-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathwave.h
599 lines (521 loc) · 21.2 KB
/
wave.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
// ---------------------------------------------------------------------------
// This file is part of reSID, a MOS6581 SID emulator engine.
// Copyright (C) 2010 Dag Lem <[email protected]>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// ---------------------------------------------------------------------------
#ifndef RESID_WAVE_H
#define RESID_WAVE_H
#include "resid-config.h"
namespace reSID
{
// ----------------------------------------------------------------------------
// A 24 bit accumulator is the basis for waveform generation. FREQ is added to
// the lower 16 bits of the accumulator each cycle.
// The accumulator is set to zero when TEST is set, and starts counting
// when TEST is cleared.
// The noise waveform is taken from intermediate bits of a 23 bit shift
// register. This register is clocked by bit 19 of the accumulator.
// ----------------------------------------------------------------------------
class WaveformGenerator
{
public:
WaveformGenerator();
void set_sync_source(WaveformGenerator*);
void set_chip_model(chip_model model);
void clock();
void clock(cycle_count delta_t);
void synchronize();
void reset();
void writeFREQ_LO(reg8);
void writeFREQ_HI(reg8);
void writePW_LO(reg8);
void writePW_HI(reg8);
void writeCONTROL_REG(reg8);
reg8 readOSC();
// 12-bit waveform output.
short output();
// Calculate and set waveform output value.
void set_waveform_output();
void set_waveform_output(cycle_count delta_t);
protected:
void clock_shift_register();
void write_shift_register();
void set_noise_output();
void wave_bitfade();
void shiftreg_bitfade();
const WaveformGenerator* sync_source;
WaveformGenerator* sync_dest;
reg24 accumulator;
// Tell whether the accumulator MSB was set high on this cycle.
bool msb_rising;
// Fout = (Fn*Fclk/16777216)Hz
// reg16 freq;
reg24 freq;
// PWout = (PWn/40.95)%
reg12 pw;
reg24 shift_register;
// Remaining time to fully reset shift register.
cycle_count shift_register_reset;
// Emulation of pipeline causing bit 19 to clock the shift register.
cycle_count shift_pipeline;
// Helper variables for waveform table lookup.
reg24 ring_msb_mask;
unsigned short no_noise;
unsigned short noise_output;
unsigned short no_noise_or_noise_output;
unsigned short no_pulse;
unsigned short pulse_output;
// The control register right-shifted 4 bits; used for waveform table lookup.
reg8 waveform;
// 8580 tri/saw pipeline
reg12 tri_saw_pipeline;
reg12 osc3;
// The remaining control register bits.
reg8 test;
reg8 ring_mod;
reg8 sync;
// The gate bit is handled by the EnvelopeGenerator.
// DAC input.
reg12 waveform_output;
// Fading time for floating DAC input (waveform 0).
cycle_count floating_output_ttl;
chip_model sid_model;
// Sample data for waveforms, not including noise.
unsigned short* wave;
static unsigned short model_wave[2][8][1 << 12];
// DAC lookup tables.
static unsigned short model_dac[2][1 << 12];
friend class Voice;
friend class SID;
};
// ----------------------------------------------------------------------------
// Inline functions.
// The following functions are defined inline because they are called every
// time a sample is calculated.
// ----------------------------------------------------------------------------
#if RESID_INLINING || defined(RESID_WAVE_CC)
// ----------------------------------------------------------------------------
// SID clocking - 1 cycle.
// ----------------------------------------------------------------------------
RESID_INLINE
void WaveformGenerator::clock()
{
if (unlikely(test)) {
// Count down time to fully reset shift register.
if (unlikely(shift_register_reset) && unlikely(!--shift_register_reset)) {
shiftreg_bitfade();
}
// The test bit sets pulse high.
pulse_output = 0xfff;
}
else {
// Calculate new accumulator value;
reg24 accumulator_next = (accumulator + freq) & 0xffffff;
reg24 accumulator_bits_set = ~accumulator & accumulator_next;
accumulator = accumulator_next;
// Check whether the MSB is set high. This is used for synchronization.
msb_rising = (accumulator_bits_set & 0x800000) ? true : false;
// Shift noise register once for each time accumulator bit 19 is set high.
