forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevent_timeline.py
95 lines (73 loc) · 3.19 KB
/
event_timeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the 'Software'),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
#
import dash
import plotly.graph_objects as go
from dash import dcc, html, Input, Output
from dash_bootstrap_templates import load_figure_template
from .card import create_card, card_callback
from server import Server
from datetime import datetime
load_figure_template('darkly')
def create_event_timeline():
children = [
dcc.Graph(id='event_timeline_graph'), #, animate=True),
dcc.Interval(id='event_timeline_timer', interval=500)
]
return create_card(
children,
title=f"Event Timeline",
width=6,
height=12,
id='event_timeline'
)
@dash.callback(Output('event_timeline_graph', 'figure'),
Input('event_timeline_timer', 'n_intervals'))
def refresh_timeline(n_intervals):
request = Server.request('/events')
records = request.json()
classes = {}
for event in records:
label = event[7]
if label not in classes:
classes[label] = {'x': [], 'y': []}
for timestamp, score in event[10]:
classes[label]['x'].append(datetime.fromtimestamp(timestamp).strftime('%Y-%m-%d %H:%M:%S.%f'))
classes[label]['y'].append(score * 100)
classes[label]['x'].append(None)
classes[label]['y'].append(None)
fig = go.Figure()
def short_label(label, length=15):
return f"{label[0:length]}..." if len(label) > length else label
for label, data in classes.items():
fig.add_trace(go.Scatter(name=short_label(label), x=data['x'], y=data['y'], connectgaps=False))
fig.update_layout(
template='darkly',
margin={'l': 0, 'r': 0, 't': 0, 'b': 0},
#'uirevision': 0, # https://community.plotly.com/t/preserving-ui-state-like-zoom-in-dcc-graph-with-uirevision-with-dash/15793
)
return fig
@card_callback(Input('navbar_event_timeline', 'n_clicks'))
def open_timeline(n_clicks):
if n_clicks > 0:
return create_event_timeline()
else:
return None