In this document we describe how to work with JWT using github.com/lestrrat-go/jwx/v3/jwt
- Terminology
- Parsing
- Programmatically Creating a JWT
- Verification
- Validation
- Serialization
- Working with JWT
We use the terms "verify" and "verification" to describe the process of ensuring the integrity of the JWT, namely the signature verification.
We use the terms "validate" and "validation" to describe the process of checking the contents of a JWT, for example if the values in fields such as "iss", "sub", "aud" match our expected values, and/or if the token has expired.
Parsing a payload as JWT consists of multiple distinct operations. Typically, your JWTs are signed and serialized as JWS messages. The JWT is enveloped in JWS. The following is a sample JWS message serialized in compact form:
eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ.dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjX
This message consists of three data segments encoded in base64
, concatenated with a .
. Each part reads as follows:
- Part 1: The JWS protected headers. These are metadata required to verify the signed payload.
- Part 2: The JWS payload. This can be any arbitrary data, but in our case it would be a JWT object.
- Part 3: The JWS signature. This is the signature generated from the signing key, the headers, and the payload.
It is important to realize that JWS in itself has nothing to do with JWT. The envelope and therefore the JWS mechanism itself does not care that the payload is JWT or not.
Once we verify the integrity of the payload using JWS verification, the payload can then be trusted to be untampered. Therefore, while the JWS payload could theoretically be decoded as a JWT object before verification, its contents should not be trusted -- e.g. it should not be used to store information that has to do with verification.
The jwt.Parse()
function in this package not only provides ways to decode a JWT object from JSON, but it also
provides convenient ways to perform the above verification and decoding of the JWT object in one go,
as well as validating the contents of the JWT object after it has been decoded.
To parse a JWT in either raw JSON or JWS compact serialization format, use jwt.Parse()
package examples_test
import (
"fmt"
"github.com/lestrrat-go/jwx/v3/jwa"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_Parse() {
tok, err := jwt.Parse(jwtSignedWithHS256, jwt.WithKey(jwa.HS256(), jwkSymmetricKey))
if err != nil {
fmt.Printf("%s\n", err)
return
}
_ = tok
// OUTPUT:
}
source: examples/jwt_parse_example_test.go
Note that the above form performs only signature verification and no validation of the JWT token itself.
In order to perform validation, please use Validate()
.
To parsea JWT stored in a file, use jwt.ReadFile()
. jwt.ReadFile()
accepts the same options as jwt.Parse()
.
package examples_test
import (
"fmt"
"os"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_ReadFile() {
f, err := os.CreateTemp(``, `jwt_readfile-*.jws`)
if err != nil {
fmt.Printf("failed to create temporary file: %s\n", err)
return
}
defer os.Remove(f.Name())
fmt.Fprintf(f, exampleJWTSignedHMAC)
f.Close()
// Note: this JWT has NOT been verified because we have not passed jwt.WithKey() and used
// jwt.WithVerify(false). You need to pass jwt.WithKey() if you want the token to be parsed and
// verified in one go.
tok, err := jwt.ReadFile(f.Name(), jwt.WithVerify(false), jwt.WithValidate(false))
if err != nil {
fmt.Printf("failed to read file %q: %s\n", f.Name(), err)
return
}
_ = tok
// OUTPUT:
}
source: examples/jwt_readfile_example_test.go
To parse a JWT stored within a *http.Request object, use jwt.ParseRequest()
. It by default looks for JWTs stored in the "Authorization" header, but can be configured to look under other headers and within the form fields.
package examples_test
import (
"fmt"
"net/http"
"net/url"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_ParseRequest_Authorization() {
req, err := http.NewRequest(http.MethodGet, `https://github.com/lestrrat-go/jwx`, nil)
if err != nil {
fmt.Printf("failed to create request: %s\n", err)
return
}
req.Form = url.Values{}
req.Form.Add("access_token", exampleJWTSignedHMAC)
req.Header.Set(`Authorization`, fmt.Sprintf(`Bearer %s`, exampleJWTSignedECDSA))
req.Header.Set(`X-JWT-Token`, exampleJWTSignedRSA)
req.AddCookie(&http.Cookie{Name: "accessToken", Value: exampleJWTSignedHMAC})
var dst *http.Cookie
testcases := []struct {
options []jwt.ParseOption
}{
// No options - looks under "Authorization" header
{},
// Looks under "X-JWT-Token" header only
{
options: []jwt.ParseOption{jwt.WithHeaderKey(`X-JWT-Token`)},
},
// Looks under "Authorization" and "X-JWT-Token" headers
{
options: []jwt.ParseOption{jwt.WithHeaderKey(`Authorization`), jwt.WithHeaderKey(`X-JWT-Token`)},
},
// Looks under "Authorization" header and "access_token" form field
{
options: []jwt.ParseOption{jwt.WithFormKey(`access_token`)},
},
// Looks under "accessToken" cookie, and assigns the http.Cookie object
// where the token came from to the variable `dst`
{
options: []jwt.ParseOption{jwt.WithCookieKey(`accessToken`), jwt.WithCookie(&dst)},
},
}
for _, tc := range testcases {
options := append(tc.options, []jwt.ParseOption{jwt.WithVerify(false), jwt.WithValidate(false)}...)
