYeLbx+fUrQ+g2d4ljZNaJ3l9OH2xyO3TwjjwURNJIiPtNIhLmrAv5EvWoWgCJ4aXZ3nSol8ZNWa3ZAgNVGONKK6XvkcHVrpf3CFSHwr2BIYMMca3mqj5NF23aanNr15klSIglJ75uYRBnVmLnFMzNrJJSDJR3vLphQWtPH6KNIlpKcZgT4sY4cggSwwoxeI6NqQFBESXyPPk3v1r3h7RXU//2TF9+4BC/+x2+vVu++QG2kdPgWUI3mYJoEUBMYNKKoZl9v4N6UCi7MYyZgngQJGOy4IEhjshhp3VtJdNyuVJ+1BQOmIEcJACuCgoM5m4ADKSAQs1ZiL//VYkADmIA1NzI3PUKP4eZsogzC8fAYiLmgQlwp+om4mEg5kq16eUgtcKaWoU70ffiF0UKQ6acqM/iJE7cEOpMurT5sbvztM7j0Z9GerNw+Oeb9upv/uIvv/rb3/3g7938/Cdf/C9/+PLuOE0fvvvuS6qBPAqtBxmibAxbqxetk7airc5Va5kU2kLjNEmoKc2yulHun0+xXhot9jDrGj4QE0ytNS1aFzM0E3YIcQ7ZDO5etcYQmWSaqgQWIVO7TqS77RpErdkyLrVWmxdbWqt1Ohd2YQr9dpUSU4SScoBEqd5y4tUO5e0rO4369qnYdblaF1IOYTo/U9qmVS93a06BEomH7AwL9de/tadXgd8On3+K3eaX/+fp23fy3hP9yb/644vEA+c/efPwDpv3effif/h7w23e7eZsU/CW1LgxDEBlqkyNtYr7NYOqpJVL5aNxtVgONiy+qvr5pvV5hvzVV3GaQi1NYGwuBm7XKTN934uAEQh8DQqDqKkTmMCAX9OcFK/YfGcRAplbXZo2u5a9FS+tiFAIHPqUu9Ww3nWmm5V98pHO377zSwkaFkd1VKBjycz9uku7Vdqvh/v7vB767UpLa8dx/vZ1/bsvuR3Xn8gStk9j+D/+3SvtbtFvw4sf0i35S7Rvy1zeLV/95q1tP959crdPKxIlcvbqUL/CviJErvc6CkTOpKzCQlQbhxJyWfpiK8GWR6G5jscxTpfYlprEI5Agwa48Cje4eavGHhgsnEiICE7iSq4U4hUdAq8KEIFjIhHmIOJMbMxQbzBd5tmrEyE1qdVM4fDszecFl7NPVXm1OJfraMBAjMACJ1ckokjsHNo8LcfT5fVrHJ9DrHTz8vl1+O6Nf3Pijzb5/m5N/++//qeYRyrj7b/4nz9M+csv27/59+XtUSxsdg88bOn+wftdSoPEIbgo2IRdYEJm0iiAo1NviOLDIOEjoe2q3v31//WfXv35r/S333x837+8X/k2U47cRWpKBga1qmrWWquXWsb2/P4kIiFIl3OZW5nb3d2umU21xD7m1K27m8PprO7dqgsUmAJCNCMzcqbD4XJ4vii68VTPj+OOu88/Wf3TX3xEh6+n5+evf/1utqSIKa1XKfYphF3u9sNwt3748WesZKfl2z/9r/PzU5keP/3Rut93ut/+P39x+uYdws0XX3wx/OizJP/sn/1vhyU9P2uC0TivOu+H8PKldHeIO+IODi8N84Kp+lyxNJ5VFpPZw8hppHhGPBofqjyPcnjtT19fXv3pV2++/NX4+G5zz/lFpJ3UTlp0FXNSZ3cxZyAQRwkphCHkbeIMDy4de2BEWVQru3dh2O0d8flxskyyivnFUI0rsWxWhbyw5/12YSxM+88/Dt3QarIlNY3ThKFfh7gWawPRyj0sS6iFSgscgoegiQ8+/e7x9NXv9PA+UO33fbi5X9L+zdRfrIvrzUc/vtt0hcs5PK1+ujzHZbms//rd7mV//9O7//Fn3bsmf36y3178vPh8glUDwAukD5IZHUtkjqyBXd3IilEzq8Xx3UXfTqf/+LdYnoMs/X93j5VM/TWSqIKWhRgkIBIhZ6HAPYgwcPf8/jieJjAkCmV+ejyLpK7r02o7ncrj02G/Wcchyj5PtbWF0ipVaC222vbkRrD9j1+EoU3H7nwcn8/tL381P9x92m1sf3MmPJmNh9Oozk6BUk+k7jq9O5TzYfzwatiWuAnd3bYMtxP6d0cNK7rr5eGHnT6elsPz/w8QU+TECmVuZHN0cmVhbQplbmRvYmoKNzAgMCBvYmoKMTg4ODkKZW5kb2JqCjI2IDAgb2JqCjw8IC9CaXRzUGVyQ29tcG9uZW50IDggL0NvbG9yU3BhY2UgL0RldmljZVJHQgovRGVjb2RlUGFybXMgPDwgL0NvbG9ycyAzIC9Db2x1bW5zIDk5IC9QcmVkaWN0b3IgMTAgPj4gL0ZpbHRlciAvRmxhdGVEZWNvZGUKL0hlaWdodCA5OSAvTGVuZ3RoIDcxIDAgUiAvU3VidHlwZSAvSW1hZ2UgL1R5cGUgL1hPYmplY3QgL1dpZHRoIDk5ID4+CnN0cmVhbQp4nDS7Wa9tSXadN7uIWGvt9jS3yZuZlZVZrGRRFEWaAmRAsAEbsgwIth/sJ/8dv/sH2S+GAdOWLIGWKJWpYnWZld3Ne849zd57ddHMOf1w6dcA4iWAGDHGHF/g//xf/U/XN/vb28P//e+/6Y7dp3/yYvTncVnvf1w++cXrEPnH33xL88ZW+uHx+z/5i5uf/WL//P43Xd9t9gdf13yaxx+foK1qtlavfd9iKJvYH19R3P3hm1N/OwwvhuNHQxok9dxwVau5rs+zLiucTzyNUjLm1TApdba7kRQ5Mq7TioBCbLlaUy2ljLM3Z424UGh+A+NH6XKb5qu++HbQ7f68/TL7ZtWujff5NI7fnN6+rbmwdLu8VlOLAdN1ivsUNl3ClrBJpIq7xW/+5q9+9Woz//f/VN+E34Xz89NfnfRnn01X1//qYX9/kfPMEngbqGcKm5hiEEQnIgmceiFyAAWCirkhULK15edxrtCxSSt100NEj81ahlywzKwhNelctlkTNB5u99ubbnPsGL0uyzK3cZxLaetSp6WVAnlFbQSK0cxWhdlzFtok6RPXBu5uANWgmVeliq4OrRpxDfhsCZpPGuZ1DKNzOrfttx42Ercp2eY6Hrtb6OfzRU9nq0sptVY1Xw0iYIohCsZggqXCZZ62N3F/8O62wMlLbueioUO8irvN1XoSvbBEPghHxrDvOgyE7iwUonSbQOwAhgwF14IN+za15f3Ju24gtbLW22uQ3k1sucC00AmC8tBkC/F6UXbg3evd7hi3O875NE7T6Xx593ZcJ10vXtZm5mQQgwtDFGtoir4Sy9UuHnfCZE2tNFREBahOCOCgLVsIjWTU7rTGWPSy4tbPG7h025E3m3C8Gj69Tdvt5qdXtH26v1/Pv57LpSy6wlqgc4rI/da6AH0ygJzbZRqPr/ubFzK8BH32vOhj1mPPctsdN7f5QfSZZLoYo7HZZVmZkJ/QD2iORVvVxoKewnxZJ10wttajbmPYJpjO6+NjC45Uven39/ZU47twyzdveNjGGDpzBAObH358/8PX8+PdU6tm6kAQELsNwRYBwBvUotq0rGaIjoDYis+++PHFgYmY2Q0REQmrqZtGxKrVtRnp2m/K0H+vcW/DwS/XdsFV/Yen77995Mjbfdy9vvnoxebw5uOv3q7v7pdvf/lN2yTdxLjneAjx0AXh7Y2+flNeXsOGL8v49N13en4bv93cvu4/HtInK+2AWqQmfXAhU1NJDOytVoFISI7g5qqgDlW1qqYhggRjcTciiIHquGZrS/MxHEu/i/uPaHNElpoXaA206TTmspS81lzAgYAYHRHQ1c3MXRuYuyE4EwAgAIJ5U11KW6sEZkFFQAQiJEMDRkB0I7CEplQdoTIuENB7tibmpGCKiF5WXZ8vnCvtcL/pG6anjw5hSNhH6jB0lDruQmAnNu/8YuN4/zB+/4CnKT3Ixqa+u6Pn9ZzPpUxVbvfuwVR02PcNSy0lYmJkYlIFUK/Vcm1ZddNtIfRGUessBNttP99P49rerVB/9ildv7x+9aaVVub16e5Hy6uVss7PhmpoEliEorBb1aZaWsmqCrkhBgFiTITm4I5urqqtlMuKmxRCNDQgIEdFAnRzQQfB1nOpPjdADcOCvOJQETrygXAXOq7q5/n8wzNAo+Pd/ic/619fne11Uwdw7DD0NAwysETAznz68WF6eHj39em3P+I5b+vmo4d3PT63xz/cccusVfavdDWbrMYtkEFV5aBR8CCDq7XWIql7qZqntaXVu4VQYJmW9fKogHj16vDJ5/7ik+Ly9H6c797V+aLlDGiOxhGJGJBqbaXUrO7uyEwhhX0IhIlBtZi2WqtXc3VkiH0KQVqbKGsI2O97M8/zGgTdodTmEMCDVUrQBjSjWggqeev6CXX2dj+tYrAJ6bC/CiWXd4/l9OsaUuQb2R5os+0SaV5Od2sxi1pjW+fHx9osvvgJPGcFqNbF0oSWl1d2vY37IUmzqgDGoFSdmrA5NOQw9H2eV/eWIjEDoBMzOnmDUkvLFarS8cC7I22PVTnnVk6jLrPXFVENzcEczM3dzauBOzgQETFJYAwEhMhgCIaIDupg4E3VQVBcmBC9rHU4DCTYIrmBmzM4ALgRmhAggbm6IBAgAppiUyjVyKA4WuPYmCtSXYwyxWjIhiibvVctpUVWAwVQCgIgpaXiZujDJl4fZdgwF9n3vk0gDw8XH0A3OJeLRNrsumorEx5f3ZwfgGePVLqOQqbNZkgSueHp6cJYJIarz3/q3X70eP/793Vacb6krmLPKwTTrE1bK62oViOHkELqoyQhQRGqrbk7qRMCMBUOTbxVff9+AQSKePPqRR7b+H483mylC/12KGs21S5AVVVzZ3ELqtDKGgWjYKu1VtNiZrA2v1vL2+xR/QUOmzIGLTA95svSulO4/iNbSh0nPFLchN02pf3wdGrvv17OSzHHP/ps80d/NFxfMcxY56mui8A188bD1qanlYNwCnMGM6cYXNiFMYar2yseNjGx52VexkTOmw3v09NMdaq5nsU59oG65ADm1ZasRbW2WgFIOKEgAMHamuWVCEUodREAc9MkiYjBWhcAkxPRNK3T+8ur1zdhIx1sIFekMByPWCdzJfbsVcFcqLRW2furA4OT2fLutM51mZYKizJyFyz1FcOTSxNO1gSioGAMKUlei+aWJ1rP9W25XM44rn5/aceb/nAIf/pz7uDB3q8P34w5t1JNfEDojZIxKwtKMFgBXNEdyYG81MpMKYl7NW2uDXqyEDR0cwZVbQ2GhCKOSLWhNdBm1tzUHZGIiRDRzK2ZqRoZAHhHhEQEgBQQmZmYndi3W6y5rS1rbUlS2oZWgBy70CmremNBN2jaTLAhEnjcJFtrWeo6trxqyw4MhE5gKojEDbmQoyo0BBFOAoRmVnKbHUvRea65xOoUOnr5qru9lhdXTc9zXSasFRTdWexQgRp4icFT8k2n66VCJbucI9Tq69vvvi2AzbGZdYlTEtp1BXkcm3oJETebJFgAmuqSS86lzmsBACCJPSIAgJeS1VzN+y4yEwumwyZ0USKVU/ECQ7dd8ly1HK+34EBOz3fn49Xh8PowP1mUuBsiZGvNkIg4NKvFMg/sAkOS+7vnu6/u1rEQs/Td9nhAbDVPTgpCOHSkqRY/vT9vtnHYd2tt45SfT8v9nA3QiD/78uP9dX94Ka8PdZC1qz+WNin7/s9eLd5nSzJOteux2wTHRqiJ8WpHLoF8pQ4RwrCTANQcVzNkbAyXWYEJhCUxEbhVCOAAzVARgLDvOkYgcDd3cAePITg6EIDaB0WeTzlVePHmSjboUQUdlBVjlLjZDGh0GVdyJHARjJH7LvjBWzN34kZVoxem5MA2vX9eni91WffXe0BUt7IYADiEbRo4iKnr0qzZZpuurrbbQz+fpmUqRQFi6Ldpf7O5fpX65KGc/TQ6F06apK/KT2/h3dP0eLlIaS5AzgQESCpUNkM00oYFJIVIsWc0IsdqYAANQLORgBAxERMCGiA6gDkAIhFJDAJEAKZmHzwSCjAge1mqm4FZXRqhEFBKAkJk5CbaOJBA15HzMlUCQDQSYsEQqaeo6q0CKFHT4i7BEdrjea5LdrVuE808r6VUI8LQdV0aRKiuuWhD87CJQx/7GO7vLutamoMEDpuwuxlCMHS1aWrzuXLVLVZNy8Lv3ubv7/L9U5VwvfXoq1jYbwMXhJq2oOQN6qo2t1oD5OxFfS5moACesGMBicisMWA3cDXS5rV4CpGCw9LcEBwhcQhIAedprq3WXOoKhJiCCBis9vTt6frN9XDdxcjLOZe5CHvcdcPep8clMhJl7hi7puJX11cO9PQ8BrPWtLpay3Wty8Mkxofjlanlpc3nTDEON7uP/+RjAfSq8+OYaEXX7hDavL5/OD2+O1VzJZRdUtHxcn7/2++56tZ9jbVne0T//Q+n7x/rv/nDI1BECrJUIwdSHLQjA7EmTV3aGvSiOq5lybVUrA2bASIxOgmxEAtLEGIGx5I/KCwLAAFUR+mCJOEhAKp7q42BDVjQEdFJPISAyObU1Kpa1/U9cupDnp5DFyWEtBXp0MW4I+vqWS+33QvmeKnVavPizArN0A0JQRCcmjMIxZ3sbreHm92L28PT/bgudZ7d1RHdi1ozNYibKA6GEBOj6XoumisDSicYAVCbVtnFbeh//urNcLXtd73k6q4IDVkSmmFZg7oHr2Bj1nEpa9aqqIYGwgCExMwkTMIsgkRmWHNzsyQsCOAAQGHo4zamfdS21uwUiJGcGA0BjdiDRHSyCrWpNPVAKQpaqOUpJIx9jBvBaEoqA3uoFz1L5BQT5wBgqMCsBobuJISA7tQMMYQ0yNWb6+PV5rAbHn4Y10XX7A5OZFIB1B0wDgnAHJwIreg6LtwAA3MKFAEIoWl/Fa952L7++eHNcXu7FYqIjBCoAjP3GjgNfTU6Tf405mnVagEYSICcAktkSX3PMUnqKAQHz604qwTabvtlXFszGGJ/M2yPHVg7XfLp4TxdFkRjdnQy4AbYmiMoo8/TWHUpkl/c3Ow2fX+zZyFn7G+303S+u3v49HCj3C7rSf1LJ6o8F52slasBny85z8vhuM/V1qJP7/P2Zvvy8zev3lyD+g/fXO6/OeUl9zs6Xnf9gH2A+ZyXsZxOVUvT3Ja5gKl42+42luLEcdNT19snN/wJuVJ7lssJYXoq0qXgDMAQmQMDCRf1JbfTaS2lemvkiIhOGDFECVGEJYgEEUF3d3PzKEKEplZrU/VuS7Wsp4f58bv7y2kcL1MzJwIWJBASosT8Ia2gYWEFa89zFzsEdwAkZMHtITXHccobwupO07KsJ0Mvdbmcz76Wj7YDobtpSILRpeN1Kf0G+w0BQa02rbXbxX7DhwN2sTK2+rzOz3kaS84N1MAghSAsMcQ0RCRZnB5Gr0vdl3ErhRHqeX0ow7uapEvi6E6eOhACJFrGNk716fEMQoDAQAiERIG7GCRIIAkiIUiAVtwNHUIKCFiL1tIMPXQ0j5f5cvm7f/kflzXXprLtiYkF+5hCkrQJqe+Y0cgdApotrYVwUWvDIAjEjPvrWCud7vMWMTel5+Vyfr9aLauenp58rT+92hGAu0oMISAS5HUettj3oNbWWudStzdDH+F2720617Ge3p3PT/kyNQ9BGINwv5OUaBhQmYrStOB8tksr23fPnJbeyvp1eXeOv5uD/PB3dzJI3MbYlxR9k+Dx3TTONZcaY0Jm8EAxkQhQIGEUltRzEGZs6sQcYmem1rTkGjsB8nV+vvv+7cO7h3d3P5o5EAy9x5i477pNRKJm7kVZOHZBJJGIAayzIWTGAOTIer3va5JHb7/5P379/FR+++38zdd+9enLL/7sy6d3Yz4vl5dXua6GresJGBz96uW+326HPj4+T7XofqDkC+fy9O3lfD8ul7IugN1wPMbjm10XOUVOAdEdrE05r81ahfpyC1ofL3Qb31/F6S//YvtHdTuVXlQrKqoZkjtYrTot65LVCJ0ImcichEkEiD68eiLEjAjALMgUREpp4EbkTuhg67zmJddSUJAJSTj2IfYhdoGEiMgBYwoSJMQgEogYkUChrj4952U2jr6lfhnXfC6PX0+nUzs/qn17ckqffVnbWtpa8qqlWVELYISABBzYENa1rMvqaomBaybLoE0IYwo0pLjpZIjbQ8cIAm5NrVnLuqya1ZpZTdE4zrvbkepGcMB1GKDbg3A0FFOyMBC55iWf52ltQJuNCSEz+YeTImCQiDFQiISIACAxMlOIXNaGXmOE6l6qjk9jKQXY+6uOhCnKZr+LMcQYGJiIOYbtYRtEmBidEQiZzVpb9OHxstalWe58N/74/PTD8rd/d7eugNznP5wJO12yl2KlzrNNqy6lhVYCsTABUS51fj5PlzUw7vaB6kxeRYCOg5Hw1TEOgRNb0zrnMub1NOdF11HXYs2tUikH4U0vNz+5V/Aq/ONXwwvpBpQ0bLLXZR6P2q9zeXx7mrObhL7vFNmdeiEiQRQkFg4sgSQiEgD0KTq6enNkZ2dGXRbVymipE8cua5UQQgy7vhMRFmYZWJgjaW1tbV4Jld3Qin1ISGEY1rFczvlv63jclM//5ADn8zxa9vjDlPM8r5dl6ChhaCWTo3Coc4bGHvlyVk4x7YafvNl0Qr346tJMy+Jz9uzKscFcHdymqrlaLqDVGqjCPLWcS87z/P1FWe72x/b5sB4/Rlns9896eSc5l8YNpIG1Wso4roYRRQAZABGAmBAREfmD3eSARIiEiBKCubZSkRCBHMDd3IwQA7MG6UKUGEKIXYjEjIzMAZmAzJubg6l7Va+gixoxiHNICMKSpikPCSjxbsOdkIX4fIcSoJYaEgUWNQUCZrJWjMAI3IwI+o77RAJutZa1lrWthQqISpAYTJs1RUcRRo5kqM2qWKxkSLUh5upVZxufzzHG+KK/wrVBafL2h7vtTdi/TNbmvE7ncR5ebLlLbsAMQihMzgiMnELoUohBzYlJgkiU1lzNRNgVaqlQFdUCi1FAMkgWJIQQOhlAyBgAgrnWVoIEIlKlXLSpWfFcigGELvTbfnMzPD36ouPjuIaA+w3fvtmMHeQQ53ntBmEKVRsFDCTreaJmSCH2vD+kly92ZZ7maR0fLqd355ytYt+93HeH3fHloS2L5twdoOu46xl0WZf1ch7jhZdZzk/QjXFZ9f0pv//hqazdz//pJy8+3x/CyP/4P/3z3U06vurPT+fzuV5WSocrCtHUQgrMosYUEsfIQWKKMQYwjiF2fR+QzKw1BVN0Ra3WCrohAzIjC7rHLsUuMScU4RhSiiEgi9W11qVM59nQKNBut+m6FFNsLSMZCCyOYTv01/v89oQVevP+dre7GZrI9tD3m2QOEiVEYUSWAET9dhdjIqcff//u+d1lfM7nKRfAeHOglBxgfZzz42infIhJ1zxfzqbNW2NErRm8qGcSl0TS9aBQp/r0/Z342kcT6UF6DBHnua7FMXTAAkgOioiApIqBCJmRkIiYGQCFQwwBVBEQAJHQDQH8Q90EzI4AiFaCBOEQABmFKLAgKDj8/2M9QpfIEqWLwQpp9fNlcQNv4CBK1EQs7jRPNdfDLtYh3GsLiWIfSyuEhM6WRc0dMMaEhvN5Pd2P65ytwVwyRImubV7cMkyNiwaDHQajqlDa6izAjOwu4IFc2R2wB9YCZdV3351vN2mfgmyOLOJtbufnVj11+6MRARgFMAB0cCAkYkZCZ2YJCVYXiimk7IshKBgJOmBdXQGdOaSApRA5REYREKYkElgilXNe13yeRoCQUvf640McEhKtF2VFb64mDual6gSZu3HX7z76Aufn0+n7N9uUtnGtOGxC6OPFDEHQqF2UYwiS+hDPD5e7b+/vvn3Muai23FYULGW5POQyu/iGlMjxu/B0dbu7frGd8kMU2HbcDSImYcGlNDMFxH4TQ4iXJ/nuV8vz7y6yST0qzRc3H5CiSHJogE5C2sxBP8AKiE7CSASAcUicxBCBCABBNQZW07k0YkGEKEhqqmaIKESJQy9m1tZcpgwGu34/bIeYQt9FcHKFFJA6BsBdcG/ZagVEQMDTijAYW5HJbOAmvDQsFWMNzAQBifvNjlGEwvQ4nt89P33/UNdirdVWDIyMNNeUpO/C8erF4bDrU7r/+n0aGJLHrvdaLlNWbYQenBM4AjiyDSI9rYfDeLlcnmeJEmv2PLtRAo5EbFgBHBGtGYBRAkQHBCICAHOPKZCggTsiIDi4EAGgVpUuiqCwIxERVgRi4igSsKxWl6JFmUPqN8fDJgQhJFM3d4yAwsA4xF5X0NVFsZrXtXLfowyWdgaRGlLO1JTMggQ3BpMQOwYm4/W8zqd5Oc2OHwpWo0DE7O5dH1PXH19tX390s99vyjIhIQUPIdXF87xKaYFACIKjOzRHT8wcwvXhvOp0aoLMRe2yKvQDEjk1EgWwWtxzYCJmAkAzAAg1G7R193ILZM1b1lKwecLmWrSu2o6pS5Epz2SNTVdr2yEO17u7h9P4vFwe55vDoRv6fr/pUmRhxhhEEFGtFKvNlCMXT8UxoZlqU+iHjij5sav8XHU1rz3LEDr2OC2Qs9UFS2te83JevfrQDwUctTXww0cHSWLmV9c3XepqqdpmAPrFf/Lx5TyfnkfvYneI+5fb9e69ryvldSjOinNW3g9yGI4/fTX+zdvZ7qU5Kbh+qEjIkQ3QzKwVQxMkMzSgD24KQU3VaikUCBirNnMLgcpSSjWWQIgMIIjNzc1i35MEVXx8ezKFruv217s0dGHTx0gIZNnz0sDdVdWbe2NGqQ1UXR0MBHh5P7mZg+5/vkvDthvW6dTG88m7vlpsTfJzESEJiEwkzCEMnZRaW2vH4z5u0ppriB1RIuDxIddzHTox1egwjZMTIpNsEgcQysKWqmnzZV5aDPvP+9d/9snw6UtpRs1NESg4kROqgZtbrSbw96QAECITEVprrXopRSiQcNUGriI051aLMQshEnhANDM1jUNPJK3a8/2l67ubl7vNYYh9pBQYwZtb1ZLNmqM6QEVsLCCqoFqqI6IgT6exFVVz+ePjsIku7Yff3c+XebhyEDTAfCq8CyEFFuYgHMKwH3Iu65QPh1237y9zZuzIg7Asl3nMc91Q13GM7MvcCD2EoYsswCY9KZBBsbYuOsrQUfj5y9vUS3MyAgxG0hABEWrxVsEaGDdEjjExEtQ2lWeSyCGMbQ41CEkumcAl4DRWLS10wrWQtgh1bWtrtdselmWZn59Sgqvb4aOf3Fyez352jjKeFi8aK3GIyCISABXRYjVzVdP5PIcU+n3/sz9/NZ3zN7+7u7s7rbZ988XHl9Pj+GSf/exFMchZHy4Tdds+9LvjNkjspH/92YtlLYTdMOz6Pu0OOzBGkm63r7m1XPzy1EHpsb663p4uyw93T6fLNkg4Dq/W+i7F9c1HmFY/6fzdv/zrj//hly+/+ImYuDM4OzPhB8V2+jCgIxFKzImB0T90m6BmxKbQ0OjvS6pSXVXNGrmTZ3IFUED/sKvkNl9WM1vm5eHuYTwtHHhz6EsuoB4lcEIWZEZ3Agc3M7XWmteWa63zvE3ChFc3XV7z5ZnmU27ZvCEagZmZm1otreTKkWMfvLqqstDNm6thP8Q+cKBSzRwaKiYIwgRC69rWNUbc9PTq5fD2ydV90sDQZ8BItd8HBnp4PtHDWx1MTMzEjYGEwcC0OZCDuRlFko65F3MyB0d0N7cajE29ZUUHM1iKNWvgBa2SFQJzBCBHITVflzqe1qJWn8fLeW6r99tOOm6qjMQ9x41ICEzkDa2h5qZqrVSvuo7zdBm3PQ37zYvX26+/v8+57XdjWxyMrLq5m5q551KncU2HDhy8+TIvoY+vP78JXfiQW6tnbVrqkoRihERUqy55SiEOQzi+PJ7L6bLauYnDNmIQOL++SvtA9/cPdP/t2h7ExJ0AgJmCmWkrCI7gZpVDkC4hIZgBOPEHJszR3UttpuaozUqpa52oLc2nNji5LdWWBlkh/7ie7pfxealMJAFIjjfbYZu2ff/69WsUrpbVuSKHbggABG61LNMFLp6nqdR8eRr/zf/1/+6P289+9nHabjCE5/ePkpA4fPu7HzY329DHzS5os/P9dIjExN2Q3t89biO/+Oj24fF5PM3LaXE0Mz1f5gA1YEuiMXDo+3//qx83Q/joo92LY9w0vjuX3O9Ls98+a93TdfSffXksl0u5fxBDgg8W0hEcEMitmZsjkjCxOAB80HUHQADADzidqVc3Va2ttLywzu6zuyt4NquOamg1M7YU3cictHlb1tm8mlZXDl3gjiQQsSASEhC6O0mU0EcZmBKBYJnaupQ855ASOC61xa7DLizjnKrFnlIf8qq1qHoDBwd3RhAixrLmZZym88IC7lbPo3BD0su6dLshbbcLDLoC3eXrWyBDyTMOQoGnNJzNoFpMna8zs4t6ALQgBAroKMxzzqruEjgmDsHNHdAB3D7YclT7wER5rq21qm2p0wV08s3oDoq+GqixOYrbruch0GPztZa55MtdBgV2vto/7vbbj376cv8ixSBN1ZEM3Fw58LDp6nW3ljWcYjAl5rJWmFbHsiz25uf7NHTfPU2qAMDDvkepvhSFZm5gyBvhntXKfH4eHy/jU4lJEMxOYxpwEL/75mG58fR6A4dPz+fx7qt3v9AcUeUyD1Fat52O+0evp6VSok2/dqSirUcr4oYGZlhNirqqEQF9YCYbORiAo4GBKihhBEM0WM7PhLUPOj4+sE3bHS5jLm7j5FrRFKy6N3KlFpPEcNhE7yMbRRUphS6P7//t43q9i5ueNwdMvTM/Xkb0JmCHY4xD192mFZ0kWKSlZlWcJ7uMo5LGXggJFYbhsNkKIlHMaq21ipzc8cevHy4/1OXkdfKMU2tlfHx/Ygjgj89lubtbfvWYbr8EN8hRIxPMKZ+7+6+8G17sb+7xmHn3eLh+9/hdHd+JAyEgAoD7h7ujZubGf78Kbm5gHwrPD2CduaGDm2tdECsz5nFSnVtOU27ZtVREIGRER0QExigAASgChcCKXKmLQNXsskoDLoUF1HKjCIyteqmNL96a932YOw0kyKymqgDEtbacKzETESGnNLAEouA4qVUmNpdlLk/35/VS22Ja1FHBVaKoqRrIdq9TnefmawM3y20uIoJBQMpEXo4bObWwNpla18JV24IAIxAAuIOZm7qqVXMVRGQgAfVmbuDugobu6IwZ3b01LydAJZL798+e1+3m+AzN2A/X/fYQUy/gkY3QqGRvAA0hbXtrnsfy4nbYCPQLoxv46ppPlRfoPvuH/+j9+/nu7fk3v/rmakdvXm/qBB9sXZ1nQNzsdiWDWu3iQBwldIf9tRurQqnO2CB0j3fnp7vLt3/3QxcigmldUo+hi69/+ullXtesr19+0t9P9PakTOu4jufTt+/p5Q4/Pe7C4/u4zrelPb0fx3Z4GF7vP3mz++mXMnS11VatEZC5tlqbVnBzCc2sNCUFYkICbaZWDVrfE9Tqc46eE3sSu73dWuvi9fF6x9DRppMUUZjAIhmT0dCbulVrKl0D0NjNyoYOEXqoHdnthq7ej3m9sH7/6s2bn33y6f/2NKkvY62gVYiiy+KACEMXtCg3OG7CNsReQnCqzb24SOekzC3SstttfvLzj7tNNLfT0zN6A7SmWKosxXUcq+duZ9sr0Nbnj15pgDPYQ7gymfcw71L7/LhsVvjXv/7lw+Prx6tr6URXtkpuzcw+hBAFcAcwcHUzh0AORq4GrugVG1jJmheBxgiEcHW9MbO46dKxo04SoxAwIlmHRmgUydSbaM0YAaAFzwqA0He8ZgctUMq2zkPJy93bdLvrDzfb/QEtcFxjzGzoFYTZmYQRVmezXjgSBSIhdARDoBCcqIGjQSDa7jc0kJqG3Fmtpq1kbZW0ca0NSbseN4MCkm3SZa6NaOaYpIve3OpxUAxl8/h+fKB5qrLFzBF8iOfHUpqqNS0FEK3vlFxZyVQbkYMXSGyBAc6nOi/ruMQBAbw0/eM/fwMKp+eJw4YwYG2BJbDEsNEG6i6Cgi1gJSCualYvY15D3N6++earb8rb6Yf3v//T6/oi1f/4v3xVN7+0q9e/+C/+h/Sq7279+//w/0z30+X78fCTa4qyLgW8EXFMH6Bm6IbYDWjmcYi5rOMll+dxXtcq/vg4laq6Aht48/HUDBlYOmRJTr1DPrFgTIIQleMcdz68zGuUt9//5I+7z674v9zY337/w9fvvud//i/+iRmZxzxpq1pyXc4jGHR9H7tIgF5BDMmgzquWRfMCWDhBOsb9R4ewTRXc1LRZAIwpxhC2m0MKXZCuS0mYglBIzMIohAklUoggETfb7nh1mCZQkGDTp3++ff1n2921osL0bvmb+8v79+NyCft954bv3z7sbzeAfv/Dw7bvd9vhcNUHFHEU5LLkPK9uVudcx6VdlkDInSghELeCWtTUJXWpD90gkowFmIEImZmRiIgZFSH2CWOsa0a0lgu77bb9Ry934lYJWYSIAN2hmhUldnTwqkoNHY0AHTSvBkWpSgfUcdhRd9uX2hZsy2UNALsUgmAQGoaNNXCDmMRVTc0ZFQ2RQKo6SGRKJBxTJ/Gwqw1db/AnED7XNzKWeX16uz5+/2u8rPPY3f7nryVVReOADrZMMx8PKQmhojbwup7ORmxIwKC16po7QWGWxAuZI2UGw+ZksU8SnNiNGhIiM0EiMISWBBitesFuryFcTsfH5UnrchzK1cZvO+H/7L/5J0gUBGCZbF2W87iOKyL220GSCHMX0zSO4+XcaErXYft6s70dGpfzcrqvjwuX7vXgG+eDDMdOIlNg5K4BOlG/6TEwRrSI3EvcRe8/wFklbjax61ioAsmm23/8Blu7/DA+//X9/ovjl//dJ3/+j19zyP/ub369Pe4MfHMIb7643exCmU9dYvBW1iUgCNjD+/fxwIdP9xYg2zLmZwzGHUpgx8ZobLDfdrtd56FicBA3BEBEBJTgSG4QhIQggZq7O/D2Ku16SMNyt/zq39399V/9XgyErEpbr7qKsZ60aqsOvuSMLWrBsmrNGcB22+jo87wuU3UuFpwGh6G1tCJqLXha1h1tEoghUCBCLmuVxBxTriu6uTtyQ2pA7qC15uVprBfzipnj3Yz35+H+D7yb1qv7p1/8g3QQe51qebprS1KE9z+ehXC3P5K5ubWq61KswsN5Cutxq/TbX/7oaGkrVEpb6vQ0woDVbLksQRKxhD4omqKhCzgCIBASIBEYKqELCgAZkDmsJBSG17/4smvfUv5RAJC0Shm3kTVU8equzbGYslnTZuNMCBIwDF2rdb2UvIxxi90VSu/Y1SqzECviMlmiTQB2QgnMyOWcOQ0hdVYzgIMrYANSQ0NvWu38eOK1oWGl/vLs01P/y3ddfDvvfz1/9NE1a3sRbX2609hrt7HqQ5devNiXebZWrfoKuaA+jfNmqrvJfvVvv+sO6eOfv6Bmy3O+/93z9U+3KFiXDCISOe5CoeYACOiO7ghoiExIZgUAIjEiGcBqnp04dbs//nwz65Ar/7f//Mttu2ztgmaXuf743Iaff3b1x5+++IvPw7GjRG2dKJhDfX57ly+Llna8SUS15PPk42Udn5dTPwQWdITeY0CKJMOQuk7WaTxcX12/fGHSQkeSHENbW344P4cIxIrmr1/uX97223ASKrHHT/7kLzP2X/24/q//52/+1X+4++ruHMwBLByH7759fn5eN91+2EjqZL5oC1ADzAQ/fnP+5V99/Vf/+n9/++23Tz88sa/T0+P999/+o3/6sy/+9JMv/vSnISUOTJGczEhbrQD+4QccgIMbCRAhOCI4I/Qh1LyWUtteDp98/MVf/oXs2sjeBHTkpJsQPgr08WvedbQJkSshtS0KAhkZBCEWkZCCU0MQ6AxDU9CmymgSQls0lyqgw4BAXNRL01KbWXGsQDrndcm5NEUiYaEBAbFWy+dc56aZbBj7l+mFfdy+Wto0+brOtUSvNxvoO0bFel5lv4lB5mUkNhbbHeLl7und2/dUS/KwwUXKJRB+/HoI6G1e16plKdYMCZgoIIMpuIHDB2gHgREAAJwI0RGATDsiA7s8nIk22LMc2smAGsoUtvV41R1v5aO9B2t2joBCZAdMTAE57LZohEDSE3KI0qU9ZyrWvDVj0CSpNPW1oupujxE5K05Lkcu0tglDY9bTNI1LLg2IY5TIG2sXzWMd3y3rWora4r55ffPF5190g033D9O7+6XkDbX9Aeux15nq8yW82SWMlzETc4zhi59s3v729Pj41SHxq618vLeNXrb9cPPpSyrl+Yend3dFIQKzBBFCYiZmq6Ct4QfiENHAAQFRkAzdsOQdoyO/ffvUaDvyhv/Hf/bZaJt37eZ7+fIZXky4X/OqufSkyTwC9kmGGCPS+rwCEDi+/eZOa+260G8CGdvq0mKyeDUcpLJXeHo7SkeUaHt1/e796e9+/U2FMwvtdvu3311qpjhsrUJblYt5aeAa+7h/cXt8cUuNzg+XH//wQ+O2OYaXn+2D+6aPm0hvDvRyU4f14XpfN319+dmr0tZlHv/BF4dhmW41/9f/7LMvf77dHnRdtRpX73/zu/Hrr87v3i4kwp2EXWioBTS7KpoTmBuAARiiITi4KbmTMzfyTLAeU+sDBC2Sm5zW+G5NYxhaTCQUBVLEbUq2GpgyRS9LW3W+5P3Vtt/1wxgJdD0X2SQi6lvEKlipsQVjYKBg5/HcoL16s8lFz+fS3Tidl1r9/g+jDPHl8QpqYfeOmDvCwMqMIK4klKU1npZCAAkZ4WqQxCg5H7bUR/cX2vlJcuuvd8+d/n81nUmvbVtylSNiVqva1dmnuvUrsrRTaYyxKGQQCMkSHbeALl06dPgP8Hdo0KUUQgiTJhFpZzrzvbz3vftuce6pdrmKWUQEjZ20V3fNGTFHjG9EmXi83UA/Nga8ljHx/hjJz5XqSW1WBWO6VRu66jT4UyRAgyQKCqCnya4qnIbBoHj6UMgQKwq3EnXYSRrtdmrfP1S/vg31zFfetJWcL20dXNOGu48lFjZoh0MZd8PDzW55sbh8sW6X8vjh8e7bO6s2VGbuGmYriPttf3bWheC6S3f74VN8z7OzdYySkxuZNx92u7tvPv3l8elnVz/+yVk67h3IqnK1R1I57KfjocRUELUBWAn0n/bJ8BTky+vKk+rUL1GXnVk+99s3m7zZdlfV00ZDwu/+11fpGMuY3/760zbJh0F+/IdfmGp2SK65DIuquX72pGgsnI/9iNZYY8GQADLISej9/0cPiAyfSB9C0UGZXTnQ/hEzm8urH92Ns9Gur37/sunEyM7mgWOKCaZjwiILp+fr9unT1WffezL2w9uv3i1WdVOH1XnXtE1b14u2nTfLyjeJ0VRkKjw/n/XH4353eP0XH371F1/99pevgQyDVsvaFLc6n129mMsEyIaKGw+8uU+//Mvb7UPuB7bBNgHXS1zVclbJXKY1lEakInP4NO0/TeUhGVaj+vjdPme2tb148cz6UAqKramet6tzDt2Q8TCqb4L1BkRzLFKg9hWqVSYuAAwowIVBVAUUGARBTVESNMUEMhaNqfOupbKw2W5Gr7OqXbU+ZEsFNUFRVSoFnPEEqKkoCSKtz5ePN4/5GEHBBuOqoEUdkfNkyZJga9GEggYYkvESKp3KMQ37YXfcP6xsPevOfd056zFOUYsBoUhGskzZDExtHVzlFBKAEkhtVYwospkKWUu1YeMEMRasF9Y41FQAARGrrgmz4uZ5d8yCDm0YkxYQAYsGiYC5IDlC44wDFQARBQYRYFBSVVBBFUAFYERQwFzAWEdURQ1g2Bkx3/+jP1l/cfXqbz5N+QZL7wW8aayrXV2fr2ZtCPdvNu9+++7m29sXz694yEYwLG2mPEHyDVBVwI9YY+jcxZNLVxvW8vbdG8K4WJgf/GCdJt4/JjVatbS4CFbUWCyswBWrLWCzcVx5e9G8+sHLZy+vH9592t88Pry9m3Z7GqeaEx8iF1GPz3762dnn1zJfNp9dhmeXzZPziGGIiMYVMlKF1x/3u1EPE/QZFe1suQiNs95YVzdtW9U1Ahqik/sZQQsIiwIz5mg0ExcqBUFUeEhS1Ga1kktbu64J5u//838SOlTux8MRmWrfehNAdOgPi85blO39fbO284swjJsy9p70+tVcKB3jfrV2vhGtpolStkksO4fWYpKeThpqjmBgdlYVQt8Y5zFtRhRsqlm3uLBVkwHq2geHhrcNRhwPN796Y6VvG3YmVzU0LZ4/X7SXrenqxfPnpuqmXiObqXi3fj5xE7na3qdxgsjUT4zkDYar50/O1qv5om2apqmbxXxBaFQhiwqgIKpCEWHmzEWlQMlcMggbLMBCAC54QcNqM1abTXr3cbTVWa0xpsMeGBBABRGQC8fjEXluDCqWxbqtWni4eesVa+ua2o6AaDL6BJ7VRmAVgEh7Z+dEUDduKpwz98NgK3N2HXZRrAMQBmVhzhMrGbBWUMmQBTB5kDLmzFSmuoa2CdN2sgIWqFo3CqZEAvIADiAXdixVcTPxBpxJJWEgG2h5CWmU2OtiPqvaxlUebTDWBe+5JGEup/evgvKJ/0UpCgoAmJMIsSPlzGo41FUUU5Q4LA4ypGGywzHKPumez3/wXLTst1uzQC653250ujTBGckvLp6eX7dv7KH/FOOuxDzZihe1fZAPDqWdu6f1StR8GrabuCc13ayVgnHCb357Z5FOP3zXufVVh3NJvd7f3dmLZeMXddflYcrH/ebrbw+ZPeCrL5fzC9et6PFXkI6pHHmz80VNFEvvpuDBGr968sx27XZ3TFNRstc/+rxe+Hrh28X88Wbz9lfvgZy1tp7NBL0w7LbHNMWSSwSIU86xaFQFUsReivHo6/qx3ztTfIvb260KnlUupSmZqvv8OS9bMzw3X/70j/IhcV/qRWUNVsE1ra9btzyfEfvDw/ThN/fBI+e4e9yIIDm744363K6sqUaoeHJJjCbMxtiBp7HENBVFsN7WAavGGkvbT1kZAcgaL2JKwcuXV21Xq8r+9jb2++cv/Ows1HM3xjTuh93H/fBuKgfQRIce1DXLl09DPTM+kCffBjSaY9/OZ4v10hBqLvkY69kCwJOtXVUZb4sqkVXVPGUBUEJBRYemMnUX0FsmYl9sa6qFF5frpVs/aVBz3dir69VYuAD4i/PEmhXttI+mgBPM0+RsqLqaUHzlzy7Xt693++0YD7q7OyIMY0yhrV3nH4b9cu4XVSuGhCBh2ciuMtXKn+vEmXIWaXwXgl2/7IbH6fgQlac88rjLdWgVCax6b6yBYYz7/c7yeP7yQuKQhvHw9Thtx7wZqz06Im9pnKSZue7yTHpVVjXKkiCxxKle2Wrebe92fc/TMeZLJQqzVTVNU0wpj1H/v1kVDRIZErWGwGBwDibOQ/HG2Qp8i7UNPmh95soQKMuio/uBx6ioGQAE0LpFmHf1ataO/eNhHw+bdNg9nF0unjy7jvxOm/0f/Ona4g7gYEJcXS0X6xXffcI6H8bjA/Shgutl+yYdosKTEL5cdNrKvd3EKClOY4pZM3t+9uMliCcIosSsIvzh5p6cjxGmMXYeyXfD4TgN4/K6w2VrRg1Hy1NOw5TG7JYBPL/77fuSZH51Xo8Jkj58HOf30J7txPgyQon29qtb4yoT6mrRhrap57zd7rOWamGHWLiwEbUW0QK6HGp053a2WDGP47RjEgV+7IsCOOLpeN+SYLDj7sEckAawpq5M5U2gBoMyCfucK0I6Ph77/SRFL6/PhzHGOKrAMR/yIWUpDoDQGMCG6MI0oVow2MSactYCztTHnPuRUYKz1tVSKtJsidFVVhgAME2TU1wtzqCiQGW3jduPY9ynV18+UUylTPtjX1Ipham15GDqe2fABnKOyzHxpEowxahHWj6ZVY1HdgqkYFTg4+sPFNzy+QqVUA0IEqMRAkYR4SxpykzKqByj8FTSEY0I6ljEUyXqhjFZkNawk4Oztq3ImqpCSwratEHBsHjgzjtzfDgOu2gtLJbLDPejIBTcx73kggYtGGNsBa5Ds9LqaXg6KP42bvspacEVNjkfhqm0UnkH1ujxkEERBEJlVQEJh5iM8WfLmdfKcN49PmxuUz5I+/vLmA5Zpu3+WFgUsZ0HMdBvjo6QHDkqY4o5KVVt4swTXLahrjrnqhSZk6ZRP37z0VahXc9AiBQkgWECBi6qLEW456kgFyi97lEicqxWNRiMIsbXZHToS1NxIK7l0LjA1uE/+zf/Nt895Ju76xfr9mw2v142nrwxDbmv33za7w467ZrZVHfl6mWYdMqQVxfXLqAN8mK+/Hh78+e/+Pnf++Ofni3X1q1/+fHrIQ6fza+Ffcn4eLfTospwf5/KyDJKPe9sqHxodptcEjp2/f3Gkv7kjz+76NrOmfjx9c1XH+/e3L76yUVh6nt53Jf9Ybq52dbWVd4sF86Aqer6s7/145MZ1NlO2LFYNma5Xl8+f/7d60/Hw9gfxnLyZCV0wQDqZnvIkouWSKPxYCuoakVk1Fw0C2l2VNiimhqMLRsrY0CtQuWDt9XM+1xxrlk0TXnqI0wQlfuUVsuma+nD209VS90iuIDCBGpU6bBP4zS8+uGz2i272RlgJ1IT07lbjdKUUQ0aI5YnQCVQrHzFqOI0ZU45phHTACrGkWnmsxBMaDrribSU7b4iXl/W3ao97Mt4P2ZFNeQq2zS+csYaHI88ThP+9ubEPK1XAa1FawksFx37sW4rRSylWKYcud+OhiqyhIiqKALGIhklo5nTSd5jRlUwBoQBVAuhgGXwCCoRppjtbF3bVt3abN4dUyyHh+GYJ05D3N/9gz/9k3ZZ9dPXV0+b+dIKHTQjsMlRP33q37+7/xsvf9rU6y+/+CJUlyI+p/yifVoc//bDN84qKKaDGLLGuqZ20BAgvn19l4Yo04BYe9/4VbN6ftnOQzOvdXyYjo/p/mE5d09frWkxP/SHzWar88p1/qLqzhaNJ4KhbB+P293xzce/bpp6Nmurnyya1axqWiBfItzf3HXLVdtVp/ddv483b+6rYIi88Q5VVMRZS47Rcj/2eMJeCxGqQ7CiopKFASwiAlE6TLlP5vqLnwQp53PvLNSND1V1drFo2kol+yoM+/7u3YduBkj5//7v13mUYP1isTqbz19eX03DQcVdrn+8qF4NB/jvf/6zeVhYrB4f++AXwc/atm7aeXDd4+1WRKwzIVRVXRsb2lln0GzeH5eXi3ZWWRnN5oPZ3XR+P7towmr2iz//+P79+Dj48y8v60WDBmZNBQr3nw62rruz2cXz5fLirFstrG1TlPEYiSjHEoes6HLmmDh0lfEmnVxeKQqVOMUyJeFSVJjEVcYYC6JgDCCJAqEQKZmMgdTbkWxzcbF6+cwOj1MPcjBqjYKCFFEF593qfLW7P+QY08gAZE9YShWcrfI4dXU3X8zf/vZbHqmZKRvLXIm0ogHBB985CgYtkVUmAfTWIyGeooMMGq/e2yQ6DiOzqirHHfHBY1/PhIzkSYbRCvnurEMxOebjNtlKJPNh5HbhQlPVc+9Ca1ztoYITWEcIACjImQEJCqgoGZqdtcf9iKmo1zFNHHPwRq0qCAICiOoJlQJQVAAERWVQVMWsxOTUVjbu5O7Yjze7z75cAOo0iSrPF9XnX3z23/79/7i/uV8+9c41i1X3w79RLNUI7uO333VX5un5k7/66m7XHrlqzi9aFv/06qdVaI0166UBBWHZD4ULKZv12TppniTGVEphIHGVLUmHgVNR5pz794HuF93B17Lfxs2mL/ZqfracX65vvvrrx9vN22/uFo0jgwOCvfDVomlW1eJs3XTzMhllo2yNtcqgBSCJgpJgGQt5c/lsFbowpQSVDHwsaVqvlxk0iahkBEFkFD3ZeEUEVAiZRQoaBjv0oszmz/7Vv2g6p1KurmoEGPbj9u5BSnr6cpV4XF63P/7j7z0M/Zt3D5+2JWktVN1+t6kszVtcLN3T55dPr54/bG77485imKbheOjjlOIYc8x1NQMmTgyqSGS8H4cizKLF+JCibD4NF09nbSVt/tDlvY9D7uX2xn346DdwHRmGfv/Nb74+Ho6h9rOlbxb14vzMujpO+s1X98qNga5u5mQckilCikaNzQKlaI48jjkOWZm3d4epj7OLeQQpRneHDWs2DjMXJUDr+HcZfsCiAqCWUpHC6rQ6vN/ffnVjzy5bTMO4IbRkVH1NU1TlEqcJSVxFi7P6/QNvt6NpqrrDoMb6WRG7P07trA5V3VoDaYCMVT0/bEflspg1IgyqBq1BJiRWASACJEBEIKOnkAa0kKZx7GOXY8olFilixugmrcV50VTGnjW5ilbnC+sA0TA4USpFc8bxyMd9ajsma4CwCAAoErCK6Ml9XRCBSFKfUi7Hx0EYXFX1PQIB0UlDJz0dPTy9W34nsCsAABgtVpLjZP70n/3j4/awvT/WKx9mYf1kPl81TeOPj7u3v/72uNk8eeL3jweOMjs/C22wwbx48hlidX8fCZ2Kscp5yIH8Yr64+ebjuBu+973PkFihABMoGKTEKgJSdJoSohjH6Otc4PAYWYbpuPPDVjZT3MkmVrF9SlefTc4JTCXt12f64vvnv/d3fyRVNYL59psdkQuhev7ZE1Xoj71kZhElSlEKCwuzsoAIwRhTZkbR6SEO98Ov/+o1kGnn89A5X4GhSUkAQRgJCRFJCyIiAmgxjqwF4uH6sv3i87WN7z7BLge1004xF2Tot5OkTJy7eeWQ9m/vFo4Wl129rI85To8Dn4ch523EWtqpl+1m4yrvAilEZdWCJUsqnEqBFEFBRWPOqICAwCwqRcXVAFaFkqtNOzfrs2fTh02/GdUvi3S5l35z611erey4qe9vyvuPbyLZJESzs13MfR6lcgbJ1tYuKwiWLTqyKsoigACqzMXWRkATcLcOdUVT/zB+eHh/9whnramTadg7IUHDCugUQABOTmlEUlYE9VBoPPA0Wj7sKZJHk46FVL3DOBQuxUiZLVqHrr/fLq5mdTCOYIqJ+1GXSUHZGHBdznEYDgtfWyQAFYaS5HgYkhRmlVxOPvZSmAAMkLIq6Im9BQSF4j2FmlzTbnQ8ZGmr9RB9f5iGw9bOMCzcdtL9vtw9Du58bqrKNs1x3IxT9sfBeevVRynCtmRunQFVYUFjFFRVKFhEyKJNayqjq5krh77vE7vKErrKGmVUtQAsCgBI9LuzhyiiCOoAMGXmbA2OVUWA+OlT4rGu7BkzMRi2+fOffD9A+Z//7r8Im9xLuR+GgXNB/1wu5v5i1X1x/TLG6aYmZVPAE3Qx6sP94Wf/9edPv7hYnM9yLqcpds7ZACKaklQIjXVOTS4FhmHm3Mzg/evj698ct9vyD//oR+9+/vr//u9fdefDNbh2Xv3qrx6mMbjqvHra1vOqnVfj9n7cHT58+xhTEYW79w/dfNUtzl48WyFgydIuFmgBpJBjtYoGOU2u5t/7O+vtrtkfyzfTEpfBrMzm7q8rlK4K45EB0YVQYgRQb90UJxHxoYHEeWRr2mYVbBUM4oZFII/trI4RHm4O9x8fAmkpZEOouoqdNt0csaIEPMaSx7v4Xg0R+oxQRIdh/OzLFxeX67fffsVc4jGWzIbMKV1ZFQsgRwarrrYyJJi4axtObveoD7/ZPz7mVODhcb/Z7/s4/t4ffW89l5mfpvTOVfWP//DLuOCk+eH9XcnReiACVs1ZDodtTKXvJwPJe2+NGyYgBNKCHqmy9bqNQ0pDNuMkkd0k490neWzprKvWC4vjUHokfwrxASUEKFmUDBD2YJEsWLAF/aJ1l+fusDsMvUzj2J51oJT66fHT1htQsOScqzxarkPr/XwY95yyxPLQf3JdU50vjEFhOe77J0+eyRXf3L9R0TxlEUUCRIAsoqiKnIUQDZg8ZI1cV1VJJhe+uYmF0Tiz3+6G/lg4rV9ezUOk4+2UplDr888vPuI+7Xbb24014jyRoSwkIFMaUuZxjN5TXTdN3YgIEQUDDOpqX3Xz4aBll8vt0YtAEbjdp10qB7m6bIE45sfaOBTIRS0ZAGVmsAhkR3BgECya4L6fhmSxzLxiLoeHY7M0zpeq1uP9vt8cu1kdWldUbz+Nxx3vN/HTu7v5fPW9H/7o9a9uc9bl5fz5+hmO+L/+48+7sxYd7vvBiqNsQvA5yThkZilFUypTzIBgLB2303RMEjkrFzTr6xcvv3/14os1br7jw8FEPrzbvP4fb/7Pf/jq7Yc7Qa4DjJanMW7fPK4v5vNVF1VcHaquDg352tpgcsoiYiyhIWPBVfibX33z3be3d/d5c6O3H+N/+q//5Zdf/fq7d2/+7IurtH94/c3ry1cvjEUN2WZFRaIAYAEsogKpEiRTFwzJeEvUHnb89s3x2aWPo5asw24InX/yZPVuN8SYyeDQc4zGuWCNMRZd7Yw36NC3jjzG1A/9PqdpPp+VnMZRrbF4MsmyipQT2ViypMQoDFlTn2ViYHHOmMZZ72vbGhyAh443L6t0viw/e/tue+gPu0MpzJKnfKBSKwuguApDY4JYJAOEacoABtVKJDQqWlIcjK2a5erJ968OfdoP4/xi0cx9oPDC5c/m+vmfnMsbSH+11+PA1sCyVh1IhQiKgCoQGRRBUEIUBCC0dbOYxt133+5bb5WRi+m3ozF4+eXFw5uP+VjI6HBkULp6PrPekiG1wQTMksLMK0mMw27/IAnOL9bMZRyyJ8fAyoULn7gtkZJznobkrFWRlJmjIKALNjTeVZW3FR92edyfy/ZJDQ7gP//83UOf+sLOOkRJOjrJoEAkLmBoqGJrnAcilv7EHxcEgyjKZUyhonrhX6yf7/vxL3/x9exZ3WhYN4vfb+APruTlPzj3i1jt7n7WDznUuGwABlCxoEVOPejvPFZEp9R2Nf/yX//TxWVt5m21nKurAM3xcew30+bd7u2vb+OYf/jTpyIFUNfrOaEAs4DdPhxf/+b9lIqr3PrybHO/H6dYL2fqAMm21cwAEqKcNK9hOh76oY/DGHMu05SHIXNWKQpFUx/7zXT7fuqPfUnTOdwt3HBW968AryqPGFbrxfn14uzVQqWGTJ7s+nJW14EnCNYHa60F5501VgGdM8EZHWE6jO9ef1ycNd7jmA/XF8tVY5+m+Ad/u/3ybwc7/h843FWO+OKlnTUpBMvJAjgQATpRxiACqgDmBMHauRtT4L425C2REjiCRnLWzCkLZN7vc8rArNvHozXOGKveAhpjwVcOCcd+TLGoINIkxEhkg1FhQCFSIBHgNKUUS4psiABQlayviBDRWINojPXGN00dXE0XHndWD9fJHD7oWuQY2rrtqrYbRwLAqglkDAIGG0511TsvAiwIwZACaKkblyOUY07bo01mjoD9kTFWDZhg1Li0KVCCmwVbklVnxBowhILKhKxwaqmEQBWKAQuAtpoeajGts+qIgrGdu7xalSlvP/ZCNPb87rujc4II228e5l03m7VhVYe6ni2DbZxq2d4/cvbCMA5bJLSG/Ew5J5VCVtAwUI5DimNOsRiDRGiscY23jozxs86G2vpl65chNLQgW+WPlG6W57zu5GIQpq6aL7r5WZkKgpquQkQVrKsGUJQEqOYiohIq4lJyjMtVI8kZ0PH20TpcdwZu70eGxk2xaH+0OjVYV9S1entEQecCISESQEYSVGA+CVWiqJaQkGwTDywOXJicA8wGpi6AenWm+iG82jwMH7+7+fz7q7OLuqToMFiyKU+Aagjy4aRbMBpBRCI1RpG0H48xpZIT6JgOU9qn6cMUI2fR2Xkbal8vQz2bed/U9Xldqffc1mOhIgVusml01bIfPm7fP6RNTPOXL5vLeZgty4c7LmW+8t6BJTEeFa0SEHjFrJBVVQg5II97R/TiOpiULWHX2cIJUKtXjVi6t1i1HSIqoJm7GkhwzMCCmE1VWFkRrcuioipE5hR55zR50KCaxQMyYYHIkjkeuWlDZshvTqFSBIZUkUWBQFVF5KQ9gxpURVAyigaAtBhUVSS1wowMuYyHScU4H+q6rTrfdD40tbNVsM6AkhDkHkA4aywIYqUESZUKGKvtvK3aSgAR0BA6dzL8AhkCgt+56ciAOdHbSIigBUW1ZIlJENgCGCavaCkRsZpkZr/bCGCAFIMUUCkAjHTCsEGhgClITNYbh8Zab5LLyRTQeEoF4rQ79Lvx3bvd+odfdLOAVB8PiFRCYKvFAlYzD0DMoIKExloHkpHEOMlO1RLU5IAsmLmY7YRJebM9tPX8bLE4v7qo5s53EFxN6mDKknwCAFV2zEYjeY44RT3TuvW47nR5VUlrxxidASIMjksWVqoqA6gKIlEdofM2T8oAWdVYw9P0cLehKRmAQ3DtyvmOOCS0DdiG/UwLaFGnEYEryaicFRWRUQpCYc5YRXAThdpgsGjxlHejUHlEQ47UOHAN6aVXHUqMARGill6Csf0x5WFcqZIz5EjZWWOr4CoPiMjOsScxaiH5sgnStyb6c7+sF4vZuWvmzdmKK3OqLSSEgkSowgAqWJ+SJk0eO5NmfqqnYYRMlKtZKFXoh2gNGBEUNmQBLQMZQwbBAKMwqDgwWFSSCCu60Jwta3vKE2cliKxyEEOJSNmIIWfIASdVKSpgDapSmTqdUIXUUFnuweZqbryxgWxhEEFQRAYEJRADgBYXCz9YtZnrYAkAihq0nFMcE5ciyABIAIR6glAA6WR2UxXDo+djrceK1FprW/vqe09M3Ziu3cfIjMpWsiKKIVEWVRUyigCqTkuA3GAiSYiK1tqqEueYEyESIYISICIBIiEZg6gAhCBCp3ZKgYXAWKLKu2KAtUA5XToCJKAgRJkMGosIKr/T7YyCgKDl7KC0BuPkVInWxoAxSvYw1JPaona8L2QKhAylWE+L8zllqw6ePMOxn5Rz5euRogpYh2olY6ka7406y2isKKSBlZOV2Jb7pdl3LnZutu25H/Pnf/hSLUae4kPJagRdlCIoBEmBVU5Ep6JIV6a2DD4fxigFG50vcXGuDDGOHo0hMUCgSAIe0RgggyyE6AisKYyO2zqnKAqIBssUsxRbgUFrgFDxVC1rIgABSbZxYqgQjQUyA6vDaVvr+Krj+nHTT1X15ZPbQptJ7fv4xeF43B72521cndH1VQ1aqyHxYTiIYW0XOSeZ0rS9Hx/vj7vNsFh1riVb2zIkwZKRgDyQAcstDBVOSxsrVFR7nNZvb+27G7uX2/nMzGZQGYcMxzgogirnnEBQFVmRhI2kUEYoKRfY4urBzu7g7Em1hCnywB4okDUFCAwZ4wwRIRqsqrYcYzkOszmopJxHqDwjMIJRr2yV84lpAEJmJAUugIRIxkQEi+iRyRZ0I1ajmQrVP7jQ8PU3sN9dp6/cFOrR2k/92fGIh8N0Pc9NMIuZz2IY7YQBsCBxqI11E2JJUaeRxyEftqlhV4FhOoXmGDCEpM6poegpBmREKugP0+r2gO83GO5SmdAkqLtWFcqU2YKCQCqgRpSKglNGKViyMCR1W53vaHEMS3UVxqKxOE8ewYgSGgJDp+A+Sz44PQwcj7OmZi6jRvRVVsjMQFaFVYRZRAABQRAECp/uDkARtEqskSgSDlgzzY0LMEdffzD+sLQPmb2Ozv7sF3R2tr6+Pvu9PzzOfe94m48mFTuIjwfDSYKBtgWixjozDTjs+Td//bGtq8WsrTrjK1e3pmogWGm51JQclENPsV6Obv51+uKRfX/m5j+ayeH2/YdvcRrQOerqCCMgO5WiLEoM1kPyECGzr1dYz3/xbj7MF/xkLQHhONrxsQ11IJKkJjjEkMV576mxmiYTb+rpuy9+8DdLkc09bspiN8DxYVd2UZNAkZNKbqw5rfdR1sJcMucxcUk5jdGYXM3T0klzWdpwPJ+t/pFr8sfZVS5fHegw2lBohmbtaPjmO4HepnFX/KjUE05ZWIpqMjk7YFC+vJotF83HN5sQfNdWYNgYcEJVLCFLPWVrs6Ieoe7xrJez/dhOSYVlGIYgilWbGRRIJxBDCMpy2omhBYpAycBJfNzaMcOHm+NsNn/+2cqYUXQ0Rk46t5ymKIgRSMkJmmGzW5q8uvYE/fFxePvL+xtpjtnsphQKWwWLRhgAwbKCiII6Y8iSITTWKDsVWwxGpc3wUIiGjfzPv4ivDF2ExatlhlmoXiQbhFq0C2OGD/ucekq8I50IewcnXlFhImarXFRWZ7O6avRorbV141MZVQoJh5KDFs8TeRGiAcPRzY9wNkwh5yySpnFEklDVfMqvTUIOEfAUv6QKBaQAI0hUtz2ah50+PAzd9/XyekayV41Epz13eNK7BTAhEhkFM+yPqxmv1o50GraHm9ebb3U+QsgIC4eVAbRU4HdbSk617rQbwVhjiRAY1aLRPsrhYad+NiX9y7eTrlBW7VVkbGpf8/8D9Ma9kQplbmRzdHJlYW0KZW5kb2JqCjcxIDAgb2JqCjE5NDQ4CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago3MiAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjEwODIwMTgzNjU2WikKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMi4yKSA+PgplbmRvYmoKeHJlZgowIDczCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMjI0OTAwIDAwMDAwIG4gCjAwMDAwMDk4OTIgMDAwMDAgbiAKMDAwMDAwOTkyNCAwMDAwMCBuIAowMDAwMDEwMDIzIDAwMDAwIG4gCjAwMDAwMTAwNDQgMDAwMDAgbiAKMDAwMDAxMDA2NSAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTcgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAwOTgwIDAwMDAwIG4gCjAwMDAwMTAyNTcgMDAwMDAgbiAKMDAwMDAxNTA2OCAwMDAwMCBuIAowMDAwMDE5ODE4IDAwMDAwIG4gCjAwMDAwMjQ1NDMgMDAwMDAgbiAKMDAwMDAyOTExNyAwMDAwMCBuIAowMDAwMDM0MDUzIDAwMDAwIG4gCjAwMDAwNTMxMDEgMDAwMDAgbiAKMDAwMDA3MTY3MCAwMDAwMCBuIAowMDAwMDkxNTY2IDAwMDAwIG4gCjAwMDAxMTAxMzQgMDAwMDAgbiAKMDAwMDEzMDg4NSAwMDAwMCBuIAowMDAwMTQ4Njk0IDAwMDAwIG4gCjAwMDAxNjY1NTUgMDAwMDAgbiAKMDAwMDE4NjA2NyAwMDAwMCBuIAowMDAwMjA1MjA0IDAwMDAwIG4gCjAwMDAwMDg1MzQgMDAwMDAgbiAKMDAwMDAwODMzNCAwMDAwMCBuIAowMDAwMDA3OTA2IDAwMDAwIG4gCjAwMDAwMDk1ODcgMDAwMDAgbiAKMDAwMDAwMTAwMCAwMDAwMCBuIAowMDAwMDAxMzc3IDAwMDAwIG4gCjAwMDAwMDE2ODcgMDAwMDAgbiAKMDAwMDAwMTk5MCAwMDAwMCBuIAowMDAwMDAyMTI4IDAwMDAwIG4gCjAwMDAwMDI0MjggMDAwMDAgbiAKMDAwMDAwMjc0NiAwMDAwMCBuIAowMDAwMDAzMjExIDAwMDAwIG4gCjAwMDAwMDM0MTcgMDAwMDAgbiAKMDAwMDAwMzU3OSAwMDAwMCBuIAowMDAwMDAzOTkwIDAwMDAwIG4gCjAwMDAwMDQyMjYgMDAwMDAgbiAKMDAwMDAwNDM2NiAwMDAwMCBuIAowMDAwMDA0NTE5IDAwMDAwIG4gCjAwMDAwMDQ2MzYgMDAwMDAgbiAKMDAwMDAwNDg3MCAwMDAwMCBuIAowMDAwMDA1MTU3IDAwMDAwIG4gCjAwMDAwMDU0NjYgMDAwMDAgbiAKMDAwMDAwNTY5NiAwMDAwMCBuIAowMDAwMDA2MTAxIDAwMDAwIG4gCjAwMDAwMDY0OTEgMDAwMDAgbiAKMDAwMDAwNjU4MCAwMDAwMCBuIAowMDAwMDA2Nzg0IDAwMDAwIG4gCjAwMDAwMDcxOTUgMDAwMDAgbiAKMDAwMDAwNzUxNiAwMDAwMCBuIAowMDAwMDA3NzYwIDAwMDAwIG4gCjAwMDAwMTUwNDcgMDAwMDAgbiAKMDAwMDAxOTc5NyAwMDAwMCBuIAowMDAwMDI0NTIyIDAwMDAwIG4gCjAwMDAwMjkwOTYgMDAwMDAgbiAKMDAwMDAzNDAzMiAwMDAwMCBuIAowMDAwMDUzMDc5IDAwMDAwIG4gCjAwMDAwNzE2NDggMDAwMDAgbiAKMDAwMDA5MTU0NCAwMDAwMCBuIAowMDAwMTEwMTEyIDAwMDAwIG4gCjAwMDAxMzA4NjMgMDAwMDAgbiAKMDAwMDE0ODY3MiAwMDAwMCBuIAowMDAwMTY2NTMzIDAwMDAwIG4gCjAwMDAxODYwNDUgMDAwMDAgbiAKMDAwMDIwNTE4MiAwMDAwMCBuIAowMDAwMjI0ODc4IDAwMDAwIG4gCjAwMDAyMjQ5NjAgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA3MiAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNzMgPj4Kc3RhcnR4cmVmCjIyNTEwOAolJUVPRgo=\n",
+ "image/svg+xml": [
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "text/plain": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "def show_patches():\n",
+ " fig, ax = plt.subplots(len(patch_sizes), len(class_names), figsize=(len(class_names)*2.2, len(patch_sizes)*2.2))\n",
+ " for c_idx, cname in enumerate(class_names):\n",
+ " for p_idx, psize in enumerate(patch_sizes):\n",
+ " patch = patch_dict[cname][psize][\"patch\"]\n",
+ " patch = (torch.tanh(patch) + 1) / 2 # Parameter to pixel values\n",
+ " patch = patch.cpu().permute(1, 2, 0).numpy()\n",
+ " patch = np.clip(patch, a_min=0.0, a_max=1.0)\n",
+ " ax[p_idx][c_idx].imshow(patch)\n",
+ " ax[p_idx][c_idx].set_title(\"%s, size %i\" % (cname, psize))\n",
+ " ax[p_idx][c_idx].axis('off')\n",
+ " fig.subplots_adjust(hspace=0.3, wspace=0.3)\n",
+ " plt.show()\n",
+ "show_patches()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ncHFva-etrGT"
+ },
+ "source": [
+ "We can see a clear difference between patches of different classes and sizes. \n",
+ "\n",
+ "In the smallest size, $32\\times 32$ pixels, some of the patches clearly resemble their class. \n",
+ "\n",
+ "For instance, the goldfish patch clearly shows a goldfish. The eye and the color are very characteristic of the class. Overall, the patches with $32$ pixels have very strong colors that are typical for their class (`yellow school bus`, `pink lipstick`, `greenish pineapple`).\n",
+ "\n",
+ "Let's now look at the quantitative results."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "id": "zTOoR0qWtrGU"
+ },
+ "outputs": [],
+ "source": [
+ "import tabulate\n",
+ "from IPython.display import display, HTML\n",
+ "\n",
+ "def show_table(top_1=True):\n",
+ " i = 0 if top_1 else 1\n",
+ " table = [[name] + [\"%4.2f%%\" % (100.0 * patch_dict[name][psize][\"results\"][i]) for psize in patch_sizes]\n",
+ " for name in class_names]\n",
+ " display(HTML(tabulate.tabulate(table, tablefmt='html', headers=[\"Class name\"] + [\"Patch size %ix%i\" % (psize, psize) for psize in patch_sizes])))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "3UQVovAQtrGU"
+ },
+ "source": [
+ "First, we will create a table of top-1 accuracy, meaning that how many images have been classified with the target class as highest prediction?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 145
+ },
+ "id": "Df8bwCKPtrGU",
+ "outputId": "e8ca8282-4136-4a76-adad-73e0834676bc"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
Class name
Patch size 32x32
Patch size 48x48
Patch size 64x64
\n",
+ "\n",
+ "\n",
+ "
toaster
48.89%
90.48%
98.58%
\n",
+ "
goldfish
69.53%
93.53%
98.34%
\n",
+ "
school bus
78.79%
93.95%
98.22%
\n",
+ "
lipstick
43.36%
86.05%
96.41%
\n",
+ "
pineapple
79.74%
94.48%
98.72%
\n",
+ "\n",
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "show_table(top_1=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "kA0KHzEwtrGV"
+ },
+ "source": [
+ "The clear trend, that we would also have expected, is that **the larger the patch, the easier it is to fool the model.** \n",
+ "\n",
+ "For the largest patch size of $64\\times 64$, we are able to fool the model on almost all images, despite the patch covering only `8%` of the image. \n",
+ "\n",
+ "The smallest patch actually covers `2%` of the image, which is almost neglectable. Still, the fooling accuracy is quite remarkable. \n",
+ "\n",
+ "Let's also take a look at the top-5 accuracy:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 145
+ },
+ "id": "Q33pdIaStrGV",
+ "outputId": "5866a208-5b21-40a4-8b27-71eed211eda8"
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
Class name
Patch size 32x32
Patch size 48x48
Patch size 64x64
\n",
+ "\n",
+ "\n",
+ "
toaster
72.02%
98.12%
99.93%
\n",
+ "
goldfish
86.31%
99.07%
99.95%
\n",
+ "
school bus
91.64%
99.15%
99.89%
\n",
+ "
lipstick
70.10%
96.86%
99.73%
\n",
+ "
pineapple
92.23%
99.26%
99.96%
\n",
+ "\n",
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "show_table(top_1=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Fzz2Jhv0trGV"
+ },
+ "source": [
+ "We see a very similar pattern across classes and patch sizes. \n",
+ "\n",
+ "The patch size $64$ obtains >99.7% top-5 accuracy for any class, showing that we can almost fool the network on any image. \n",
+ "\n",
+ "A top-5 accuracy of >70% for the hard classes and small patches is still impressive and shows how vulnerable deep CNNs are to such attacks.\n",
+ "\n",
+ "Finally, let's create some example visualizations of the **patch attack** in action."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "⚠️ Highly recommended to run on **GPU**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "id": "Q6P0QrP4trGV"
+ },
+ "outputs": [],
+ "source": [
+ "def perform_patch_attack(patch):\n",
+ " patch_batch = exmp_batch.clone()\n",
+ " patch_batch = place_patch(patch_batch, patch)\n",
+ " with torch.no_grad():\n",
+ " patch_preds = pretrained_model(patch_batch.to(device))\n",
+ " for i in range(1,17,5):\n",
+ " show_prediction(patch_batch[i], label_batch[i], patch_preds[i])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 961
+ },
+ "id": "fTGLPePItrGW",
+ "outputId": "2669c6b5-65a4-43b1-9d10-056550178431"
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQ5OS45NDE4MTgxODE4IDE3NC4wMTA2MjUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnic1VhLbxMxEL77V/gIF2fGHj/mSClUcOIRiQPiUPKgKdtGTQOIf894N8naCUE8Vqlola78dT2e75vxeBzU12r0BPWney1/NOhr+XzT7/UHeU4Fu8i4AhndKGI2TJgwybAphxjJAEKwXnCoh1dKzdWdjsZqsoaDzzBCMtFuH6uZfqdv9eiJ7Ry5lk/vBIgTo/PZ18Vk9ubiTE3uxRoC6+xUftaWJzd69AL1+VK/Vq/13dYoGPRC8MB2hi82/1VnYz16jhqtHs8VkQkQUhRnfTQhtdbHU/VoPbudXD3W42v9bLwVDwxjDBTBp3QwIAbkADHp1aHEwk799mylrGOD4Mn7gnMOjTWxi0UPNyWMHrckmtJKhbexyqrtXqC9pax3JrjNLx0L4MtOaFVnUh9ELUE8wuSYa+rtX4cTczit8xLPHSPrTZegOaKwjeaJqDsQS+BQPCupF/Cw1Dls7ILFWFO3J+cekiwBMcSaew8Pyt0F3Ngljlxzp1NzJ2eN50SW6s3bw4NyJ2Hb2nUsRaDmHnbcq6LnxBUpF0QpCVnNJrZvP13ezhdTqXuzEytWVgOXjIdI5Op6V+D/LhmmYJDZAm3WJONsjN6HvFSW4tOymc4X91cPKARGOSKCd7QnRI8PIASLqmR5QwnRmSh7lIJnOXIPjsHTq8BRInN4+vXwABoEiX4KcZMM7AySZxe7HbRaTj7rj7PLL+vvD6dCDBIWihhqFXp4CBW4zIQotcp7sImAsRXi4+VqdTlZfllfPpwOXrYtuQSx1qGHBzhFkQyDda0SsiIKIUJkh8m2Oszm66EEkI7QcgLHVnpP8Ya6dlB6GBmEbUNIuZ/M3mPr8pEZam9G1UMiSabshEvyanCJQ4k3Fe5knSgu7zWRBSw95NkQArjdT+bccbFMmVtm4tBFVwtwZIbam1ELYCVFvE2cchOC0oRYgsQl3lQ4sBzQgHFPgAIeSoATZQBIkxCk3HNuvkkyn0n65BJvSjyxER1swFqAEv6/BEiyrdvU7e4ezkO+VO7QpkSlSSVOklU1+RL+v8i3J1xO2468TKYCbAqQpLnYdlnl1a2Ad9Q3NdbmKm6E8bdBrn8/vePeHL3jyow/uyzXEwpbv1wDhOSff7kgNcqASBwwJ8H+NwyvVrPpYrJeLG/vdyeK+gGcBLzpCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKODc1CmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMiA+PgpzdHJlYW0KeJw1UTtyBTEI630KXSAz5m+fZzOvSu7fRrCTZmEBCQnnPdiIxJcY0h3lim9ZnWYZfieLvPhZKZy8F1GBVEVYIe3gWc5qhsFzI1PgciY+y8wn02LHAqqJOM6OnGYwCDGN62g5HWaaBz0h1wcjbuw0y1UMab1bqtf3Wv5TRfnIupvl1imbWqlb9Iw9icvO66kt7QujjuKmINLhY4f3IF/EnMVFJ9LNfjPlsJI0BKcF8CMxlOrZ4TXCxM+MBE/Z0+l9lIbXPmi6vncv6MjNhEzlFspIxZOVxpgxVL8RzST1/T/Qsz5/mjBURwplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTY1ID4+CnN0cmVhbQp4nEWPOxIDIQxDe06hI4B/wHk2k4q9fxvLO0kaLIwlP6IrOvbKw2NjysZrtLEnwhbuUjoNp6mMr4qnZ12gy2EyU29czVxgqrDIbk6x+hh8ofLs5oSvVZ4YwpdMCQ0wlTu5h/X6UZyWfCS7C4LqlI3KwjBH0vdATE2bp4WB/I8veWpBUJnmjWuWlUdrFVM0Z5gqWwuC9YGgOqX6A9P/TKe9P9z0PYAKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwNCA+PgpzdHJlYW0KeJw9kjuSwzAMQ3udghfIjPiT5PNkJ5X3/u0+MslWgEmJACgvdZmypjwgaSYJ/9Hh4WI75XfYns3MwLVELxPLKc+hK8TcRfmymY26sjrFqsMwnVv0qJyLhk2TmucqSxm3C57DtYnnln3EDzc0qAd1jUvCDd3VaFkKzXB1/zu9R9l3NTwXm1Tq1BePF1EV5vkhT6KH6UrifDwoIVx7MEYWEuRT0UCOs1yt8l5C9g63GrLCQWpJ57MnPNh1ek8ubhfNEA9kuVT4TlHs7dAzvuxKCT0StuFY7n07mrHpGps47H7vRtbKjK5oIX7IVyfrJWDcUyZFEmROtlhui9We7qEopnOGcxkg6tmKhlLmYlerfww7bywv2SzIlMwLMkanTZ44eMh+jZr0eZXneP0BbPNzOwplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjM3ID4+CnN0cmVhbQp4nEVRSXIEIQy79yv0ganCK/CeTs2p8/9rLDNJThZgazFpgYEteIkh1sDMgS+5fE3oNHw3MtvwOtkecE+4LtyXy4JnwpbAV1SXd70vXdlIfXeHqn5mZHuzSM2QlZU69UI0JtghET0jMslWLHODpCmtUuW+KFuALuqVtk47jZKgIxThb5Qj4ekVSnZNbBqr1DqgoQjLti6IOpkkonZhcWrxliEin3VjNcf4i04idsfj/qww61EkktJnB91xJqNNll0DObl5qrBWKjmIPl7RxoTqdKqBY7zXtvQTaeC59l/hBz59/48Y+rneP8buXCIKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMCA+PgpzdHJlYW0KeJw1UUluwzAMvOsV84EA4i6/x0FP7f+vHdIJYGBoS5zNERsbEXiJwc9B5MZb1oya+JvJXfG7PBUeCbeCJ1EEXoZ72QkubxiX/TjMfPBeWjmTGk8yIBfZ9PBEyGCXQOjA7BrUYZtpJ/qGhM+OSDUbWU5fS9BLqxAoT9l+pwtKtK3qz+2zLrTta0842e2pJ5VPIJ5bsgKXjVdMFmMZ9ETlLsX0QaqzhZ6E8qJ8DrL5qCESXaKcgScGB6NAO7Dntp+JV4WgdXWfto2hGikdT/82NDVJIuQTJZzZ0rhb+P6ee/38A6ZUU58KZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyNyA+PgpzdHJlYW0KeJw1TzuyAyEM6zmFLpAZjG1gz7OZVC/3b59ksg0S/kjy9ERHJl7myAis2fG2FhmIGfgWU/GvPe3DhOo9uIcI5eJCmGEknDXruJun48W/XeUz1sG7Db5ilhcEtjCT9ZXFmct2wVgaJ3FOshtj10RsY13r6RTWEUwoAyGd7TAlyBwVKX2yo4w5Ok7kiediqsUuv+9hfcGmMaLCHFcFT9BkUJY97yagHRf039WN30k0i14CMpFgYZ0k5s5ZTvjVa0fHUYsiMSekGeQyEdKcrmIKoQnFOjsKKhUFl+pzyt0+/2hdW00KZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NSA+PgpzdHJlYW0KeJxFULuNQzEM6z0FFwhg/Sx7nndIldu/PUpGcIUhWj+SWhKYiMBLDLGUb+JHRkE9C78XheIzxM8XhUHOhKRAnPUZEJl4htpGbuh2cM68wzOMOQIXxVpwptOZ9lzY5JwHJxDObZTxjEK6SVQVcVSfcUzxqrLPjdeBpbVss9OR7CGNhEtJJSaXflMq/7QpWyro2kUTsEjkgZNNNOEsP0OSYsyglFH3MLWO9HGykUd10MnZnDktmdnup+1MfA9YJplR5Smd5zI+J6nzXE597rMd0eSipVX7nP3ekZbyIrXbodXpVyVRmY3Vp5C4PP+Mn/H+A46gWT4KZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMyA+PgpzdHJlYW0KeJxNj0ESwzAIA+9+hZ6AsQHznnR6Sv5/LZA27gXtjICRhjAIPGIM6zAlvHr74VWkS3A2jvklGUU8CGoL3BdUBUdjip342N2h7KXi6RRNi+sRc9O0pHQ3USptvZ3I+MB9n94fVbYknYIeW+qELtEk8kUCc9hUMM/qxktLj6ft2d4fZj4z1wplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nEVSS3LFMAjb5xRcIDPmZ+PzvE5X6f23lXA63Tz0DAgJMj1lSKbcNpZkhOQc8qVXZIjVkJ9GjkTEEN8pocCu8rm8lsRcyG6JSvGhHT+XpTcyza7QqrdHpzaLRjUrI+cgQ4R6VujM7lHbZMPrdiHpOlMWh3As/0MFspR1yimUBG1B39gj6G8WPBHcBrPmcrO5TG71v+5bC57XOluxbQdACZZz3mAGAMTDCdoAxNza3hYpKB9VuopJwq3yXCc7ULbQqnS8N4AZBxg5YMOSrQ7XaG8Awz4P9KJGxfYVoKgsIP7O2WbB3jHJSLAn5gZOPXE6xZFwSTjGAkCKreIUuvEd2OIvF66ImvAJdTplTbzCntrix0KTCO9ScQLwIhtuXR1FtWxP5wm0PyqSM2KkHsTRCZHUks4RFJcG9dAa+7iJGa+NxOaevt0/wjmf6/sXFriD4AplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYzID4+CnN0cmVhbQp4nEWQuXUEMQxDc1WBEniAOuoZP0ez/acLabzeQPp4hHiIPQnDcl3FhdENP962zDS8jjLcjfVlxviosUBO0AcYIhNXo0n17YozVOnh1WKuo6JcLzoiEsyS46tAI3w6ssdDW9uZfjqvf+wh7xP/KirnbmEBLqruQPlSH/HUj9lR6pqhjyorax5q2r8IuyKUtn1cTmWcunsHtMJnK1f7fQOo5zqACmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgxID4+CnN0cmVhbQp4nD3MuxWAMAgF0D5TvBFCfIDs47HS/VvBRBu4fNUDHSEZ1A1uHYe0rEt3k33qerWJpMiA0lNqXBpOjKhpfal9auC7G+ZL1Yk/zc/nA4fHGWsKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ1ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp4GAJ99DLUKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MSA+PgpzdHJlYW0KeJxFkEsSwyAMQ/ecQkfwRwZ8nnS6Su+/rSFNs4CnsUAGdycEqbUFE9EFL21Lugs+WwnOxnjoNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75R3D1X/VHse6czcTAZOUOhGb1Ke58mx1RXd1kf9JjbtZrfxX2qrC0rKXlhNvOXTOgBO6pHO39BalzOoQKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNCA+PgpzdHJlYW0KeJw9ULsRQzEI6z0FC+TOfO03z8uly/5tJJykQjZCEpSaTMmUhzrKkqwpTx0+S2KHvIflbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/61y91Lc7z0cb6KIlHTwrvnl9MvPLbxOPY5Eur35imtxpjoKRHBGavKKdGHFsshDpNUENT0Da7UArt56+TdoR3QZgOwTieM0pRxD/9a4x+sDh4pS9AplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTU3ID4+CnN0cmVhbQp4nEWQuRFDMQhEc1VBCRKwCOqxx9F3/6kX+Uq0bwAth68lU6ofJyKm3Ndo9DB5Dp9NJVYs2Ca2kxpyGxZBSjGYeE4xq6O3oZmH1Ou4qKq4dWaV02nLysV/82hXM5M9wjXqJ/BN6PifPLSp6FugrwuUfUC1OJ1JUDF9r2KBo5x2fyKcGOA+GUeZKSNxYm4K7PcZAGa+V7jG4wXdATd5CmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzIgPj4Kc3RyZWFtCnicLVI5jiQxDMv9Cn5gAOvy8Z4eTNT7/3RJVQUFqmzLPORyw0QlfiyQ21Fr4tdGZqDC8K+rzIXvSNvIOohryEVcyZbCZ0Qs5DHEPMSC79v4GR75rMzJswfGL9n3GVbsqQnLQsaLM7TDKo7DKsixYOsiqnt4U6TDqSTY44v/PsVzF4IWviNowC/556sjeL6kRdo9Ztu0Ww+WaUeVFJaD7WnOy+RL6yxXx+P5INneFTtCaleAojB3xnkujjJtZURrYWeDpMbF9ubYj6UEXejGZaQ4AvmZKsIDSprMbKIg/sjpIacyEKau6Uont1EVd+rJXLO5vJ1JMlv3RYrNFM7rwpn1d5gyq807eZYTpU5F+Bl7tgQNnePq2WuZhUa3OcErJXw2dnpy8r2aWQ/JqUhIFdO6Ck6jyBRL2Jb4moqa0tTL8N+X9xl//wEz4nwBCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSA+PgpzdHJlYW0KeJxFj8sNBCEMQ+9U4RLyGT6ph9We2P6v6zCaQUL4QSI78TAIrPPyNtDF8NGiwzf+NtWrY5UsH7p6UlYP6ZCHvPIVUGkwUcSFWUwdQ2HOmMrIljK3G+G2TYOsbJVUrYN2PAYPtqdlqwh+qW1h6izxDMJVXrjHDT+QS613vVW+f0JTMJcKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3MSA+PgpzdHJlYW0KeJxNkE0OQiEQg/ecohcwofMDj/NoXOn9t3bw+eKC9EshQ6fDAx1H4kZHhs7oeLDJMQ68CzImXo3zn4zrJI4J6hVtwbq0O+7NLDEnLBMjYGuU3JtHFPjhmAtBguzywxcYRKRrmG81n3WTfn67013UpXX30yMKnMiOUAwbcAXY0z0O3BLO75omv1QpGZs4lA9UF5Gy2QmFqKVil1NVaIziVj3vi17t+QHB9jv7CmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzggPj4Kc3RyZWFtCnicPY9BDgMxCAPveYU/ECl2Qljes1VP2/9fS5rdXtAIjDEWQkNvqGoOm4INx4ulS6jW8CmKiUoOyJlgDqWk0h1nkXpiOBjcHrQbzuKx6foRu5JWfdDmRrolaIJH7FNp3JZxE8QDNQXqKepco7wQuZ+pV9g0kt20spJrOKbfveep6//TVd5fX98ujAplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAxNiAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0OCAvemVybyA1MCAvdHdvIDUyIC9mb3VyIDU0IC9zaXggNjcgL0MgODAgL1AgOTcgL2EgL2IgL2MgL2QKL2UgL2YgL2cgL2ggL2kgMTA3IC9rIC9sIDExMCAvbiAvbyAxMTQgL3IgL3MgL3QgL3UgMTIxIC95IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAxNCAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL0MgMTcgMCBSIC9QIDE4IDAgUiAvYSAxOSAwIFIgL2IgMjAgMCBSIC9jIDIxIDAgUiAvZCAyMiAwIFIgL2UgMjMgMCBSCi9mIDI0IDAgUiAvZm91ciAyNSAwIFIgL2cgMjYgMCBSIC9oIDI3IDAgUiAvaSAyOCAwIFIgL2sgMjkgMCBSIC9sIDMwIDAgUgovbiAzMSAwIFIgL28gMzIgMCBSIC9yIDMzIDAgUiAvcyAzNCAwIFIgL3NpeCAzNSAwIFIgL3NwYWNlIDM2IDAgUiAvdCAzNyAwIFIKL3R3byAzOCAwIFIgL3UgMzkgMCBSIC95IDQwIDAgUiAvemVybyA0MSAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvSTEgMTIgMCBSID4+CmVuZG9iagoxMiAwIG9iago8PCAvQml0c1BlckNvbXBvbmVudCA4IC9Db2xvclNwYWNlIC9EZXZpY2VSR0IKL0RlY29kZVBhcm1zIDw8IC9Db2xvcnMgMyAvQ29sdW1ucyAxMDkgL1ByZWRpY3RvciAxMCA+PgovRmlsdGVyIC9GbGF0ZURlY29kZSAvSGVpZ2h0IDEwOSAvTGVuZ3RoIDQyIDAgUiAvU3VidHlwZSAvSW1hZ2UKL1R5cGUgL1hPYmplY3QgL1dpZHRoIDEwOSA+PgpzdHJlYW0KeJx8vNezbcl5H/aF7l5px5PPDXPnzgwmIQ0GJOKAYAAlSCZpshhKos2SJZb97D/DDyq7VKrSm8ou+UlSUVaJJdGyRIIEQRIYgMRgBhNvzifuvGJ3f58f9rlnDkCXu06t3at37737+63flzoc/IsfvIeIAKCqImKMAQAAQEQiWrevO+DTsq7D07JuVNWLfVS1aRrvO2sNM9y9f+uP/+Q/vvPu94k7l+Cqrgid4dzaLMtyRBHtkNCa7DOf+sLPf/Wbzz/7imNLEBGCAEW1AAzKCIgkiAEoCrACItJ6RICiGkCFlEAR4KwdgdZ9iBURiBAJEOGsjopnUiiAAiigAAAoq3IMGlUESBVEAfCsy/p7L7yAERFmVlVVXQN3DpOInINyjtT63Yv1Ndbn1/N255yIVFWTpu7aM9e/8Y1vltX84aObXVtba61Ny1WjiiLChNaxM6bX61+9cmVnZ5t5PRIEQAAB7AAYwACAggBGBAEQBEJABAQA0LWYHz/g87IemIgSoYgSIDJcGPBaurUs52gBACABCqKCnrWcPTL4+OaskEjsulY1qspTUgZVWf/MxXKx5W+/e7GICAAQkTXWsI0RQO2z1z7x977531698oJEW5d1W9eo0tZVU5cxdM7aLM1iDJPpaZSgGs+EUQIAQAEIgF7BAwRVUVVUIYgEkTSiCiqQIoPBp4KqwoXRrmXTdQUUVEEEVEAV17q0voLi0+d3xl84pyoo4sc6t1bO9R//+m/+TpZlqsLMACoiIrKG/aJeX9Ton1Lqiww95++6MBlrE0RUUSQaDgdJkj569HgyPWzbLopYa1SjMeScAVBFePzwcVO3L7/4smVDQABruQiAnopHCAzKBAaUCQkAQQmUCCwqKcrTEX58fTrkc+E/Zhb+tCzwsSqcER1UVc8647ojXmAlIvA/+v3/0RhGBJF4DvCaqhehIaKLlvEisucKcrHlfEzrT3vvVZSZ+70+s5nNTkMXEGA46KWpIdI0s1mWEONyuajKkpBGg0G/1wMAQEY0KkrEAIjIoAzAqgSAne+QEQlUkZgVFFEAIMb4FC/ENdYfq+VTEQABgPBjJb0g48fPQs7EA0CFtSW5oNHrOv/6b/52mqaIsDaUgOdwEDz1NucUg79lBAHg/+8WIyIQEwI2TVPXFRseDYeEdHJ8EnwbYzMcZkRRxROry1yepyDxwf27u9s7l/YvMTGgeGmadtG0i9PTQ+uYDSNi0GgS/OjWu/PyOOvx6exgOj/J+ykKIQIzPzV55xoDAGsnc4GCTylxPvwL9TNjqxeYQ0+pfBFHBODXv/DFZ69fExUARVp/WC/ieO5J/jb74CfL3+6JGADknLxluQrBZ1m2tbHjrFssJ1U9A+x6Pdf5ysembmtrGUEBwBC9cP15RDyePH73wze/++a33n7nez9653tsdGtrpOrvH9wrRub9Gz/4z3/yB4vq8dvvffcvv/+t8XaxNbwCSiKKH2viethPYUUFWDvPj1FZ43YBXf34nhCRgNY4/rToZzh+/ZffKHpZnmewtk+6NnBAxOtOqiAiRLj+7ac/AxcMy8e3F/UaEQjlzKiLAqhhLssVgCZJvre3u7W1WVWr6fQ4S02/SKtqBWzapkmz9PR0Upb1M1ev7+7s37v/0R/9l//rzt2P3nn3h0fHj06nR0jdex+89eDwzsHJvR+//2bQxVvvvHlwdH86O75770ZKm1evXgNFQj5zGgiKssYDzpimuqYKqSKuRV/DqaiAoHBmZBUBgeDp5xAQVAmf6uW6HYG/9AtXv/MXf7K7uwtqQQyiZWYAICLENbnWJBNEUBVmQjwPEc5c2E+BeF4nJVQCAVBFBSZGxbbpODO93vjS3gvXr7wyPVqeHBykVjNn2xazPIuowjBbLMaj7SuXrv3gb374wx+9PZmU1hTT2UIhfHjzR/cevnfr/tvvfvCD09NDa9PJ6UrFVis/OV0JhhdefD53OUWHahU0UhAMiHwudwRRUmXxpB4pIgCIivexDSIR0IcYRRRQAUUi0RouJVE+8yWwDkzX9pYvX9/3HTHlhvJ+b5xlWZQgGkHxXEPXgeS5+4YLVvJva/dPkFT0oj0FAOecMQwG8rRgspvjjavPXHr44O50epzmGRhQiGwxyzJn04f3H0cvq3L13gc/vn//wenppNfrb2/vOJvEqKu6RMQ0zVarOstyRN7c2r5+/frdh7dGw/7u7r61qQAqkiIqMguiEgKCAiOhKEYhVYoodX3y6NEP/uq7/+Hf/fvv/9WbD+/c/7M/+/Z3/vKvDg+O0nSdKTw1owoiwkQAgPTUpyPg//Fv/2VdesKsruT69edHo4GoRwRChz+Z0hDRRfguOu6LucxPBEAxfGy0Vdc0V1DhwOQspQSgsT46vvOv//W/BK7ELpfVMoLGqIwFQe/yzvX5ovzRO2+fnkycy/b397/+9a99dOM9keD68fHhA2uT5WKVJFlR9IOXfr9f+pPN0e5Xf/aXf/Frv5q7LZUEgAGUIOI6flJAUEKR0D58+OD7b/7gr/7yz6fHh9VqUZZlF6JNc5s6TmyM8fKly5/81Ce/9sYbz7/w/GAwZNAPPvzQOvvcc8+xsUC4duX8xa/8YpL0N8Y7V69eK4pijTgCEJmfCm7WxPwpfq3Lma34yc4AAPKxtSai9VMxxrBjJovKMYKqFkWxv3/5vfffq5oTIiTUGELbdgAwmc3u3b9XNy0iZVmxsbH9W7/12zHocDROCztfLGbTxXJZMrFEENHReNTpbLmaVU01Go+2d3YYDQIhgLKPIEIoBMpwdHz4B3/wb//5P/9n3/72n96/d/vk+HC1XAiiV2299zFojNVyNZtMbt24+aff+tb77753/+7d//uP/tP/+a/+1XQ6zYusP+inaQIIoMp//1d/68rla4PBCBGN4bXXlhjX0fc6M1mnjBfd9HkG+bTQ3/bm5w7xY64iGmOISBFpHfUBVHWtAP3hcGtr8+6dj1aL0rJhYmZuvUdGQCjLqm5q65Krz1y9evXybDF9970fPz58VNfN8dFJUfRUcblcMTMiRGjni0VZrcpyOez3nOE8cRC9xhIxtqFB1h+98zf/9J/+L3/0n/5wNjnq2rJtVqre+0ZAmq6NoG1dN1XVNE2MsVwul8vlg3v33nzzzbfffqssV13b3Lx5czgcXLt2jYlAhf/hf/+PVcU565xdp0GEKGdJ+TndzlKa82j8ghHEn7quoV9XJEZQPWfiGfpnfQnXxoXg5PQ4iC96xbg3uvHBraaqe0WhoBGkiz6IKqAPHkAVxKU0X5zef3Dr8PCw63ye94kMIjtnsyzz3veKgUT1vj04ePj44Z1bH75n1Dv1H7353Qe3Pnp07/Y7b//wX/yz//W9H/6gW82gazLGwnGRGIyeQK1hy0aCj8ETKYGyQYm