// The shift is delayed 2 cycles.
if (unlikely(accumulator_bits_set & 0x080000)) {
// Pipeline: Detect rising bit, shift phase 1, shift phase 2.
shift_pipeline = 2;
}
else if (unlikely(shift_pipeline) && !--shift_pipeline) {
clock_shift_register();
}
}
}
// ----------------------------------------------------------------------------
// SID clocking - delta_t cycles.
// ----------------------------------------------------------------------------
RESID_INLINE
void WaveformGenerator::clock(cycle_count delta_t)
{
if (unlikely(test)) {
// Count down time to fully reset shift register.
if (shift_register_reset) {
shift_register_reset -= delta_t;
if (unlikely(shift_register_reset <= 0)) {
shift_register = 0x7fffff;
shift_register_reset = 0;
// New noise waveform output.
set_noise_output();
}
}
// The test bit sets pulse high.
pulse_output = 0xfff;
}
else {
// Calculate new accumulator value;
reg24 delta_accumulator = delta_t*freq;
reg24 accumulator_next = (accumulator + delta_accumulator) & 0xffffff;
reg24 accumulator_bits_set = ~accumulator & accumulator_next;
accumulator = accumulator_next;
// Check whether the MSB is set high. This is used for synchronization.
msb_rising = (accumulator_bits_set & 0x800000) ? true : false;
// NB! Any pipelined shift register clocking from single cycle clocking
// will be lost. It is not worth the trouble to flush the pipeline here.
// Shift noise register once for each time accumulator bit 19 is set high.
// Bit 19 is set high each time 2^20 (0x100000) is added to the accumulator.
reg24 shift_period = 0x100000;
while (delta_accumulator) {
if (likely(delta_accumulator < shift_period)) {
shift_period = delta_accumulator;
// Determine whether bit 19 is set on the last period.
// NB! Requires two's complement integer.
if (likely(shift_period <= 0x080000)) {
// Check for flip from 0 to 1.
if (((accumulator - shift_period) & 0x080000) || !(accumulator & 0x080000))
{
break;
}
}
else {
// Check for flip from 0 (to 1 or via 1 to 0) or from 1 via 0 to 1.
if (((accumulator - shift_period) & 0x080000) && !(accumulator & 0x080000))
{
break;
}
}
}
// Shift the noise/random register.
// NB! The two-cycle pipeline delay is only modeled for 1 cycle clocking.
clock_shift_register();
delta_accumulator -= shift_period;
}
// Calculate pulse high/low.
// NB! The one-cycle pipeline delay is only modeled for 1 cycle clocking.
pulse_output = (accumulator >> 12) >= pw ? 0xfff : 0x000;
}
}
// ----------------------------------------------------------------------------
// Synchronize oscillators.
// This must be done after all the oscillators have been clock()'ed since the
// oscillators operate in parallel.
// Note that the oscillators must be clocked exactly on the cycle when the
// MSB is set high for hard sync to operate correctly. See SID::clock().
// ----------------------------------------------------------------------------
RESID_INLINE
void WaveformGenerator::synchronize()
{
// A special case occurs when a sync source is synced itself on the same
// cycle as when its MSB is set high. In this case the destination will
// not be synced. This has been verified by sampling OSC3.
if (unlikely(msb_rising) && sync_dest->sync && !(sync && sync_source->msb_rising)) {
sync_dest->accumulator = 0;
}
}
// ----------------------------------------------------------------------------
// Waveform output.
// The output from SID 8580 is delayed one cycle compared to SID 6581;
// this is only modeled for single cycle clocking (see sid.cc).
// ----------------------------------------------------------------------------
// No waveform:
// When no waveform is selected, the DAC input is floating.
//
// Triangle:
// The upper 12 bits of the accumulator are used.
// The MSB is used to create the falling edge of the triangle by inverting
// the lower 11 bits. The MSB is thrown away and the lower 11 bits are
// left-shifted (half the resolution, full amplitude).