tok, err := jwt.ParseRequest(req, options...)
if err != nil {
fmt.Print("jwt.ParseRequest with options [")
for i, option := range tc.options {
if i > 0 {
fmt.Print(", ")
}
fmt.Printf("%s", option)
}
fmt.Printf("]: %s\n", err)
return
}
_ = tok
}
if dst == nil {
fmt.Printf("failed to assign cookie to dst\n")
return
}
// OUTPUT:
}
source: examples/jwt_parse_request_example_test.go
The most straight forward way is to use the constructor jwt.New()
and use (jwt.Token).Set()
:
package examples_test
import (
"encoding/json"
"fmt"
"os"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_Construct() {
tok := jwt.New()
if err := tok.Set(jwt.IssuerKey, `github.com/lestrrat-go/jwx`); err != nil {
fmt.Printf("failed to set claim: %s\n", err)
return
}
if err := tok.Set(jwt.AudienceKey, `users`); err != nil {
fmt.Printf("failed to set claim: %s\n", err)
return
}
if err := json.NewEncoder(os.Stdout).Encode(tok); err != nil {
fmt.Printf("failed to encode to JSON: %s\n", err)
return
}
// OUTPUT:
// {"aud":["users"],"iss":"github.com/lestrrat-go/jwx"}
}
source: examples/jwt_construct_example_test.go
If repeatedly checking for errors in Set()
sounds like too much trouble, consider using the builder.
Since v1.2.12, the jwt
package comes with a builder, which you can use to initialize a JWT token in (almost) one go.
For known fields, you can use the special methods such as Issuer()
and Audience()
. For other claims
you can use the Claim()
method.
One caveat that you should be aware about is that all calls to set a claim in the builder performs an overwriting operation. If you set the same claim multiple times, the last value is used.
package examples_test
import (
"encoding/json"
"fmt"
"os"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_Builder() {
tok, err := jwt.NewBuilder().
Claim(`claim1`, `value1`).
Claim(`claim2`, `value2`).
Issuer(`github.com/lestrrat-go/jwx`).
Audience([]string{`users`}).
Build()
if err != nil {
fmt.Printf("failed to build token: %s\n", err)
return
}
if err := json.NewEncoder(os.Stdout).Encode(tok); err != nil {
fmt.Printf("failed to encode to JSON: %s\n", err)
return
}
// OUTPUT:
// {"aud":["users"],"claim1":"value1","claim2":"value2","iss":"github.com/lestrrat-go/jwx"}
}
source: examples/jwt_builder_example_test.go
To parse a JWT and verify that its content matches the signature as described in the JWS message, you need to add some options when calling the jwt.Parse()
function.
package examples_test
import (
"fmt"
"github.com/lestrrat-go/jwx/v3/jwa"
"github.com/lestrrat-go/jwx/v3/jwk"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_ParseWithKey() {
const keysrc = `{"kty":"oct","k":"AyM1SysPpbyDfgZld3umj1qzKObwVMkoqQ-EstJQLr_T-1qS0gZH75aKtMN3Yj0iPS4hcgUuTwjAzZr1Z9CAow"}`
key, err := jwk.ParseKey([]byte(keysrc))
if err != nil {
fmt.Printf("jwk.ParseKey failed: %s\n", err)
return
}
tok, err := jwt.Parse([]byte(exampleJWTSignedHMAC), jwt.WithKey(jwa.HS256(), key), jwt.WithValidate(false))
if err != nil {
fmt.Printf("jwt.Parse failed: %s\n", err)
return
}
_ = tok
// OUTPUT:
}
source: examples/jwt_parse_with_key_example_test.go
In the above example, key
may either be the raw key (i.e. "crypto/ecdsa".PublicKey, "crypto/ecdsa".PrivateKey) or an instance of jwk.Key
(i.e. jwk.ECDSAPrivateKey
, jwk.ECDSAPublicKey
). The key type must match the algorithm being used.
To parse a JWT and verify that its content matches the signature as described in the JWS message using a jwk.Set
, you need to add some options when calling the jwt.Parse()
function.
The following code does a lot of preparation to mimic a real JWKS signed JWT, but the code required in the user side is located towards the end.