+rsq2qUPwSeKsNV3Xtl07GPb3dnettfy1n/8lAEkzlyZWNQKAKj6F4mMPc54yX0yxL0J5Xr/YgUDPjez6GTwNjBmQ1kktGyALd+7cWi3Lwo0cW9+0CJEde42C0PmQZdlqtfTBI8mDh3eOTx+ezg4fPz5ENGmaFkXx8ssvTaezGKVrO4zJaDhumjJNYLU48dWinJ/KanHvO29+9NaPbrz743//b/7N/Ojw0mi4laebabI7GD6zvbU/GqaIRiABNoCqsQstapToGUEltG0tEpjZucQYUzf1vXv32q777Gc+WxSFuXx5DwnLcmUtJ0nadZ1LUudcCAFAkRBQEZUIVUWiPo0rn2aeZy+KeBanIaiqKCgTE62zKLwA4tqeRFBBRAUhBGfMeDi+f/f2g5ODk8MDaUSJ26bNekXdLPJ+ETrYv7y1WpaE5IOPrSqJs9lyXkcfDOFbf/ODza2tF174xJ3bd6ErVYQysZnpieu1wsfTW3e/aybREZ0eHrDvXn/pxWd2t50IizIbImjbJvXtVpErJ5P56v6saspVUFWiVHNj2CQWRAB5rWfSiah88ON3P3j/ve3tbbNcLauqAoCDg4N+v9/v95MkybIsTdO1mwdAUcJ1EK4oQYiImPHpfBUoKMS1YTxn4hpCUNb/r1QSIay/GRVUwJHbHG4d8N3J5Nbp8VG9KGOMgQNLVJJVWyZJ3h/lbbuaTxcqSYAQScbjjXJeD/u9xFrLQBDbutzf3WxOTxpdZX2ul8tByHa0v1VTXMYKzclsitZ95nOf2xoNsuDHlo2KGowxJg51WLSCkaxBXLb1dLlsO1/7sAwrw5xbTg27xDnnNEpsO0SsFsumrAjBMPPly5eTJBER732v11tP5aoqM8cY197mDB38CSd+bjfPprguzASraoyRkC6a1I9zgIu3AKqa5/l4Y7Oq/fHJZDVbtm0NVvNYZJt57MKqXWSunyVuCU0XvGBkg6Tdzu4gz3qGTRd1tVzdvPlev5dCuQwGVkftXn9zU4qeJsvJajWvasvDjXG/yOZNDQjIHFWtdUSkChmzGyeRbESbJXUNOKmrajIzBE2IQaSNAQwHRRWtyxJFB4NBr9cry7JtW756/bmyLNfSEhEzG2POI8GLed4aASaGC9H4Grs1H89N6nm8icjM/FPOHWE9cfKxGY0xAkCWJRq7mzfvzOfzuq6W1QoYmFkBg4Q8NYl1BHY+XynIzu7meJg/c+Xy/u6ltvUbG5sxtsStQBkVogAH6rX2mWS7iCmCTQZDk6eR8PaDezdv33SG8yRt68Za1+sPnLEW2RmXuMS5TBWVsA1+uVoFhSi61q7gfedD13TRe2ftzs7O7t7e9s7uJ1560bzxxhtrMZi567q1qHmer4Vcu9q1k2HmGNazkxhjZOY1VWOMxLo2gBeDHvjJCPxCO8J59noBSmPcJ1789Muv3m/qpujnra+AJeNkOOi5XpI4LRcrS7SztZXmSW/s8oT29zdGw92qqspylWUUFVdV2QgzWm2iK7K9rcu6CJXxXQwmYpCgXbszHjVVNTVz7cLR6fT5Z3lrMLBkUBSIhU2vyAah2xsNHz9xbZQOMaoigpxNOKhzLs0yAKiqipnyLOcvfvWNXq/X7/fTNM2yrG3bi/RZR3yqGkIAAEOsAmuKnSs1M9OFec3z+IaIED52L+ftiKgQz0E8J7WIOpvs7u4tlovVav78c9f3dncSti5JbGoSi4O88F0ssv5g2LcWEscSQl2V1kKSIqKP0jRt1QL4oEbNyPb3+tus1ErsJLoIIMKEm+Nx27Wn0ym5dL6qluVqYzRmQINkrQM2QmQMM1LdtpP5oouCRMTExIBkjUmdc9aCAjFdvnr1Z77ws/wPf+8fEdGaicwsIhfDvXM/u7Z3iMRkzvE6D4bO1oaegnU+07GG+vxLzoPzs8T7J1MjIhYh6+xw1JvPJw8e3L125ap4ma8WwsGQSIiJyQBYQXxoYhcQgMg37cSHxXJ5Wq5KEDJEqUtTSka2PzKFlG1XVRBCFlC9JxVEBabjyaxRxMQ9fPLIEG0MhgxIbJUwIBhCQlWkJyeny6YJIhLl3BnkWUZIquoS9/rnX//c5183g8Fgrb8hhMViURRFkiRd150H1eekW98KypqMa5TXNmEdG53H6uemAJF+SrVFRBWJIcZ4cR4E1lNCwqp06fKV1177XOyq2zdvb4038ixbtAtDCEGc6WvUtm2VPZKrq5YtIFVtuyirZV2C4dxK62O7vXl1qzeu5gszbdT7NEkSY0EpKnUKjsimyYOjo+29PWF+78aNS+MN2x9g6JBTJcSoqTFFmo4G/aNlGddLO6oimqQJGyMiIYSmaTY2NkMIFIKySZzNCK21ViUEXxkWEEUFCVGjgCiIGmJDJOoVIpKKhig+iu98HWM4d9/nzl1EzlbbUBREJIToAVUgdNh06n0kkcR3JKKKncjc6NyAR0yuXP/ktZc+13HyVz/6mxjK7Z6jTnY29jQqQAi+8l27rKugGrrgu9hFUUPWWRNVarOX7T2b7thJrfMy+CZqF8VzjAkxKzEwKW8NRz1nlrNpkvbrNhxOTivfVF3V+Rp8Bz5QiAnIVpH0nToIhCCK1ph+v49kI7Er+klvsLmzDQTG+xoRynaVJEmWZohCJABKRKBKiF3bAoAxZp0aI0KM/jxvWTP9LCpfx0bMa+qdLZxpQMGz1R4k7wOAdlFCB21ZIwRQEW3Q+sSgIxY0iibNzWuv/YxvZuIni+npaHAlovo2pFnahVWapq1vI6lLjK8qoIhojE1jG4gwsf3d/l6YNbaRzJigsqzrrotG1WaZsTaQFtZWwV/b2z2ZLzsvVy5dIsSowQehwNaRqkgIrFI4HmSu8j4oWGvTxDIzAicuATY2TdOiSNLU/PEf/8dL+1cv7V8dj7YMIREmifs4U3k6Q7F2BWvNPfM5xlhrn+rvx5MX5xZWRIhBRUWQCAHZtxHRTibTD2/d/eHf/EgEOh/W/jvL08F4uLmz/dxz13e2cpCYpflrn/4MtJODJwfTSQ0kgsuslw3G+cnpgtCNN3MLHltMbRa7CBKSLO9CN+Jc6iCNN2SN5WW1OFlMAMBDkUuvGA0TZ2MIO6Nh3jjwUjXh+uX9q3vb2jUaY+xaRkIlNmwMF1k2LIplGyVoJGOMDSGMRyMkZmMQ0VoLAObRgxuHjx/s/b1fN4yEzGRVmBgR4xqRNbPODdnajfzEZIQIM69peDEeVFWRuF4pDUFA8eHDg+9856/e/fEHbW3JMlms2jqqZklhqPW3ZyZ/8uffeefy5Z1XX3r26qXR5ujZT33+V5rvfXtx70O2XZLB6ewRO7e9uztfNGwhZ9OtsFrUyqyRgYmsG9sR1GIEiDRKWDWlyZK0yNNo2RllzVJXz+u2WqXG9AiAtJ8mhqgK0bdNYoyKEFlRJNDcuXGvP63aumzXABERs0mzLMvzZ65fW++i4E9/+rrEsFpWV65cczZDZGRDbEDDxaAPL5RzyM5D9zP2PfXva/Ke+X2FGEEFuzbev/foz/70z+ez0mi/aQOyqds2BgVB9eLrRtqmW60e3r0/OZ0tqvDwaGX7lzc2NnwzOZ0cNGEZsQ3SGofDcV/BE4AlU7Vx0YYqaLVsKOAVt+siZESZIR/aJvh5U+9fvTrI895gQMzGmCLNc5v282J/Z/fKlSuHR0eLujo4OTmdzkIM1lpQEBUfQxQRxOPTadV5m2ZZniVJBoBJkrAxX/u5r73xta9aa/ibf/cNw8572dnaS7MeEkdRZgKI50p9cel1nfkRUdM0AGCtXT+Q89j7J8JPoCgYvIagvosIfPnyFVA4PZo0XQNAIQbUaKFLsB0n8WdeuvT1L37yxWc2BylIVz159PjWjTsW4+Yob9rOxygKq6qar2aKHRGGTjo1Zrhpx9su7W9m48u9zayhBKGfusIZa61XeO+jO4PhxuZwKCJPnhygYC/vF3lRpIW1rgO58/Dhe7dvn5TlyWy+LKt+v4+EEgMzgyIb6xWqLggSGrbOGXZV0wyGw1dfffW555/N8pR/4ed+FpGzpLcqm62tXWIjIMjI9DRHpp9YgF0nM2fpTVw/rbP284zwHMcQCIQUCBRFMMSYZ9lnPv3pupo9evIEiUEAYnNp033ptWf+7s9/8vWXRtd24PKwvr4VX9ozW2bVHnz44O7do6l3dgzam07ayXSBrFFaFGg7aU16+ZOv7Tz/0vVnX9x1/e7RKbRdnphhkWTWEKIPOJvXXavjIkPlxWwpQTdGG6PBhrOurOv379y6d3S0iLEUjUST6YyYx4OBxoAKhlkAI9CybsGYsm2cS5xNmqa5/txzn/r0p8bjYa9f8Kdfvb6Yly7JmRyxEVDrLIIi6Jp366mKcxzPw+yPQ2s4C3fOF4rPPU8IrEoqGMI62qrTLB2O+q+8fK1uuyAUgzyzv/kPfuMXPnGtSPDU4aFU9/t41AuP8ubBFp2+uCFgRreOk8lpmEwCYFb0B0lmmq6cHB01QWIxtNv7c6/zw8ni1qNk1jCGInX91LKqeA2Bmg7zfFgvp4ZtW7dt20lUQgagJ4cH90+PIM8ky2oFNAYA6rLa3RgXiQPVGEUUl01zslhGJDSGjet8GAxHv//7v3/l6pXVaukSx7/zxtXLhe5yvUf12M+HzXLs29w3hB5CB0CCNlLSqfFoA6maiI4jQyCKhiIbTyQaiEUoCvmIElWCoIAVTQOwB+hQFqHuOFLfRiebhV6//srPvv7lz35675UX41bvROcn1ZPHG25G3UraucGOqQ7+xJjF1cGdUTi6dWfnzqJ5NLtTz1uWQdQRULZS3yZVAtX2oklunRRl9F3IQUe9ghm9xLrzErAwPV+3DZZ1aOu2Pl1MZuWili46nC5nzhkkcJaq5Qw1DAe9umss8dUrVwNAFdtZ25xU5eF8sWxbNFme9RTg05997Qtf/OKDh4+vXLm2Md4xL+w7S8gSME5VJoAPmxnpjCGympTTvpjM5b00zQhJ7Q6k19IUANfYGST0IUgIzCDiRQMigTKiECqhV8Co6AWoMxGShArTcSyEY5oZkw3N5ODR4v7bm2R6CYeVgMbUYb2qIDYSo8Qus4MXr1X/TXF78f/k97tBl86nK0iXg8GwNxjvV+WhPfCss0FtWclra8kw0Hp5WUJoqlCkm6cnE0jtfLHq5QWymS7mEbQ3GiSpKyjLRY5X88sbmw8PDpKCh71ejEFBlbDq/Ol8fjxdRECvENr60pVL4/H4pVeef+vt79+4eaM/Sh4e3DGm7iHFupz0CkLoQixBPURvm5WiUXIgiM4FAF83LXHjMuecAghAFGm71hgTcb0sHEU60Zi41LlMBUScNRlxoZoq5J03RbEx3Nw5cn1Lo+Hmhi9v9etH2hzm3kNwC3Ui0RuyDOLbpq6KPJvVCXJ1Pf/hL7+w++17rzzgvchlmKdtw7KY5Vm6LfmIzMimdayjXykNVZSVrc066qrlzGI+GvbvHC+Dh1m37PVHbCyhHh896afF1tZeE2NMgwbZH20sVlVR5Jk1vmvqtpnMFw+Pjuceqgid4NbGcHdv5wtf/AKybu9uHp48mC0PPvvaZ42q874DLrxC13at92lqokJpBiFE9QhRk+BzRgto44rbY21VNDJB7kyPNU3TGAOgWseIorDOBQFU0CwAwXdQNQCQWUh1bqcLV7mBow1zssO+CvMHsFqeThtn85Lbruss2yxJCIGRqkVd+blj17ODV64+sqOdP7+9f3OGHXcmKlfV1XF/K+qIjEVaqtSxy9qubbwDSlPKbJql7vT0oD/YKLJBVR3XXZPk2WA0Cr6OvuMkwzbkzlExhAgGjQSJPmajQdO1i7I+XSyfnM5aTqjoj8bjF1989Y2v/XxR5Menh3fu3Ds5ndy4cdM6w7/5y2MxK3FN4CZgpywBfCRuebORJEIWISlXnSp7r3Ud2fSZesSFdX1re9b1gZKULUY15Cy61KQGLQMlnKTGJZQxWMc2t6afm36OhWvH/KAHh9g81OYJxlUMnTJVoWq6qcQmxqbrqrouYwydb6nrLEgZEzX20u5sr1c8fDg8dYuAj7b68swmbySSJNYzrzROlstQBwZiBVKyxhBz1VZVU6f5oKzK4+lJF/1w2PO+ZdSUrAlISMawsdY4ZxI3Xy37g54iTqv69uPDSdVCkvbGGy+98vI/+J3f29raWyxXWZ4vy2o42jg6Pj6dzEyaDZarCtlJRCJk1Ni1rJpLy75VBYyBrSbaQmgUa+9asAQUMSFxKiSKYtibNEhURSZniSD6RlC6dit6QLJsCDE6Z0WCQS5CL2KMtpOEIlHTj1GjbWOvzWJQCSIKhEYkMhmsvfdhKRrbtjtc5iovPXv54WMXoBmMEudaToxnXysFVY40W5WgyIoGCLPUZUk+zPxqJbHe3hkt2tnx5DTvmUGWGbYi0vhWW2bUiNp5v6hWi6Zyq3JI5vbjw4PZSl063Nz48le+9Ku/9qsvvvDyw0dP9i/tHp0eTWZT79sQ5bOvvW6oGg543EUVgLpaddXckeS5WUyflFWzsbkZ1FujsaucETaJD8jGGAJDYEgUI7FY6wxR8IBoY1RRRMhVo5pKoI0xspIhFkiAhMgE2EQKhK1IJEBQTxSyPmPGoCiiovD48SwrXJJjKHzGgy0z7Jr5YtUXSl/dIxi/8Nb7j3LkBBAAA1IXA/quCOGkaxGon+ZFItrUQhEcuNyQVwZ48eVn80MHqgpCRG3TrpeosywBwzEoWNMRPD45fXK6eHh0mg3Hn/zc566/8Nz/8I9/750f/fDH733Xx1g11b379yezR6Px+PqVy5PpodG4QkaQ1jD0skpdmVqJIVBeOGNXvmPmVVMxYuaSwnGu0SKiCoWApESREVE4igE1oMnpyWR3Z5utAkTgCRJ3bZCgEtU34GxKZNtUVYNGQEgcZH0zitAhdpJWoBgUourmpZQNOYO1JsBzU1asI912PBjtD770hVef//Gr8b2330lgwRiDKkRvvE9DiBIX1eqEjHahnzuTIxjghByRIUSQZ65cFpFYt6Fq2hACEUt0oArKhvuDXjZzdR2aLnzhK2/8d//kf3r9i184OT1698dvvf/eO3cefRRRvvilLz0+uDEc96zz0/nB48M7/DNf+ay3LqgQiLOObS/yOJiRB3DYxsWTvnosKwZRbiO1HprIoZUqMkSgqK6LDsUguAhFhFzAra0BqSd0RIV4RrCk4FghlhAWHA5FRLVvNGXfpsZHaUXrHOfGM0uiFrjwqYMimBzZOeYcYrZQmmJzrIsP4uoHw+3ipVeuCUPVUvAu1uJDWPp2FerlqqwbCWq9khJ2oRaNXp3vBJqIrY9d67Wbx+VKFZKxyTJnHXrv55P5/buD4HuJDMf5N77xK3//137XFhu98Y5x6aoujyb3fSibZuVDM59PJPqDJ4+mp6dmvLOfYoCaVtMnJk+csxJFVDLHhhJTFKEKRGndSaveL32R56kYkUBNy9wRESE1LNY5m4pLsN9PDAaUJoY2ek8Rq3KVOocqIhFlPb1huyAel+Ba5tDE0CGVnhu4mmJk8AaoroitVVZmCoLIbKzpvLeGEWIMVX3yX2165ZPPfG4xevbGrdmDuu2stGmHHmIVFs28W4VSBrlPrUVjOUipPqIPHMUwAYGjXponxbCXuyTG8PjJ42a1BLRFMSw201e+/OV83BcWwLhYTet2/uDBjZOTx0WvsCYT62aTtqkXWebS1BlOi+hLa11e9EXaGIIxFoKg+LZaxSCIru60Rbvq4sm0Ho/ToojOAnM0FBJHZDhiDG3bSefDylnLFBm9hhYhGkLfLLQlS0aRnU2YGTrDQJFC11YCAcjV0Ls/sdOy99Klrk+zPmUDu62kivMIYbVojNVe3znnmG0Mai1kcdq1i8e37nRy6cUXX9+9tve9t2ZYFy7pBuNeXXVN3YQGGtXEZkwq3EBUVjUIFsBS0uv10n7q09BIqzHGzKXZTpoUeV6Yvbwk3B73juaPO8VHj++i1m07S1JGpMnpan/vOkr/8ZN7z11/7r0P3uJfeOMzvi5zCyytJSWArmufPH7kyPu2asq6qXRZghcuu86rWpcqRGMhceAsOIPWIDpEFhEP4AFa0A4gRAmhRfFKKqwS2y52osoqbJGViSw7xwyu6frH8/5/+YvTb7918tyV5NKG2qgM/cWqpqRhw84USZqsN8Vaa4mIGFhTY5STeaTH89Utw/WlzasFj7u6Ba+pTZwxBAASLaFFcCDWIqeEhaF+woMsJNwkYapzLpzpFf2dvec++dlf/LXf+OQXvpLtbt4+fNgbj9776N03//o7Dx58+OjhjceP7naxXq0aQ33ULHFFCL6sZlW9MClrymygU/ESuihRgXq9wnDoFIPQYtW0nfWN76iN0jYtEHPXCaFKUDEgllQRiS2TAWJgy2nb+KqCrnQQmoSxSNAQAWPnY5Qg0KqzSIaUUVJDu48eru7dq5KBs9YZ8gbEhy6xFsWoILNFUFAyxoAKEaiqZjaKUMS+g6xb+fqG0eaV3c2t/NmPbj86nM7bJAsCMXgGNRgz09ecYGRj3z5ZnD6cPQYwofPJgNRmbmNne/8T+1de3PrUqzvbVzaXT7774Vt/9hd/1h/mDx/eJdAYusSY6WJZFGNEKKvFkyeP9y5tLZaHO9uXzIA9hlbblVGvGpq2PZnXu7rfb+/Y/cyYa61OoRFHTpYNrWwSRLqqM9jnUyf1k91rzXyZ1NMktY5lUKRZkjvTIyooouU8daGr7q0WT/JMyWokj6rAUYXQkyKQhAi+C9Xzzw0+8erutZ3UoUdowDSoQJERjTLB2dk0pvXRC9KOa5DI2mcxiYGWVow3gW5c3vrqoLfx/k19eNQGdYaBsUusRdzUAVeFb11X1SFm4NtWIBLZSjqx9MKnXn3u2U/lg83WGCG3tbnz13/93b39kTNxPp0NB+O69r4j7Jmil969e6epW+S67drPf/4X+Td/7vlmceJXU4pt9G1V1UvtffD+z/xm/p1P323Tr/4Tv/mluve5k+lr84eXrjRfNvhJ5KuF+eR2/fI36sPk0vYPqt7JhyeTo8BxZGTMYZv1Smj3fLMHujse7oPE5eyITUSrkUEQkVDIIjFpQG3V+PHl4dXrvU/s6xB9iqDUgeuY1UHGlASN3kcAZrRnJ5CUKCJHMkqWkSiSiYJtwNDKxGSyuffMojJlbawrkjRJsmKi/ZsnRwsKNcfeaGjBYB0pSoQuM6kRN+5tvfyJT+fpUAIakqMn927ffK8qp9HXzroonKUDNvmgP6jb5Wx+2PmVgu7uXD46mBroSkdato1BS0ScpK6kS8mf9AJ9eDP99g/x0d2Pus7yrALX3hk86AE41IS4um7fa7/5wrP/eetw9uZpurfZR95azHQ1kc0N50ya2N6i7RaTA9IZAnURJSAyi6J4tASoQig+NsahS3C7b4vQUme7iGBlfVSPwUQlVTTk1mvcIAgAQMDBonbKNZgaMCCrS4faKYfqycEtQd7de/Z4tjxZdMBZG+G4rXySjlxK0JCX/dH2pKaj0wOIpG2cd6ff/Ytvg6cvf/UX6ya2zezDD36kEpqqQtKi53Z2tieTpe/CkycHL750fT4/aZrVaNRD1IODI/7Vn3sZjEt6o6rTOoiXoGX3pXlVLeO/0C9KPG0O5imx5WTg6j7pSHmTySbNnhmOXyb47C/91788OPL55ma/K1dNWZdNbH1sykk5vbOo5ocn73d6vzcKxrGA88GsyjYgkxHgTomA+wA9iOBELDglCBCjEFOu0XiJQoRojbFIpCoxxhiDiCh6ZUFiwATRERlEZRaE/uLUL08mm0Ma741uHtc3p6PjcI1MColjKym2aawTC9Czp/WS1IiCyxwneDR9OFk8uvPg7Tv33rp5553HBw9bH+fLqu18jK1CU64WqcurpRwdTotekRcpW/v1r3+df+2bPydoF/PlwYP7Q4c97PL54oUXn/vLJ8/crVuI6Bh72gx7YTNze4WMedEz3WbebYxk+8XN9Dp97/YqnpSjsIByArGtfJg17aJpThbTafVE3Wy8pZubBZOra1guuqYR5MBGgVSBEBMAXp+xEm8AnDEZU6JgYyQAQ8RIqArGsDFMRN53bdvG0MHZUjAQExEQkSFmg8OhHY+NdZ3LYffSfll29aoOmnoIJqW6mYKs0oLRwfbOVuw6lZhnKah0bfvk0aOT46ODg0eHB098CCKa53nTVG1Xxdg9d/3F7e1LwWtVlcgQok+z4vnrLxmLTiE40J4DalcSy43NbOLHpTrnbhSYpuBToVFXXkpgg0eDjU3bsR+WrUm1GdST7aqWro3iEBBb35YxLnwdo7D64bDe3CjyUe7FGjPMkoRRTiYHdfUkydimJmICYASYVQhYMW18CKrOGUaO2h0enm5sZHlmAFSBksQSkXMOAEJXdV0nEmxiDTLyerc/MonNxVDZdBPpTp/bK3b+ziv/7g9vfnSSg5oQk7pC1M6VEwMuNf3Ll7ePjo5Vfdt0bdshGGNsmlpjTJ5xjBBjRBI2nGWu7Zonj27PZ3V/2MsH9vKV3ZPT5bf+9Fv8uz+7Z9p5omVugvhKY7Qt3rszarZsjLClg90i27TLYVhd6+DqyPWvXDYv5WQ3k/1d2Ng4uXv7L95+8HgSgteya2rxy+CXXV13pUqbpJLlhsBY2kjoEoStXn6567jqHmW9zKQpuZ5J+oDGi4/Ri4CiAqOieumEZFmtsswSaowCcHamjAiZmdd7XUIQjevTQIQESkRMoJaDNV3qVLq253qXdvbfv9d2wuAyL1VZPuoPUDF03veLgol815WrZfQiUYL3VVm2bTfoD51z6xNVzjGSnhzPJFLno2iou9VLL7+ginnW49/9/DA2U4U2gA/GzQOXi9xt/2IFnSnDSHWz8BsRdpJ6d3iaDbx9rdWXX7f7m/Yzrwi++c6f/9lHJ8n9WfAiSGG82WtDC6i9hDl48YCRBtnOML/qaC/6om7k+PRU9Hi4MUr7A5ePyPYRTQhexJ9tBsIoEKIGgdDrZ4kzZ9sNJIrEGEMIAREtA+PZQdYQoiogkAgAWgIGVSYBjV3jYxsylw92Xn73gzuVN8Diw5FLu6ihawOpGDZt0y7my/lsVZd18FJXjfcxRlguVzEIMaWpq5t6OpkvFqUKIIpN8cnBg52d3WvXrvNvfP1lzYpZjNMIt06XN47LQNcuX/pK5mL3ZMKxLAwMR0kYJHOlP5Tfnt59f7i6MXhxz4wyX/2H9x8dPv/8L3UiI9u+fHUQqmNLsZ8XG/3BRpYPktHexuXL29cysxE6N1+sDqcPT+cPrKnToqC04GSY5GNjEkBZnzpRZAH0ogKogAqEqmb9lorqekMHhRDEt2f71wEVQKKIABEFUAACMEiGDROTsex9k6bbEXq3Hy3TXrosH8W4CBFVGaVjsggcvILQbLasyzYEjYIxaAjqQyBCIpAYibFtO0RMcyvQBGm6rrtz5675II7Lcrko4Wg6W5Rt7Xm4M6y7NEmHu9dfyGLZS+vSGOiO/uSH/n+/97/90sbJdtMb91SyYoHhyhd2b99q33hxVD96uDy5vTlGzPcij3zLHIEahRiXJyvN3bKcrLrFaXlvWR+Ssj6ejdnuFNspZNalKXoxFJo2hI6IVKPC+vgJRm3BRKL1bhmIMYQQrTUUvcZAiMQMUXwIwUcAEIqAuYBVcNai4a7tFkjN9MGbX339t24d8Uw9om1acElquQBojg6PnCsG/ZEz0Xuuq3a5qoskY7Jd19ZNE6NRsP1+MRiy4WVVSZRWfGMQiSOzY3dZj8rZ4+mJGJf2B10A02x9+dXfdmY6vnzJrsjjcmFfWOr0mSff7cP0S2n3OVclf6d3IC9MyuHhgyzOPjq5d8+hH29tB0yPpk3TIkTydVNWy9VquVqugg9d7B5PHz+cHQSHKnFWdV3kNBk5l+N6nwBolNhF33kPaEAYVIkiExCxrLdnMKy3vXjfIViiBMiKErNbH2dFNMYaa1IFExWA0FkjocHYpAZHg/SVl77w7gdT7g8X7aFRH+taTSC23ksISmi6NpZlvT4G3zSeKVmfAwrRI4JNIMksoPjYCURRcC7f2d7hK6+aELvEWgia2jRL8pjnm8nG6t7tBHFVTVcwxRx6j9/PT45s1r6c6PBTI/+N//ndD6bT8v7qyq/kT25HDU9mzQ8/OvjRzeODSetsFpt6NT2Zt6tOYuvjsqqPl/OD+WQZfAeMEFSpKX1TNqiBWTvfRhE0AiSi0ZpElQkVqVEQRQuE65N0SERsmIxgJpgpOkCLZIEMGWtd4nDAlEdlUVJBSzZBJpEiEyMn+9v7nH7i3olOylm7fFIkAJZ90KYNTdMtFmUIse06YzmEAIC+067xSJhlSYze2AgQXWJCDEzGsEM0bAxfe2kPonVUaOSmCiFAIZubB1KGw91ifO3lz+5fuZqWJ3z414CNGePos+Pyq787Pdl58MM/fP+DW1ujwe2H1Y/++nsPD2aLMtStKHCRF+36gJ6PAUwDfFLVB7NZHUIUUC+5SmqJNAS/KlfTUFeh6WIXlNa7AwkpJU7ZOiABUEYCVIV1vGmIU+LcJkN2eVRquwhkkCyxY5P4zvpgRIjJETEJGnYIjKCEjWJ59frzJxMbwsZscRJ0bjmRgKGT4CX4qKppmnjvRQTRdG1HhMahtZj3kn6R+rbr2pC6hBCtNW1T1tWCr728C0IgSIoxRCAcrOo9fQb3V5e296++/urmy5eTxTs+3LK2sa9cXex8ZTbZqMJbXTKoax/v3Lyny8mjVSdJ5cELdVG64EWjl9ipbYEPV8uH81mLwsbkLu3ZFCWKqkmMqHgflouqKWOMSBYAlcgQJcQZMAsooBLp+v8TITnijLggziOlyg7IAlkFo0A+QusVNVGgECXGoOsj6EiIILqAzhMsmOvnrn3+5g0fODmePolNt55VUgWRKCLMOBwOm7pbrUoAtc4QCWJEAmcYojJRkef9fpGltqrmxii/+NqeswwSUAMzKARrw9fGbZf2dwrp7SeUPbLVh0lhquvPvTV77v7tD48ffH9yWqZ8ae/L39gY4/ytG3emsQoYlLyAl9j4LiIGxCbaJ7PFtKkxM8Ug39kcv3D58uXtrWK8EU0CSRLY1l6rVpfLjsgkaUwTQ4yIjjlFtkqoGlAUiRVZ1Ao4wVQoE7adiACud3yKomGHyG3XRPVEMfgm+AYRiAhJgWYkI+lC7I4Sm47HLx1MofGhW818K6DYtl2SJKPRYLlalmXtfUBQl1giiNIhqrWcOsPMEqNCHI36CkE1DEd9vvyJ1FkiEMOYOGcdT1q7SK+/bm6l5S3QWukk29hc8s98eDic3vr+w5s3HkziUpPYG1O2/WX33Y8Wj969i41qG8+Uo/G+8t2y7U5L34I+c/3qtWf29jf7+6Nif7M/GmT/b1vv1WRXkuT5uXtEHHllSiChq1Ao2d3TYgSNnCE5NJL7Adb2lQ/k9+IHIG2fuCTH1oY043C5Q27PbOuu6u4CqgoFIOXVR4Rwdz6czASqZ66lIa8hzTJv+IkIF+Hx+9d3Du88fnR0/0k+2hfM+j7EFA/2J7MaixwzR4AAYARASXGAHoEVNQmMzWoGx+rAoJASESCoMCESgLWWHIsE0KgSVSRG7qOGJDF1KocqGYcNpFY0P773/aaVr57/tu88szBzWdVt17KIQRqPx9YaBQFN1pGxhATOQpYbIk0Sm3ZHFgRYUWxKMXiTmWx5tcpsQca53P389MVvXmwemuX9n347+WhP5NHly//nYvf1st0xm8IB6+41/6Z9/bP/sTz//LntNUURFk7CLMwAwgCIybj9+fjxw4cj02t3Ncm4yLoiZywELRk3n+FxZrLait+8Gpc8yorSAHJPhoQ9A1tCQxlKpqACbMhGtdblUciHJrNK1jpUJIXEqiIsQGSzTCKosO9vDn3JCRyjDYVl663bXjD+x/3D/f/sTx7//GeT12c7JJtULy4WrjBlXaqkgQc1mVQheu/72XRmnbPG56U1ruj6brFaBA1FVfRdZx4828tsmVHRbAJqrpIvr3b9pvHroJPsPMXTc3P+xm+6beCNAovamFLTdsvF+tvT5vk3utpIAI6QkiYWTipKhtGgy001fvz4weOjeeY3NfTjQvKcyQZj2zzLJLnV1Ta22ztze+/QjPOQWyLyAh6IkIwikkNSg5CTtSwqiAyoaBUNp51qEA4IbBFAEoeOY4iCqpR6Di1rygHGxsysPQK47+15gI3xY9li0yzW/frw3hMP49/85tcDaQYIRaEPUSQhKqIC6sC6IkOIVNZEDkLyaMnlrvMdIAqAefJpGYMkdi4r+74tXUaRuqvdvLRVmamgKrIySxKFpJQUk6pXCaJewat61STIcg0Ru2EyOGvyZEbvP3qwX6cSF3XWFgUYawWNA9DOpW2qwN8/4DszmebGCKx3ZzF2kgKBWEIUtWAFgC1ExI4hiRN1HFSjskpKyolBPVAnGHe9Ck6pzbrlZru4iL0HUwesG3A7Rh9dYBIuAcqsKhV79efJr9/77M/+8ObV2abxfcIusecIDgDKzJKzCZgcGUeS+iInBT8ZT8p8jJoXbpSiiLIxaB59PMmLcUqYJBkDhc39VrbL9mhcgUIMyfchMSdOIUliSSJJJIpE1aSahswDDA333RDJWjKZsUVZjqeu+sF794+dz/qLCYSSNZesgBzJdjvZm8zv350QrPrdgiS7vGhfvrlsutT1SZQHN+0soAEBUEHCAiTXYFOrqZHYdqkNNimElqRDlsLNQps1C212m65fM2jCXLOxJ9eJMiQF5ASJGY1JXtp12zfgdfbJj/78H3/9u3bXjzI3GudUoDW03WyFoKgK48hllGcGNCGocwVHCgGCZ+99Sh5QzN2ne2QKVq0qqxpjgN1aUkfTDDhJShxSDClF4cAcmJMIiyZRFhUAGQotoISKhGgMudwVI5tXIenObB99eCRmTbYVij1ItBnkpXS8P9u7f++A03qzvTg9vXj5cvWH54uzK9k16iNG1iSJjBCxIQQmSEZ7ktZin5HPJ9lhDdRdbvyyMSFQDE6teue3mnAWJHZxHTSAK7CYeMjZWFMCmOGePWyW/WYloa9SGMWOjk8ePnzv2VdfvyRU42JRprKqU0IkShyJJHNUV5lzVFVjBNf3LEJ5UbZti4TWZebwUZXlDq0IdNYBqFldBWBXo7BIiEkQo0hCjaA8lAqGCgKiAgEaROMQrDE2L2xZkysaz7td37T9kzvFe8ejkXQzlJLFBqCAFM1sun+4P91tTs/OXpyevjo93Vxc9ptGu+TaID5p58X3zCyhS5rAsKWY+TX4NeY8LXE+q+445n7Trq82oev6vjMmQ6hUq6tO27j2vBAKYm0A17Fgnpt8isb5Puw2nbAtioO8Op5UcxPaV6evPvzkUwb7+vSSNbXt0nuJCWPwZZEVmQFI1sBsNkHN+i6B2vF4tliu2r5T1dFoYh5+NEICACbilEJmynYnfudrxJgkqjCgIDIAA7IO1SkjgKKoQETGWucMuTx3ZdULnC/XXR9CSEWW/Yvvv3fizFxlDlR6wEZrLPfKWTBmu7tYr94sr86abd93KOrQGJMTGUpCKRnfo/jM77DbxdgljEWm00xGDkalnUgyV1dnCjSe7s0PD1fNNpKDfLb1tOrXjE2SDZIqZn0EWxVZURE9sJTvttvz8zMiO54fRlNYZzLTuhJC8M8+/uHnv3+13rShD8FzlmWSIimP67IuMmuwKsrMjfKsNMa9en2aZW40GjnnprO5ZR9Xi7YeTcaTusoccp45WMbtDqyIioqAAqIoigKgEQSBAZpGBuk6CLZGCS9WzWLXRIHMWkNyOJ8e3j0yGGLCy56J8vJoinm1Yd01a0lLCVtIqD7LjTUVFMBBUtKiCzYG896jJ/ePj5ymr7/+zel2m5+4YpSPxnOCvGm2680rsGE0Hpnc2gKy8WbRLWBaBXJJzzD1mly3gygy2sutAPuOrPPca9LxeKyAO2Zw+cVidVi5aW0tNQVv/+o/+fP/6X9Z+NjWhaoma21l7DwblUXmCqOBJdMsy7e75XhcZEWR5VnvaTqZ2sJU277vuXI82yWf+n592QcPWw0DpUNFQa8xHkoohIaMtQ4BCQgAiYwtarCuXbUJHZCIyMFk9OzJAznbxuSNRYtZZnPtYNd2XeilSAicAsceDZcZoHWdYKig2nmjtvjwg8/m0/3CwLRyLLJaLhPXq3XMbURKL9+8ZE0P7j0os5qTbDdds0Of8sQVmAqFMWHalbm5e3LwKBtXna5738dwaY1Haa2RanLAZvL588UXz98cz8u/+nj/fpaWr7748MkPixLWPhqLBblyVFa5K8FCp4goaJImpHh857D3fdf3ADyfT8mQefL4pG8y39SbJa0XoVlHZBd8itwqoqiyiKoSICGiMTbLrMsQSRVZhJOOx+P9O3dHewcHd04ETde1yLEgDc1meXn27cXVm806ZC4U2RpSlxFXzmGS2Ia2heBQCkRwZXA5tBvTNvL02Q+Qch98is16ddr3iczUQEZgdrvdt2++vlydHtyZFVhUth6V4xD9YrVwRTGd3XF21G2+lgAYRo6P6uzeeHSgyL3fKYmkJUELoGBG6o7+/U+/+vXzreb7D/eLg1KyzAWTt5gud69zA9OiKozJyMTeq2gIKUQGB6xc16WihuhnsxkLd11nivKDGIoUwPs+JQZERQwaA/dBJDB74QQqjiCzTE5MEZXayNvetzHVs/n8+Hg8nyXhqsyfPnl0cucohLBY71Zd+Kbtzzm/kNGbxmXjw6rMM9nV0Batl21j+t5yb6B3OZGpX1yY/3BRHR3fO57U2u/a3Xq7XvTtOiGzJpdYVV7tVp+/eXV8fG/fTaJaFsO9bHfti9cvqnm5N63It8vV0reWw6jM94FIyXf9KsYE5Z7vm6pAwgRggKrlOr55s61d+dH7ZlJfZNpWblLWd7/45rLIy9xmgPlul5o2bNqmizvBiEWWl6WI5llmDKqkrt2m0JrJ5D6LpJREeMASDgBTg3D37sn77z8djcaIFGNSVSSnYJgFEK1zh0dHx3fu1KNRlucAEEMwRGVZHh/fsc41bVePRuRyUSuM2816Wuf7s6pvNqbZhL7rfRRbpmK2wsmvXu9+d8VbLOfjKjfgfdi2/WK9no3HIcXeR4zStP2L0zdUFO8/elSAYVTVqNyeL14smlfH92aO5Ozly92WQ0NGx+PqIIXU+zakzjpDhSWKNgM0BmylWM1nR8+evvfRB/t3D7RbXV2ehosF7d9/9PzN54RJA2vSlDgJb9uNWK5mVVTJi7xtW2sNEjTNzvd9jMHM5vdSiikl5kRE1hpVUJUY43gye/r02aielEWVuSLLyywrsjzP87yu6/39/ePj46IojDFEhsgwp4GGwsx7e/OPP/74+z/4LIZ0cblMidu2PTt7vetaJaO7rRcTbH2Z8i/X8Msz/42vFlD1kpQDojZ9Ol9u86Kqy1IFQmBrisvlet02H33ykSMMXZskqnbMl2eLP8zvlg+f3H3x+9+tzy5SGDsYq3cOS2czY8HHRjRY27uM8lGFZY2uTAkp6ajgcbWRfrG8aH7+89NdZ48eHvZ8Gvs2BfA+hBDRYKK0f3e/SR0LA6KxhITMSVVjjCkmy8P5EIC1NssyAAkhJGaX1cvVdrvtM2fzYjSfOwBlTiw83LzOsmy4fz3cOLTWFkVJRGVZVlVdFHmWZUTypz/+yXYXXjz/BpVDlO2Xp1/mcGSSMa6PvIvqseqobDSLgBbTRef5LDg0XdM/zKppRBJCWy69f7NaHt45yq3tuwaDJ8yp0LY/d2V88vTh+fni/PUiZwvEeYmZs+v1pevJjWTZnhVjnVpwOLKTIgq5rKjBdL6zCtJvJXZVmR3eHavhOsc704PFxaajpJpEEysUo7KcjjaLzWRcZbkty2K4LphleZZlq9XaTKZ3AdRak+cZEYXgYwyqwqyJ2Vg7qkeqYK01xlpnrTV5PtjoLQvFGJfnxWg0ns/3ZrN5VVV5nhtjmTlGnu/tX1xebptGiRjIq73icsH5RvKOikhZYGUZsDsAyiHFVRvWbWSWwlmDFBTONutN3733+EltDXFUSKTOYNps3zz64Mn86Mnf/3+/W1/2Fgy5InECAuPAlrDqLi63bygXiz0jCprASuRGeemIDBMGa8Fbs5vOSCjO9u/sGrvYbpt+x6IhpcBxsj91lasmZe7sNb0cr9G3XdcbY8z+waNb9I73PsZwzQ8nQoAQw/37942lG4AHDmXR4c71cH29ruvZbD6b7c2m06qqrLFkrsEAKUVVddbduXN8fn7a9T2QTWB7WyfKE9mkyMLKESWgqpJxpJF56yOTFWHxbUphHcJFu1Nr7x0c1gAZKpEQ4G5ztn9YPXr2yX/8zenf/f2Xwjiqc1NkbfCrzbaNvlV/sb1spMeMDEjTdYjQNS2K1sU4z0vnxlaKzcUrk9bzEd67f7eYHG983Yjvedf63ocYJdnMVpNCUYXjAHCLMXof+t4zKwCZR48/sc6pSkpD9iwD9E0JRIVTPDm5e+/eXQAxBjNnh5lYFMVoNNrb2zs4OJjP55PxLM8KREIkVZChQJQYAGNKzLHI3dHhwZs3rxMLIhGwAUEVVRYV0RvuF1mQ1HQtGyfGFpkpHfRdt+i6VQpkzGE9GovYFAVS113ZrHn60cOt13/zt7+IWu8dTCdTZMyjUJ+kY9mFuGjaZJ0Y50hTjNw3GHtgQczV1jarJ0VeABQhZQrG5dn8yOfVN4tXO7+OiZMMqTCTASQVicyJmZklxtS2febyEIKZzO4CDi1IzjlnnTXWGmuJjKoOINjHjx+VRVmWxf7BwdHh8eHh0cHBwcHBwXg8LsvKWquAAMgsInyLLRzAHoaGFlCt63oynZydnguzg9YigzKoiIICKRkkiyrBd6KiRNbYcekK1JRiK+JBvPfadFliAt60276/fPbsaH58/L/9nz978aqzWT2b2DoLnaemi0ltQrtLfLXbsbWuKEiSJo+pF99JSG0PQQpjnJV+ZOuJnZzsnRTlCEb1ZfLnu0UXWmszUEic+uBD6MkQp0jGIGDwUViDDyJqjDHV9E6SYTDXmR+QRXRO88zmRT4CMPt7R/fvPzg4OK6qcVVOiqI2JlMg0etDPFViGUhcBEjXNVEkg86QczbPstLafDadOetOz970BliBACElI4zDMZvBLsTE7MhUIHsORwYkhaAaAJVBhbYhXqW45HTR9k/uuQ8//d6vvqZ/+/cvxRaTnOcQZ5p1KfYiW9WdsYvUdxAZojBbKjRGDNElNlGwd9A6F9Ao6fgkm9+PbcK+T0RfLtfLviMCIEHLrLHtO05kscJoNGL0jIDOWDuMrSpNNT7SgbKNaK2xxpAhS2Sv4SecYsxz9/HHH93QlGTAtac0dDYlVRaFd9lQ34FZEA3MmjzPrLP7B3uqcnF5TgLKnGJSuFE5QQx9bwAc4nwyGpU5qUiKAqAIco3g1RhD0+2qUfXjn3wfi/1//Tf/71WbArKY4DFxXiQqWzHRVp/8+M/e//jTxWbb9j4Jxp5BwCgpQ55Ps3KqJuuDR2emx3dCjOvF2Wa3WpN+3feaW1B2znjvVRXB9J1XRY4xMRPaxOz7QGT7rivK0pSjA1BRFRl2NUnMzClyTKqsyszJ+/7k5F5d16ri+y7GIMIiSTSJJICBCEDv0mduUFtkBtStGboUkTlVZRH6bnl1paIIIMM3ohCCVR1XxbQu6zJXjpoi6KAJMwh04NANoAg//MkPn336g3/zf/z9N2dbW9VUGizz6b0nnZ2FRNXeyZ/+5//1v/rv/oe/+Mu//uyHP7Z5tWm6ruUYqGsYoWJxlOWmsOpg50MgLCb1eDouZuMl6K4o8lHZN1sf+msamTFEptk1KbIM2xXaoqisdXlRTqdzyynwNagW3mE1qtEbHh7oYrH47W9/O5lMCHVw6Fnm3hV6GYBcA10Bb2Bo71AtRBWY2Yfe+877/v3HT/qm/eqrr0SViAShLIqH77//0aNHoPr5b3/V73Y8sM4RUcEgCOKgzyOI+/sHH3z66Sby+XI9Go+m88OL9Qry6uT9//Qnf/pfHRT+6Pho/+6Jq+pE+uiDP/nvP/ze4vLsf/2f//X/9Tf/1svmommXnb/0V3W7trlLlH3dbKuXz+8f3Tk5OYH5Afrt4uqURUKIZuiacFKWeRyl0CRFs1k1ZOxoXKPV6XQEgKYazRFEVUB4mJUirMLDifjgrBBhtVpXVTWbTvEtzmdgEKIxBsm+i9a7CSoNAVx3kQGnFLuuiTHGEAzhbD6/vLpq2sZY+/D+gx//yQ8fnZy0lxffPP8ydq1wINABJ/dW6oAQEInok08+/vTTT5rN5fMvn08m+69fX5xfbljrpi1n0w/uP76TjaboCiEzlPvQuKIaf/Thp8v19uW3r/O6Gu1NOcN8Wk+O7x7ce3j//Ycnj+/P795NWbkMvuM+hc53XeI4KOGkxMYYUZEkQyg0XDADEDR6fnlmymoyrOt3v0AFYHivAxQlpbRYLKfj6XQyM2SNsQikAIhEaA25P8KqXNN9bqhdKUXvu65rY0xIaJ3Li6Ia1dvd9rNPPv3k2YcHk1mzWLx68buu2RFoih6HxTDAd687UsgQjcrqv/yrvzqYzl59/fV227e9eXm+2oUYWEPAGHh2NJ3tH5Cx1hgRCd6nGDlJDPHh4wfGQdB+dmf+2U9+9Gd/+V8cPniyf++BK0ktNAydmDb5ZncZ+rauysSROQ5lhxAjIilr8EmBmNWQ2TuYHhzOZvORqUbTd2QS3gr/AMpwZQVx4HJB8ClFPrl7vyqroewIioBkyNKNMtWQXOuNJNJAdVeVvh+MGEXEGFJLLs+MNR999NGDk3sZULfafP2736V2DZqE0/VsvwbGCsKgxGUI6XBv/6//8i8L4168OK1n978+a1tya+7bsGLdoe7UFg8ePChyV2SWU9ht1l3bhL73oV+uzkwe9+6Mn37ywd6dE1vOmoCeY5K+8btiMjtfNd6385r6bte0XeIQYwCElFIIkTkZJDI2xpSS9r7zsZvNKleQqUd7cK3xc9OVOUiBXEuMvN03RaXZNXmeHx4eAQAZGoRIkPAW0AVvEaPD7xIAZea+b733Q0sykCbm9W7LolVerK+uLl69evPVi9BuU/LCIjeyWTfb71BFJouUG3t0ePgXf/5ny9Uq4fiv/8W/fP7m6nyz67gPcafcKu98rEbjyfHxwaguEYRjQARrcLl8/frNC6SIRvKqaLrQ+WScC6lJqdk1WyATUwp+V1otimy5WjInVUkpee8H0rIBUoXE7KNXTXlhitLG1Juyml/LBb2VRBkQ33gjo/J2norIcrUuq+Lw6EBRYWgtUhUWlbfDJgIaxCEQVHVQ8BlyRAUOMex2m7Zpy6y4OD37w+ef95srCDtJfRQQvfkg14InCgqE6EBzQmfoyXvvffDJpy8vL59+7y8ePP14NJ394fdfdtuWQ5QUWWKSWkQfPXxweHSAqEWRZZlZrs67/rQo7cHBQdf2VTmSxFWRCTeGutV65XufO9NuL1JoLhdXbd/khW2aHRENcC4RBlCOQoYUkmiqR/nDRyfWUV7kxmWjW+wW/HOvP1JM8D5sd5u9vb3RaDRUyVQBVPBad+lWCQyGuRlj7Lq27/shVEopdV13tbgS5sXl1W9//WsHmhNoCMJJAAe3dkt4vn4wCAYwc7auxh989MmdB48vlpui3ptM9o/v3P3m229Pz974vhUOkoKgjSme3D158uQ9ECHDV4tXZ+dfZ5YSc1VVKUVjzHa7QdSU+u1usVguiKDr2rZtxuNahLu+FUkhBH2HqMzMqMPKA2NMVdf7+3td1xZVYVw2etc/vIuOup1f332P3vdt2x0dHTnnbhU0DBERKbyltaoqcxrcS0pRQQZtut1ue3l1dX52/vKrrypnD6YTCV5TRFC+dSzXD0jhJuCxiIXLyqraO7q7f/fB1ut2F43LxtN5iPzFF5+37VYlAkhUJmOeffDxxx9/SqTL1enV8pvRyEhCa21R5sbYEMKQRDCHLKfdbptlNgTf9y0zI2qIXd93iDigWW/JoNGHPnhQLMqyLEpjLVxfL3tHWeLaub5lXf+REYcXxxi+/fblz372s7ZpOSnoW2j9LQKSh2tXKYbgU4qinFKMMfR91zS7vvPtbmdUZnUlvgdmuhZfuTEiwq3SE153zUNuzbgajeqZYnny8MOm7bbbzReff26tq6pR5nIiS2itxaJwRZEZQzH6epRnOYzGOaJRxRQFEdp2lziKMkvyvp/NJiISoifCGH3vuyHQGfBut7jBgT8PIDGFwfOs15sUebdr6Rb09k+W87v/eTsyVRAkSCl+8cUXv/7Nb/s+qKK+Y7ub7xzjYMQ0zMSUovd92+7atiU0lqhwpnSGJJGwXgMl9Zr9czMThxMOS1g4WxfF3mx+cbH8u3/3U8ymewdHMcbVatV1HZFFtETOmtxQub93GEK/ba5Wm/O+3xZFnpJ0bW+tU4D1etO2zWw2EeHtbnN5eb5er8bjejqdxBiMpdlscrsvvbvdEVFZFaNRnTnLLADQNO1212RZYUMIg/Dlu4bD70LY3/6qARsFqqoppV/84pcI5nvf+36RG0BRVVEeSj6Dm44pIoExFIKoym0sRsYE7/frEpJHjiqDABMMzcug19ZEBFIEVQLNnZ3W9Xwy+3bTn68WL98sTw6OJHkf+8vzy5SSCICQtflocjKf3xmNKsAOqfchILgiL6fTjAiFpe/7XdOc3Du+IVVKjP70rHWOEGG73ex2G+ecCIcQbtNca60xBiQhEYBp27jdbouqypxNkY2qM7cJMNw6yu9IobwzL4f9C3EYseDV5UIE9vdnCDog94b9WJWZmeha4GJY1CklACFDm1XTbjd7o9oqI7Pytf6UIN8kMMPfAkQlgMzgtK7uHBxNZgc///xFdBMzPnh4so8qaOxP/+FnbdevllcqcTadHt/5+OTk3k/+9LN6hFmuhNB3yVI5qkd5nrddiyhEWJb5xeW5960xoirb7abvO1Euiqzvu+G06nb4t4hQwmu36kPqOp9YiAiJLECMoXG2BjWERkWvZ8I76OC3GGEFQBqGiKDMPiT99W9+lhfw4bNnQys1iyRhRCVLBnMRFtGhuAkAzlkbo8jlwI83hMysKgIqiiyqoAaREFUFARANEFHmqqIej0aM/O3lmzKbL1crVVLR3Xb7/MvfjadTIMzq8ezo+P6D7L/5b3/07MOHXd8ABwZfOem2a6jrEDwRhBAmk3HTNHme9x4XVwsk3Nufbjfr2KUYAUBZWGIiJAVGQiKEoa5FCijGQVVnKXHXBU4MApYMx5hCwDwvFG7l6FDf8TDvREWD/CkAgIIgoUjwIf7yV7+s6vr+/RMfAhEAAhI5awgU1KpoSlEVEHsRO/h3FSFAjoOWrCiqKAoMNV8AUFQlBINABgoDdZblmT1dXu38Tro1d2tC48rRL//u36mmlHoiHE2m8/2Dzz47qoqua1fjyX7f9igEJo6qYtPsrLNI4H0fYkKSGPuUQtc3IuKDLYosYxuCz7LM+254usYMfuY6eBAQMmCRRKSqM0IkohSStZYCR+97okGm0iCi3kTV+NZ3/5O9Et4i1He77T/+409j/OzevXtEYJ0lQmOsJQQd1qwOzi6lJKIppeuFLEx4LRgI12uGhx3YgFhCS1iZOLM8qxyS/erNt56liG2urbVgi+L3z7/sfRtTjxoP5uMfff/juwfGSGw3CxWczfaDxWA0hq4sqWm3iFyWGRp6/ebri4vXh4fzwT10faPKWZb3fQ+gxhikayr/8GlvxkyiMlx3Go2KPJMYOIQ4kJttShKCx5wMDfNRAb+j4fwuAfc7GyYOB9ZpuVz8wz/8w2azefrB+845REPGZs4Is4gys3NDJc13Xe9DAMIkbA0By/BI4DqpVhExKIhqETOi0uiocGrMWRN+f7bytihG1XTsNpurv/ubf//Ny+dVkacY7t05yCmNCwzbTSryo8OTNvadbxWAsmJUVZvFFQK6zPbLdrU+c04jtyEWMUYiGo/G292GOQ1elAyJMAAMignfdcKAiGBQBIzFGAVQjcusMWY4XQFAMnZIBvUdHb1b333zL7wLb4WhkVQlcVouV5x4Pt/L86LIC3utaHGztwKoatf1L776GoSrzDq6lsET1OvAR4VACNUadNY4Z12eFfVcy4Mv3mxeNQnq8Ucff/TJ0/d++euf/+3f/u9lhgfz0fc+evrnP/nB119+Ma3yvVHW916RpvO9pBpiQkOIhlTadsfsRcN6fRW5S+zLsoghAkCeZzGGlOKQy6r+sfb3bWX29jgPbnR0iMBYN0hFXisc3iqS3s7Ht1P6nwszb17DKSMqyGq1vrq6qqp6PpvnmTNEMQ2K1QAARGaz2Tz/+itSLq2xQ+UCUREEFHTQahyiXkPWks0kH0u5v2rl+Zur0eHBn/zkB9//+GlzefqP/+H/jv36vQd3P3hy8r1PPpiOyjq3v/nVLz54/zEamxSKujbWJE673bYuSxA+O3/tMhOTH7IJFm6aJoZgrbHODEs4xnADqpZ33cPNugQAELm1ohKhMWSsI7jORsy1mAzRdcHsnRX9Ty333TUugymHkKlru7Oz88R6uL9vjTXWEJnr1EhhsVh8+fw5CucG3RCQXsvKAgEbQ0gGyKLL1DixGeeTlt3yavX+43sfPr1/Z79I27MitdMRVZlwv9XYJ9/NJ6PRqPzd559X9Xj/4LCPYTydEFGKwQD4riXUXbPzfWcMtm07yLT0fZ856vseEAb90bIsve+/o5v7jhFuq1lDhX94j4gmy931+JEQhtNnIWP0u9Ix/3w4+dbrDB3PQ0qPg27o5eXF61fflkVR16N3xAU0xvj8qxccPHIyIAYBhhKjgkEGBFaIIoHBCyWwHrPO87396Qf39/v1K4wLaK+s32YOCGLXbFPod9vNcrmYjid1VX3x+6+efvgRORc43j2502y3IDIe1TGGGONms6pH9Wq1jCllWbHdrGNqVdUYbJpGhMuyQMTE8Z+14600ybAFDVmDghqbZYj2xlhABhSScCQEQKHhejmAIUJU0OskEHAQhdabyDLpYAoFoqHqCgDYtumbl69X621RlmVdKaoiW2f6bnd+fpZAvUIr0Cg0DNtkFrHYBumjKLsiH88n04f3Dz58uPfsuD4Yk4RtmVNhSBMjUJkZh1A4hwB9166328129/TD93/5xS+mo8dHe/eMXY5GOJ09CZIH6B25V6+/OTicbncLRI4xGLJ1VW13C+YYY8cSAcT3Ps/zUT3xPhCSggyVfmFAMMwDJV1FlJCuzQhqjLF4XSMARBxi+OFg5prrL3rzIxq22JuvwcJv6xswFCOHyX1dCzYxpYuri2+//daHfjqbAlJe5HePDllktd74oVqgyApChsmUpdmflQ/v3f302dOPP3w4m9uCIsWQZyYEz8yZy0AxMVdFNhmPmYUFbJYtVuvIDACuzr95sXr63jOyWwEuy+OsGCuEq/Pzoshev/5mOq3Xm5WIiELvGx/WiXvRlJIfaP2IZjqdxRhFRSQNPkeVVGFIq28rO0NeqaoG39HVul3Cg2WHK7xkCG6A/4Ny5Y0dh3a9IRS1RGYIsAGHCc8AKioALMox+MvLq9dvToNPdT0ucnvnzt1Hjx5PJtO6rvO8GI1G+/sHHz57+P1PHz04ntyd13ujot9daFo6QlTbdd1sNgshtG2b5zkRGdIYo3E2K6pBNCAlBtB137385vLevfvjaRE5jUeHiMY5JNLnL36/vz978+aVyxwiphQSt7v2XIERmWiotqgweN+H4Ieqo+qgnU0if+QVYDi8EhGj76z/2/LGja7z7Qy9PV0wAPY6/yZjyCAYREN4bd8hDVUVvb5IBKrp9vl5H09PL07fnFtH48k0L8qDw6ODg+M7d06effjR9z773o8++1C6ZbM4c5IoxdBsDASOXBRj771zzlpblmXbts65ptlaYxRxPJ1ud01RlkN56WK17toYfHr//fetdapaFvnpm9dALBwvLs+Pjw9X6xWisqSrxWlKG+bIEuu6sjZTAVUcHkmWO2NQrs868MZUbwusN8UENcYafUdf4raOi4Q0NE68s9sCGgCLiDD038O19tZtDx/RIAZ2/XdYWHQQVrHGOmOsKm63zdnZm7bry6JyWVGUdZ4Xs9n+wWxeSHr14ncm+e3lorSFM5lzbjSe9D7WdT3o3hhjYoxN08xn05ACIHkfrHVFUQgn56yS7fpmtdocHz8oRxVrU1WZCn775qtByXaxvNrbm3dd0/um9zvASETCnFI6PDgyxg3NxwAQogcQ5qTXbQg4DBlu5AVvT6WMy9wfrei3bnooR9wY/rqxAYZE7ro7RfW6SjjM6KFuhEhDx4HqkKuQMdZZN3jtxBxi2Ky3p6cX3oeyrOt6Uo/G46JsT7/pd5c5sW+7Mh/HqKvtrh6Nh4Lm8Omn0+l2u00pWUdlVXVt2/X9crmcTCZ55gig73vhrvdRpNo72vNy2fbbyeTAZfDtty+ttfv7e6enrwFSlhvvO2McAGZ5HkJs27aq6hgjs1hrEWBoGBFRlevIeohMbu04WNxY59716O8ENzeHdvo2wNEbzMvgWPRmGx46WPRGkYbIDk4eUIc5aq11Nht0lVWFZcBs8na7e3N6dnFxuVqtNbSweum788yFO8eH21277Xw2KperRWbtarVS1aIohunAzAoyQIqcc77v22YHAHVV5sYm3kbGy6t0dP+ol9eXy7PgqawyFe26TkTGk9Hl1akP7dHhkSSzv3e42WyEWUG7viNDZCiGyJxwKJ4oKKAhO0zBd+147WeG4sStq3lnPg4l1etjq+EnCqAKSEAGkdAYJBp8VmJmURZREUAwxmSGLIAasoTGWjfINBkzCNrR4KNENaUUYlyvN5T6Pbsk3B0cVPuHe4G1i3Hd7YQjiiBiCOG2czXP8yx32+3GDALvosxcV5Xv+8yarBSGrOlLL3022QmmUX18dvraWDOqxxcXFzH2z569v1pdbDfN3ePHl5cXztntdi3KiGgM5VmRZS7GmFIkQlUgvNa9fNd8enNS//8DI1FouAplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjIyODYxCmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago0MyAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjEwODIwMTgzNzMxWikKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMi4yKSA+PgplbmRvYmoKeHJlZgowIDQ0CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDMzMTI1IDAwMDAwIG4gCjAwMDAwMDk4MDggMDAwMDAgbiAKMDAwMDAwOTg0MCAwMDAwMCBuIAowMDAwMDA5OTM5IDAwMDAwIG4gCjAwMDAwMDk5NjAgMDAwMDAgbiAKMDAwMDAwOTk4MSAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDA0MDMgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAxMzUzIDAwMDAwIG4gCjAwMDAwMTAwMTMgMDAwMDAgbiAKMDAwMDAwODQ2OSAwMDAwMCBuIAowMDAwMDA4MjY5IDAwMDAwIG4gCjAwMDAwMDc4NDcgMDAwMDAgbiAKMDAwMDAwOTUyMiAwMDAwMCBuIAowMDAwMDAxMzczIDAwMDAwIG4gCjAwMDAwMDE2NzggMDAwMDAgbiAKMDAwMDAwMTkxNiAwMDAwMCBuIAowMDAwMDAyMjkzIDAwMDAwIG4gCjAwMDAwMDI2MDMgMDAwMDAgbiAKMDAwMDAwMjkwNiAwMDAwMCBuIAowMDAwMDAzMjA2IDAwMDAwIG4gCjAwMDAwMDM1MjQgMDAwMDAgbiAKMDAwMDAwMzczMCAwMDAwMCBuIAowMDAwMDAzODkyIDAwMDAwIG4gCjAwMDAwMDQzMDMgMDAwMDAgbiAKMDAwMDAwNDUzOSAwMDAwMCBuIAowMDAwMDA0Njc5IDAwMDAwIG4gCjAwMDAwMDQ4MzIgMDAwMDAgbiAKMDAwMDAwNDk0OSAwMDAwMCBuIAowMDAwMDA1MTgzIDAwMDAwIG4gCjAwMDAwMDU0NzAgMDAwMDAgbiAKMDAwMDAwNTcwMCAwMDAwMCBuIAowMDAwMDA2MTA1IDAwMDAwIG4gCjAwMDAwMDY0OTUgMDAwMDAgbiAKMDAwMDAwNjU4NCAwMDAwMCBuIAowMDAwMDA2Nzg4IDAwMDAwIG4gCjAwMDAwMDcxMDkgMDAwMDAgbiAKMDAwMDAwNzM1MyAwMDAwMCBuIAowMDAwMDA3NTY0IDAwMDAwIG4gCjAwMDAwMzMxMDMgMDAwMDAgbiAKMDAwMDAzMzE4NSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDQzIDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA0NCA+PgpzdGFydHhyZWYKMzMzMzMKJSVFT0YK\n",
+ "image/svg+xml": [
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "text/plain": [
+ "