// Ring modulation substitutes the MSB with MSB EOR NOT sync_source MSB.
//
// Sawtooth:
// The output is identical to the upper 12 bits of the accumulator.
//
// Pulse:
// The upper 12 bits of the accumulator are used.
// These bits are compared to the pulse width register by a 12 bit digital
// comparator; output is either all one or all zero bits.
// The pulse setting is delayed one cycle after the compare; this is only
// modeled for single cycle clocking.
//
// The test bit, when set to one, holds the pulse waveform output at 0xfff
// regardless of the pulse width setting.
//
// Noise:
// The noise output is taken from intermediate bits of a 23-bit shift register
// which is clocked by bit 19 of the accumulator.
// The shift is delayed 2 cycles after bit 19 is set high; this is only
// modeled for single cycle clocking.
//
// Operation: Calculate EOR result, shift register, set bit 0 = result.
//
// reset -------------------------------------------
// | | |
// test--OR-->EOR<-- |
// | | |
// 2 2 2 1 1 1 1 1 1 1 1 1 1 |
// Register bits: 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 <---
// | | | | | | | |
// Waveform bits: 1 1 9 8 7 6 5 4
// 1 0
//
// The low 4 waveform bits are zero (grounded).
//
RESID_INLINE void WaveformGenerator::clock_shift_register()
{
// bit0 = (bit22 | test) ^ bit17
reg24 bit0 = ((shift_register >> 22) ^ (shift_register >> 17)) & 0x1;
shift_register = ((shift_register << 1) | bit0) & 0x7fffff;
// New noise waveform output.
set_noise_output();
}
RESID_INLINE void WaveformGenerator::write_shift_register()
{
// Write changes to the shift register output caused by combined waveforms
// back into the shift register.
// A bit once set to zero cannot be changed, hence the and'ing.
// FIXME: Write test program to check the effect of 1 bits and whether
// neighboring bits are affected.
shift_register &=
~((1<<20)|(1<<18)|(1<<14)|(1<<11)|(1<<9)|(1<<5)|(1<<2)|(1<<0)) |
((waveform_output & 0x800) << 9) | // Bit 11 -> bit 20
((waveform_output & 0x400) << 8) | // Bit 10 -> bit 18
((waveform_output & 0x200) << 5) | // Bit 9 -> bit 14
((waveform_output & 0x100) << 3) | // Bit 8 -> bit 11
((waveform_output & 0x080) << 2) | // Bit 7 -> bit 9
((waveform_output & 0x040) >> 1) | // Bit 6 -> bit 5
((waveform_output & 0x020) >> 3) | // Bit 5 -> bit 2
((waveform_output & 0x010) >> 4); // Bit 4 -> bit 0
noise_output &= waveform_output;
no_noise_or_noise_output = no_noise | noise_output;
}
RESID_INLINE void WaveformGenerator::set_noise_output()
{
noise_output =
((shift_register & 0x100000) >> 9) |
((shift_register & 0x040000) >> 8) |
((shift_register & 0x004000) >> 5) |
((shift_register & 0x000800) >> 3) |
((shift_register & 0x000200) >> 2) |
((shift_register & 0x000020) << 1) |
((shift_register & 0x000004) << 3) |
((shift_register & 0x000001) << 4);
no_noise_or_noise_output = no_noise | noise_output;
}
// Combined waveforms:
// By combining waveforms, the bits of each waveform are effectively short
// circuited. A zero bit in one waveform will result in a zero output bit
// (thus the infamous claim that the waveforms are AND'ed).
// However, a zero bit in one waveform may also affect the neighboring bits
// in the output.
//
// Example:
//
// 1 1
// Bit # 1 0 9 8 7 6 5 4 3 2 1 0
// -----------------------
// Sawtooth 0 0 0 1 1 1 1 1 1 0 0 0
//
// Triangle 0 0 1 1 1 1 1 1 0 0 0 0
//
// AND 0 0 0 1 1 1 1 1 0 0 0 0
//
// Output 0 0 0 0 1 1 1 0 0 0 0 0
//
//
// Re-vectorized die photographs reveal the mechanism behind this behavior.