In real life, the location of JWKS files are specified by the service that provided you with the signed JWT. The URL for these JWKS files often (but are not always guaranteed to be) take the form https://DOMAIN/.well-known/jwks.json
and the like. If you need to fetch these in your code, refer to the documentation on jwk
package.
package examples_test
import (
"crypto/rand"
"crypto/rsa"
"fmt"
"github.com/lestrrat-go/jwx/v3/jwa"
"github.com/lestrrat-go/jwx/v3/jwk"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_ParseWithKeySet() {
var serialized []byte
var signingKey jwk.Key
var keyset jwk.Set
// Preparation:
//
// For demonstration purposes, we need to do some preparation
// Create a JWK key to sign the token (and also give a KeyID),
{
privKey, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
fmt.Printf("failed to generate private key: %s\n", err)
return
}
// This is the key we will use to sign
realKey, err := jwk.Import(privKey)
if err != nil {
fmt.Printf("failed to create JWK: %s\n", err)
return
}
realKey.Set(jwk.KeyIDKey, `mykey`)
realKey.Set(jwk.AlgorithmKey, jwa.RS256())
// For demonstration purposes, we also create a bogus key
bogusKey, err := jwk.Import([]byte("bogus"))
if err != nil {
fmt.Printf("failed to create bogus JWK: %s\n", err)
return
}
bogusKey.Set(jwk.AlgorithmKey, jwa.NoSignature())
bogusKey.Set(jwk.KeyIDKey, "otherkey")
// Now create a key set that users will use to verity the signed serialized against
// Normally these keys are available somewhere like https://www.googleapis.com/oauth2/v3/certs
// This key set contains two keys, the first one is the correct one
// We can use the jwk.PublicSetOf() utility to get a JWKS of the public keys
{
privset := jwk.NewSet()
privset.AddKey(realKey)
privset.AddKey(bogusKey)
v, err := jwk.PublicSetOf(privset)
if err != nil {
fmt.Printf("failed to create public JWKS: %s\n", err)
return
}
keyset = v
}
signingKey = realKey
}
// Create the token
token := jwt.New()
token.Set(`foo`, `bar`)
// Sign the token and generate a JWS message
signed, err := jwt.Sign(token, jwt.WithKey(jwa.RS256(), signingKey))
if err != nil {
fmt.Printf("failed to generate signed serialized: %s\n", err)
return
}
// This is what you typically get as a signed JWT from a server
serialized = signed
// Actual verification:
// FINALLY. This is how you Parse and verify the serialized.
// Key IDs are automatically matched.
// There was a lot of code above, but as a consumer, below is really all you need
// to write in your code
tok, err := jwt.Parse(
serialized,
// Tell the parser that you want to use this keyset
jwt.WithKeySet(keyset),
// Replace the above option with the following option if you know your key
// does not have an "alg"/ field (which is apparently the case for Azure tokens)
// jwt.WithKeySet(keyset, jws.WithInferAlgorithmFromKey(true)),
)
if err != nil {
fmt.Printf("failed to parse serialized: %s\n", err)
}
_ = tok
// OUTPUT:
}
source: examples/jwt_parse_with_keyset_example_test.go
There are a couple of things to note.
First is that the signing key is initialized with key ID (kid
). By using a jwk.Key
with kid
field set,
the resulting JWS message will also have the field kid
set to the same value in the
corresponding protected headers. This is set because the default behavior is to ONLY accept
keys if they have matching kid
fields in the JWS protected headers.
You may override this behavior if you explicitly specify to turn this off using
the jws.WithRequireKid(false)
option, but this is not recommended. If you already
know which is supposed to work beforehand, it is recommended that you parse the jwk.Set
and modify it manually so that it has a proper kid
field. Unlike using jws.WithRequireKid(false)
option, this will not allow unintended keys to slip by and have the verification succeed.
Second, notice that there's a commented out section in the above code where it uses an extra suboption
jws.WithInferAlgorithmFromKey()
in the jwt.Parse()
call. The above examples will correctly
verify the message as we explicitly set the alg
with a proper value. However, if the key in your
particular JWKS does not contain an alg
field, the above example would fail.
This is because we default on the side of safety and require the alg
field of the key to contain
the actual algorithm.The general stance that we take when verifying JWTs is that we don't really
trust what the values on the JWT (or actually, the JWS message) says, so we don't just use their
alg
value. This is why we require that users specify the alg
field in the jwt.WithKey
option for single keys.
The presence of jws.WithInferAlgorithmFromKey(true)
tells the jws.Verify()
routine to use
heuristics to deduce the algorithm used. It's a brute-force approach, and does not always provide
the best performance. But it will try all possible algorithms available for a given key type until
one of them matches. For example, for an RSA key (either raw key or jwk.Key
) algorithms such as RS256, RS384, RS512, PS256, PS384, and PS512 are tried.
In most cases using this suboption would Just Work. However, this type of "try until something works" is not really recommended from a security perspective, and that is why the option is not enabled by default.
If you must switch the key to use for verification dynamically, you can load your keys from any
arbitrary location using jwt.WithKeySetProvider()
option:
package examples_test
import (
"context"
"crypto/rand"
"crypto/rsa"
"encoding/base64"
"fmt"
"github.com/lestrrat-go/jwx/v3/jwa"
"github.com/lestrrat-go/jwx/v3/jws"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_ParseWithKeyProvider_UseToken() {
// This example shows how one might use the information in the JWT to
// load different keys.
// Setup
origIssuer := "me"
tok, err := jwt.NewBuilder().
Issuer(origIssuer).
Build()
if err != nil {
fmt.Printf("failed to build token: %s\n", err)
return
}
symmetricKey := []byte("Abracadabra")
alg := jwa.HS256()
signed, err := jwt.Sign(tok, jwt.WithKey(alg, symmetricKey))
if err != nil {
fmt.Printf("failed to sign token: %s\n", err)
return
}
// This next example assumes that you want to minimize the number of
// times you parse the JWT JSON
{
_, b64payload, _, err := jws.SplitCompact(signed)
if err != nil {
fmt.Printf("failed to split jws: %s\n", err)
return
}
enc := base64.RawStdEncoding
payload := make([]byte, enc.DecodedLen(len(b64payload)))
_, err = enc.Decode(payload, b64payload)
if err != nil {
fmt.Printf("failed to decode base64 payload: %s\n", err)
return
}
parsed, err := jwt.Parse(payload, jwt.WithVerify(false))
if err != nil {
fmt.Printf("failed to parse JWT: %s\n", err)
return
}
_, err = jws.Verify(signed, jws.WithKeyProvider(jws.KeyProviderFunc(func(_ context.Context, sink jws.KeySink, sig *jws.Signature, msg *jws.Message) error {
iss, ok := parsed.Issuer()
if !ok {
return fmt.Errorf("no issuer found")
}
switch iss {
case "me":
sink.Key(alg, symmetricKey)
return nil
default:
return fmt.Errorf("unknown issuer %q", iss)
}
})))
if err != nil {
fmt.Printf("%s\n", err)
return
}
if iss, ok := parsed.Issuer(); !ok || iss != origIssuer {
fmt.Printf("issuers do not match\n")
return
}
}
// OUTPUT:
//
}
func ExampleJWT_ParseWithKeyProvider() {
// Pretend that this is a storage somewhere (maybe a database) that maps
// a signature algorithm to a key
store := make(map[jwa.KeyAlgorithm]interface{})
algorithms := []jwa.SignatureAlgorithm{
jwa.RS256(),
jwa.RS384(),
jwa.RS512(),
}
var signingKey *rsa.PrivateKey
for _, alg := range algorithms {
pk, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
fmt.Printf("failed to generate private key: %s\n", err)
return
}
// too lazy to write a proper algorithm. just assign every
// time, and signingKey will end up being the last key generated
signingKey = pk
store[alg] = pk.PublicKey
}
// Create a JWT
token := jwt.New()
token.Set(`foo`, `bar`)
// Use the last private key in the list to sign the payload
serialized, err := jwt.Sign(token, jwt.WithKey(algorithms[2], signingKey))
if err != nil {
fmt.Printf(`failed to sign JWT: %s`, err)
return
}
// This example uses jws.KeyProviderFunc, but for production use
// you should probably use a reusable object that implements
// jws.KeyProvider
tok, err := jwt.Parse(serialized, jwt.WithKeyProvider(jws.KeyProviderFunc(func(_ context.Context, sink jws.KeySink, sig *jws.Signature, _ *jws.Message) error {
alg, ok := sig.ProtectedHeaders().Algorithm()
if !ok {
return nil
}
key, ok := store[alg]
if !ok {
// nothing found
return nil
}
// Note: we only send one key here, but we could potentially send _ALL_
// keys in the store and have `jws.Verify()` try each one (but it would
// most likely be a waste if you did that)
sink.Key(alg, key)
return nil
})))
if err != nil {
fmt.Printf(`failed to verify JWT: %s`, err)
return
}
_ = tok
// OUTPUT:
}
source: examples/jwt_parse_with_key_provider_example_test.go
You can parse JWTs using the JWK Set specified in thejku
field in the JWS message by telling jwt.Parse()
to
use jws.VerifyAuto()
instead of jws.Verify()
. This would effectively allow a JWS to be
self-validating.