// Each waveform selector bit acts as a switch, which directly connects
// internal outputs into the waveform DAC inputs as follows:
//
// * Noise outputs the shift register bits to DAC inputs as described above.
// Each output is also used as input to the next bit when the shift register
// is shifted.
// * Pulse connects a single line to all DAC inputs. The line is connected to
// either 5V (pulse on) or 0V (pulse off) at bit 11, and ends at bit 0.
// * Triangle connects the upper 11 bits of the (MSB EOR'ed) accumulator to the
// DAC inputs, so that DAC bit 0 = 0, DAC bit n = accumulator bit n - 1.
// * Sawtooth connects the upper 12 bits of the accumulator to the DAC inputs,
// so that DAC bit n = accumulator bit n. Sawtooth blocks out the MSB from
// the EOR used to generate the triangle waveform.
//
// We can thus draw the following conclusions:
//
// * The shift register may be written to by combined waveforms.
// * The pulse waveform interconnects all bits in combined waveforms via the
// pulse line.
// * The combination of triangle and sawtooth interconnects neighboring bits
// of the sawtooth waveform.
//
// This behavior would be quite difficult to model exactly, since the short
// circuits are not binary, but are subject to analog effects. Tests show that
// minor (1 bit) differences can actually occur in the output from otherwise
// identical samples from OSC3 when waveforms are combined. To further
// complicate the situation the output changes slightly with time (more
// neighboring bits are successively set) when the 12-bit waveform
// registers are kept unchanged.
//
// The output is instead approximated by using the upper bits of the
// accumulator as an index to look up the combined output in a table
// containing actual combined waveform samples from OSC3.
// These samples are 8 bit, so 4 bits of waveform resolution is lost.
// All OSC3 samples are taken with FREQ=0x1000, adding a 1 to the upper 12
// bits of the accumulator each cycle for a sample period of 4096 cycles.
//
// Sawtooth+Triangle:
// The accumulator is used to look up an OSC3 sample.
//
// Pulse+Triangle:
// The accumulator is used to look up an OSC3 sample. When ring modulation is
// selected, the accumulator MSB is substituted with MSB EOR NOT sync_source MSB.
//
// Pulse+Sawtooth:
// The accumulator is used to look up an OSC3 sample.
// The sample is output if the pulse output is on.
//
// Pulse+Sawtooth+Triangle:
// The accumulator is used to look up an OSC3 sample.
// The sample is output if the pulse output is on.
//
// Combined waveforms including noise:
// All waveform combinations including noise output zero after a few cycles,
// since the waveform bits are and'ed into the shift register via the shift
// register outputs.
static reg12 noise_pulse6581(reg12 noise)
{
return (noise < 0xf00) ? 0x000 : noise & (noise<<1) & (noise<<2);
}
static reg12 noise_pulse8580(reg12 noise)
{
return (noise < 0xfc0) ? noise & (noise << 1) : 0xfc0;
}
RESID_INLINE
void WaveformGenerator::set_waveform_output()
{
// Set output value.
if (likely(waveform)) {
// The bit masks no_pulse and no_noise are used to achieve branch-free
// calculation of the output value.
int ix = (accumulator ^ (~sync_source->accumulator & ring_msb_mask)) >> 12;
waveform_output = wave[ix] & (no_pulse | pulse_output) & no_noise_or_noise_output;
if (unlikely((waveform & 0xc) == 0xc))
{
waveform_output = (sid_model == MOS6581) ?
noise_pulse6581(waveform_output) : noise_pulse8580(waveform_output);
}
// Triangle/Sawtooth output is delayed half cycle on 8580.