package examples_test
import (
"crypto/rand"
"crypto/rsa"
"encoding/json"
"fmt"
"net/http"
"net/http/httptest"
"github.com/lestrrat-go/jwx/v3/jwa"
"github.com/lestrrat-go/jwx/v3/jwk"
"github.com/lestrrat-go/jwx/v3/jws"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_ParseWithJKU() {
set := jwk.NewSet()
var signingKey jwk.Key
// for _, alg := range algorithms {
for i := 0; i < 3; i++ {
pk, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
fmt.Printf("failed to generate private key: %s\n", err)
return
}
// too lazy to write a proper algorithm. just assign every
// time, and signingKey will end up being the last key generated
privkey, err := jwk.Import(pk)
if err != nil {
fmt.Printf("failed to create jwk.Key: %s\n", err)
return
}
privkey.Set(jwk.KeyIDKey, fmt.Sprintf(`key-%d`, i))
// It is important that we are using jwk.Key here instead of
// rsa.PrivateKey, because this way `kid` is automatically
// assigned when we sign the token
signingKey = privkey
pubkey, err := privkey.PublicKey()
if err != nil {
fmt.Printf("failed to create public key: %s\n", err)
return
}
set.AddKey(pubkey)
}
srv := httptest.NewTLSServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
w.WriteHeader(http.StatusOK)
json.NewEncoder(w).Encode(set)
}))
defer srv.Close()
// Create a JWT
token := jwt.New()
token.Set(`foo`, `bar`)
hdrs := jws.NewHeaders()
hdrs.Set(jws.JWKSetURLKey, srv.URL)
serialized, err := jwt.Sign(token, jwt.WithKey(jwa.RS256(), signingKey, jws.WithProtectedHeaders(hdrs)))
if err != nil {
fmt.Printf("failed to seign token: %s\n", err)
return
}
// We need to pass jwk.WithHTTPClient because we are using HTTPS,
// and we need the certificates setup
// We also need to explicitly set up the whitelist, this is required
tok, err := jwt.Parse(serialized, jwt.WithVerifyAuto(nil, jwk.WithHTTPClient(srv.Client()), jwk.WithFetchWhitelist(jwk.InsecureWhitelist{})))
if err != nil {
fmt.Printf("failed to verify token: %s\n", err)
return
}
_ = tok
// OUTPUT:
}
source: examples/jwt_parse_with_jku_example_test.go
This feature must be used with extreme caution. Please see the caveats and fine prints
in the documentation for jws.VerifyAuto()
To validate if the JWT's contents, such as if the JWT contains the proper "iss","sub","aut", etc, or the expiration information and such, use the jwt.Validate()
function.
package examples_test
import (
"encoding/json"
"fmt"
"time"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_Validate() {
tok, err := jwt.NewBuilder().
Issuer(`github.com/lestrrat-go/jwx`).
Expiration(time.Now().Add(-1 * time.Hour)).
Build()
if err != nil {
fmt.Printf("failed to build token: %s\n", err)
return
}
{
// Case 1: Using jwt.Validate()
err = jwt.Validate(tok)
if err == nil {
fmt.Printf("token should fail validation\n")
return
}
fmt.Printf("%s\n", err)
}
{
// Case 2: Using jwt.Parse()
buf, err := json.Marshal(tok)
if err != nil {
fmt.Printf("failed to serialize token: %s\n", err)
return
}
// NOTE: This token has NOT been verified for demonstration
// purposes. Use `jwt.WithKey()` or the like in your production code
_, err = jwt.Parse(buf, jwt.WithVerify(false), jwt.WithValidate(true))
if err == nil {
fmt.Printf("token should fail validation\n")
return
}
fmt.Printf("%s\n", err)
}
// OUTPUT:
// jwt.Validate: validation failed: "exp" not satisfied: token is expired
// jwt.Parse: failed to parse token: jwt.Validate: validation failed: "exp" not satisfied: token is expired
}
source: examples/jwt_validate_example_test.go
By default we only check for the time-related components of a token, such as "iat", "exp", and "nbf". To tell jwt.Validate()
to check for other fields, use one of the various jwt.ValidateOption
values, such as jwt.WithClaimValue()
, jwt.WithRequiredClaim()
, etc.
package examples_test
import (
"fmt"
"time"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_ValidateIssuer() {
tok, err := jwt.NewBuilder().
Issuer(`github.com/lestrrat-go/jwx`).
Expiration(time.Now().Add(time.Hour)).
Build()
if err != nil {
fmt.Printf("failed to build token: %s\n", err)
return
}
err = jwt.Validate(tok, jwt.WithIssuer(`nobody`))
if err == nil {
fmt.Printf("token should fail validation\n")
return
}
fmt.Printf("%s\n", err)
// OUTPUT:
// jwt.Validate: validation failed: "iss" not satisfied: values do not match
}
source: examples/jwt_validate_issuer_example_test.go
You may also create a custom validator that implements the jwt.Validator
interface. These validators can be added as an option to jwt.Validate()
using jwt.WithValidator()
. Multiple validators can be specified. The error should be of type jwt.ValidationError
. Use jwt.NewValidationError
to create an error of appropriate type.
package examples_test
import (
"context"
"errors"
"fmt"
"time"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_ValidateValidator() {
validator := jwt.ValidatorFunc(func(_ context.Context, t jwt.Token) error {
iat, ok := t.IssuedAt()
if !ok {
return errors.New(`token does not have "iat" claim`)
}
if iat.Month() != 8 {
return errors.New(`tokens are only valid if issued during August!`)
}
return nil
})
tok, err := jwt.NewBuilder().
Issuer(`github.com/lestrrat-go/jwx`).
IssuedAt(time.Unix(aLongLongTimeAgo, 0)).
Build()
if err != nil {
fmt.Printf("failed to build token: %s\n", err)
return
}
err = jwt.Validate(tok, jwt.WithValidator(validator))
if err == nil {
fmt.Printf("token should fail validation\n")
return
}
fmt.Printf("%s\n", err)
// OUTPUT:
// jwt.Validate: validation failed: tokens are only valid if issued during August!
}
source: examples/jwt_validate_validator_example_test.go
If you enable validation during jwt.Parse()
, you might sometimes want to differentiate between parsing errors and validation errors. To do this, you can use the function jwt.IsValidationError()
. To further differentiate between specific errors, you can use errors.Is()
:
package examples_test
import (
"encoding/json"
"errors"
"fmt"
"time"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_ValidateDetectErrorType() {
tok, err := jwt.NewBuilder().
Issuer(`github.com/lestrrat-go/jwx`).
Expiration(time.Now().Add(-1 * time.Hour)).
Build()
if err != nil {
fmt.Printf("failed to build token: %s\n", err)
return
}
buf, err := json.Marshal(tok)
if err != nil {
fmt.Printf("failed to serialize token: %s\n", err)
return
}
{
// Case 1: Parsing error. We're not showing verification failure,
// but it is about the same in the context of wanting to know
// if it's a validation error or not
_, err := jwt.Parse(buf[:len(buf)-1], jwt.WithVerify(false), jwt.WithValidate(true))
if err == nil {
fmt.Printf("token should fail parsing\n")
return
}
if errors.Is(err, jwt.ValidateError()) {
fmt.Printf("error should NOT be validation error\n")
return
}
}
{
// Case 2: Parsing works, validation fails
// NOTE: This token has NOT been verified for demonstration
// purposes. Use `jwt.WithKey()` or the like in your production code
_, err = jwt.Parse(buf, jwt.WithVerify(false), jwt.WithValidate(true))
if err == nil {
fmt.Printf("token should fail parsing\n")
return
}
if !errors.Is(err, jwt.ValidateError()) {
fmt.Printf("error should be validation error\n")
return
}
if !errors.Is(err, jwt.TokenExpiredError()) {
fmt.Printf("error should be of token expired type\n")
return
}
fmt.Printf("%s\n", err)
}
// OUTPUT:
// jwt.Parse: failed to parse token: jwt.Validate: validation failed: "exp" not satisfied: token is expired
}
source: examples/jwt_validate_detect_error_type_example_test.go
jwt.Token
objects can safely be passed to "encoding/json".Marshal()
and friends.
In this case it will be marshaled as a JSON object rather than in the compact format.
Since it will be just the raw token, no signing or encryption will be performed.
package examples_test
import (
"encoding/json"
"fmt"
"os"
"time"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_SerializeJSON() {
tok, err := jwt.NewBuilder().
Issuer(`github.com/lestrrat-go/jwx`).
IssuedAt(time.Unix(aLongLongTimeAgo, 0)).
Build()
if err != nil {
fmt.Printf("failed to build token: %s\n", err)
return
}
json.NewEncoder(os.Stdout).Encode(tok)
// OUTPUT:
// {"iat":233431200,"iss":"github.com/lestrrat-go/jwx"}
}
source: examples/jwt_serialize_json_example_test.go
The jwt
package provides a convenience function jwt.Sign()
to serialize a token using JWS.
If you need even further customization, consider using the jws
package directly.
package examples_test
import (
"fmt"
"time"
"github.com/lestrrat-go/jwx/v3/jwa"
"github.com/lestrrat-go/jwx/v3/jwk"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_SerializeJWS() {
tok, err := jwt.NewBuilder().
Issuer(`github.com/lestrrat-go/jwx`).
IssuedAt(time.Unix(aLongLongTimeAgo, 0)).
Build()
if err != nil {
fmt.Printf("failed to build token: %s\n", err)
return
}
rawKey := []byte(`abracadabra`)
jwkKey, err := jwk.Import(rawKey)
if err != nil {
fmt.Printf("failed to create symmetric key: %s\n", err)
return
}
// This example shows you two ways to passing keys to
// jwt.Sign()
//
// * The first key is the "raw" key.