// This will appear as a one cycle delay on OSC3 as it is
// latched in the first phase of the clock.
if ((waveform & 3) && (sid_model == MOS8580))
{
osc3 = tri_saw_pipeline & (no_pulse | pulse_output) & no_noise_or_noise_output;
tri_saw_pipeline = wave[ix];
}
else
{
osc3 = waveform_output;
}
if ((waveform & 0x2) && unlikely(waveform & 0xd) && (sid_model == MOS6581)) {
// In the 6581 the top bit of the accumulator may be driven low by combined waveforms
// when the sawtooth is selected
accumulator &= (waveform_output << 12) | 0x7fffff;
}
if (unlikely(waveform > 0x8) && likely(!test) && likely(shift_pipeline != 1)) {
// Combined waveforms write to the shift register.
write_shift_register();
}
}
else {
// Age floating DAC input.
if (likely(floating_output_ttl) && unlikely(!--floating_output_ttl)) {
wave_bitfade();
}
}
// The pulse level is defined as (accumulator >> 12) >= pw ? 0xfff : 0x000.
// The expression -((accumulator >> 12) >= pw) & 0xfff yields the same
// results without any branching (and thus without any pipeline stalls).
// NB! This expression relies on that the result of a boolean expression
// is either 0 or 1, and furthermore requires two's complement integer.
// A few more cycles may be saved by storing the pulse width left shifted
// 12 bits, and dropping the and with 0xfff (this is valid since pulse is
// used as a bit mask on 12 bit values), yielding the expression
// -(accumulator >= pw24). However this only results in negligible savings.
// The result of the pulse width compare is delayed one cycle.
// Push next pulse level into pulse level pipeline.
pulse_output = -((accumulator >> 12) >= pw) & 0xfff;
}
RESID_INLINE
void WaveformGenerator::set_waveform_output(cycle_count delta_t)
{
// Set output value.
if (likely(waveform)) {
// The bit masks no_pulse and no_noise are used to achieve branch-free
// calculation of the output value.
int ix = (accumulator ^ (~sync_source->accumulator & ring_msb_mask)) >> 12;
waveform_output =
wave[ix] & (no_pulse | pulse_output) & no_noise_or_noise_output;
// Triangle/Sawtooth output delay for the 8580 is not modeled
osc3 = waveform_output;
if ((waveform & 0x2) && unlikely(waveform & 0xd) && (sid_model == MOS6581)) {
accumulator &= (waveform_output << 12) | 0x7fffff;
}
if (unlikely(waveform > 0x8) && likely(!test)) {
// Combined waveforms write to the shift register.
// NB! Since cycles are skipped in delta_t clocking, writes will be
// missed. Single cycle clocking must be used for 100% correct operation.
write_shift_register();
}
}
else {
if (likely(floating_output_ttl)) {
// Age floating D/A output.
floating_output_ttl -= delta_t;
if (unlikely(floating_output_ttl <= 0)) {
floating_output_ttl = 0;
osc3 = waveform_output = 0;
}
}
}
}
// ----------------------------------------------------------------------------
// Waveform output (12 bits).
// ----------------------------------------------------------------------------
// The digital waveform output is converted to an analog signal by a 12-bit
// DAC. Re-vectorized die photographs reveal that the DAC is an R-2R ladder
// built up as follows:
//
// 12V 11 10 9 8 7 6 5 4 3 2 1 0 GND
// Strange | | | | | | | | | | | | | | Missing
// part 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R 2R term.
// (bias) | | | | | | | | | | | | | |
// --R- --R---R---R---R---R---R---R---R---R---R---R-- ---
// | _____
// __|__ __|__ |
// ----- ===== |
// | | | | |
// 12V --- ----- ------- GND
// |
// wout
//
// Bit on: 5V
// Bit off: 0V (GND)
//
// As is the case with all MOS 6581 DACs, the termination to (virtual) ground
// at bit 0 is missing. The MOS 8580 has correct termination, and has also
// done away with the bias part on the left hand side of the figure above.
//
RESID_INLINE
short WaveformGenerator::output()
{
// DAC imperfections are emulated by using waveform_output as an index
// into a DAC lookup table. readOSC() uses waveform_output directly.
return model_dac[sid_model][waveform_output];
}
#endif // RESID_INLINING || defined(RESID_WAVE_CC)
} // namespace reSID
#endif // not RESID_WAVE_H