// * The second one is a jwk.Key that represents the raw key.
//
// If this were using RSA/ECDSA keys, you would be using
// *rsa.PrivateKey/*ecdsa.PrivateKey as the raw key.
for _, key := range []interface{}{rawKey, jwkKey} {
serialized, err := jwt.Sign(tok, jwt.WithKey(jwa.HS256(), key))
if err != nil {
fmt.Printf("failed to sign token: %s\n", err)
return
}
fmt.Printf("%s\n", serialized)
}
// OUTPUT:
// eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjIzMzQzMTIwMCwiaXNzIjoiZ2l0aHViLmNvbS9sZXN0cnJhdC1nby9qd3gifQ.K1WVWaM6Dww9aNNFMjnyUfjaaHIs08-3Qb1b8eSEHOk
// eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpYXQiOjIzMzQzMTIwMCwiaXNzIjoiZ2l0aHViLmNvbS9sZXN0cnJhdC1nby9qd3gifQ.K1WVWaM6Dww9aNNFMjnyUfjaaHIs08-3Qb1b8eSEHOk
}
source: examples/jwt_serialize_jws_example_test.go
The jwt
package provides a Serializer
object to allow users to serialize a token using an arbitrary combination of processors.
If for whatever reason the built-in (jwt.Serializer).Sign()
and (jwt.Serializer).Encrypt()
do not work for you, you may choose to provider a custom serialization step using (jwt.Serialize).Step()
-- but at this point it may just be easier if you hand-rolled your own serialization.
The following example, encrypts a token using JWE, then uses JWS to sign the encrypted payload:
package examples_test
import (
"crypto/rand"
"crypto/rsa"
"fmt"
"time"
"github.com/lestrrat-go/jwx/v3/jwa"
"github.com/lestrrat-go/jwx/v3/jwk"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_SerializeJWEJWS() {
tok, err := jwt.NewBuilder().
Issuer(`github.com/lestrrat-go/jwx`).
IssuedAt(time.Unix(aLongLongTimeAgo, 0)).
Build()
if err != nil {
fmt.Printf("failed to build token: %s\n", err)
return
}
privkey, err := rsa.GenerateKey(rand.Reader, 2048)
if err != nil {
fmt.Printf("failed to generate private key: %s\n", err)
return
}
enckey, err := jwk.Import(privkey.PublicKey)
if err != nil {
fmt.Printf("failed to create symmetric key: %s\n", err)
return
}
signkey, err := jwk.Import([]byte(`abracadabra`))
if err != nil {
fmt.Printf("failed to create symmetric key: %s\n", err)
return
}
serialized, err := jwt.NewSerializer().
Encrypt(jwt.WithKey(jwa.RSA_OAEP(), enckey)).
Sign(jwt.WithKey(jwa.HS256(), signkey)).
Serialize(tok)
if err != nil {
fmt.Printf("failed to encrypt and sign token: %s\n", err)
return
}
_ = serialized
// We don't use the result of serialization as it will always be
// different because of randomness used in the encryption logic
// OUTPUT:
}
source: examples/jwt_serialize_jwe_jws_example_test.go
When you marshal jwt.Token
into JSON, by default the aud
field is serialized as an array of strings. This field may take either a single string or array form, but apparently there are parsers that do not understand the array form.
The examples below should both be valid, but apparently there are systems that do not understand the former (AWS Cognito has been reported to be one such system).
{
"aud": ["foo"],
...
}
{
"aud": "foo",
...
}
To work around these problematic parsers, you may use enable the option jwt.FlattenAudience
on each token that you would like to see this behavior. If you do this for all (or most) tokens, you may opt to change the global default value by settings jwt.WithFlattenAudience(true)
option via jwt.Settings()
.
package examples_test
import (
"encoding/json"
"fmt"
"os"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWT_FlattenAudience() {
// Sometimes you need to "flatten" the "aud" claim because of
// parsers developed by people who apparently didn't read the RFC.
//
// In such cases, you can control the behavior of the JSON
// emitted when tokens are converted to JSON by tweaking the
// per-token options set.
{ // Case 1: the per-object way
tok, err := jwt.NewBuilder().
Audience([]string{`foo`}).
Build()
if err != nil {
fmt.Printf("failed to build token: %s\n", err)
return
}
// Only this particular instance of the token is affected
tok.Options().Enable(jwt.FlattenAudience)
json.NewEncoder(os.Stdout).Encode(tok)
}
{ // Case 2: globally enabling flattened audience
// NOTE: This example DOES NOT flatten the audience
// because the call to change this global settings has been
// commented out. Setting this has GLOBAL effects, and would
// alter the output of other examples.
//
// If you would like to try this, UNCOMMENT the line below
//
// // UNCOMMENT THIS LINE BELOW
// jwt.Settings(jwt.WithFlattenAudience(true))
//
// ...and if you are running from the examples directory, run
// this example in isolation by invoking
//
// go test -run=ExampleJWT_FlattenAudience
//
// You may see the example fail, but that's because the OUTPUT line
// expects the global settings to be DISABLED. In order to make
// the example pass, change the second line from OUTPUT below
//
// from: {"aud":["foo"]}
// to : {"aud":"foo"}
//
// Please note that it is recommended you ONLY set the jwt.Settings(jwt.WithFlattenedAudience(true))
// once at the beginning of your main program (probably in an `init()` function)
// so that you do not need to worry about causing issues depending
// on when tokens are created relative to the time when
// the global setting is changed.
tok, err := jwt.NewBuilder().
Audience([]string{`foo`}).
Build()
if err != nil {
fmt.Printf("failed to build token: %s\n", err)
return
}
// This would flatten the "aud" claim if the appropriate
// line above has been uncommented
json.NewEncoder(os.Stdout).Encode(tok)
// This would force this particular object not to flatten the
// "aud" claim. All other tokens would be constructed with the
// option enabled
tok.Options().Enable(jwt.FlattenAudience)
json.NewEncoder(os.Stdout).Encode(tok)
}
// OUTPUT:
// {"aud":"foo"}
// {"aud":["foo"]}
// {"aud":"foo"}
}
source: examples/jwt_flatten_audience_example_test.go
github.com/lestrrat-go/jwx is focused on usability / stable API. If you are worried about performance while processing JWTs, the best path is just to use a plain struct after handling JWS yourself:
package examples
import (
"encoding/json"
"fmt"
"os"
"github.com/lestrrat-go/jwx/v3/jwa"
"github.com/lestrrat-go/jwx/v3/jws"
"github.com/lestrrat-go/jwx/v3/jwt"
)
func ExampleJWTPlainStruct() {
t1, err := jwt.NewBuilder().
Issuer("https://github.com/lestrrat-go/jwx/v3/examples").
Subject("raw_struct").
Claim("private", "foobar").
Build()
if err != nil {
fmt.Fprintf(os.Stderr, "failed to build JWT: %s\n", err)
}
key := []byte("secret")
signed, err := jwt.Sign(t1, jwt.WithKey(jwa.HS256(), key))
if err != nil {
fmt.Printf("failed to sign JWT: %s\n", err)
}
rawJWT, err := jws.Verify(signed, jws.WithKey(jwa.HS256(), key))
if err != nil {
fmt.Printf("failed to verify JWS: %s\n", err)
}
type MyToken struct {
Issuer string `json:"iss"`
Subject string `json:"sub"`
Private string `json:"private"`
}
var t2 MyToken
if err := json.Unmarshal(rawJWT, &t2); err != nil {
fmt.Printf("failed to unmarshal JWT: %s\n", err)
}
fmt.Printf("%s\n", t2.Private)
// OUTPUT:
// foobar
}
source: examples/jwt_raw_struct_example_test.go
This makes sure that you do not go through any extra layers of abstraction that causes performance penalties, and you get exactly the type of field that you want.
The RFC defines JWS as an envelope to JWT (JWS can carry any payload, you just happened to assign a JWT to it). A JWT is just a bag of arbitrary key/value pairs, where some of them are predefined for validation. This means that JWS headers are NOT part of a JWT -- and thus you will not be able to access them through the jwt.Token
itself.
If you need to access these JWS headers while parsing JWS signed JWT, you will need to reach into the tools defined in the jws
package.
- If you are considering using JWS header fields to decide on which key to use for verification, consider using a
jwt.KeyProvider
. - If you are looking for ways to
Please look at the JWS documentation for it .
Any field in the token can be accessed in a uniform away using (jwt.Token).Get()
var v interface{} // can be concrete type, if you know the type beforehand
err := token.Get(name, &v)
If the field corresponding to name
does not exist, the second return value will be false
.
The value v
is returned as interface{}
, as there is no way of knowing what the underlying type may be for user defined fields.
For pre-defined fields whose types are known, you can use the convenience methods such as Subject()
, Issuer()
, NotBefore()
, etc.
s := token.Subject()
s := token.Issuer()
t := token.NotBefore()
For setting field values, there is only one path, which is to use the Set()
method. If you are initializing a token you may also use the builder pattern
err := token.Set(name, value)
For pre-defined fields, Set()
will return an error when the value cannot be converted to a proper type that suits the specification. For example, fields for time data must be time.Time
or number of seconds since epoch. See the jwt.Token
interface and the getter methods for these fields to learn about the types for pre-defined fields.