This repository was archived by the owner on Nov 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMLflow.py
327 lines (245 loc) · 10.4 KB
/
MLflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Make sure the dependencies are installed using the command
# pip/pip3 install -r ./requirements.txt --upgrade
import time
import json
import os
from joblib import Parallel, delayed
import pandas as pd
import numpy as np
import scipy
from sklearn.model_selection import train_test_split, KFold
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score, explained_variance_score
from sklearn.exceptions import ConvergenceWarning
import mlflow
import mlflow.sklearn
from mlflow.tracking import MlflowClient
from warnings import simplefilter
simplefilter(action='ignore', category = FutureWarning)
simplefilter(action='ignore', category = ConvergenceWarning)
# Collect the data
df_nationalconsumption_electricity_daily = pd.read_csv("https://raw.githubusercontent.com/jeanmidevacc/mlflow-energyforecast/master/data/rtu_data.csv")
df_nationalconsumption_electricity_daily.set_index(["day"], inplace = True)
# Prepare the training set and the testing set
df_trainvalidate_energyconsumption = df_nationalconsumption_electricity_daily[df_nationalconsumption_electricity_daily["datastatus"] == "Définitif"]
del df_trainvalidate_energyconsumption["datastatus"]
df_test_energyconsumption = df_nationalconsumption_electricity_daily[df_nationalconsumption_electricity_daily["datastatus"] == "Consolidé"]
del df_test_energyconsumption["datastatus"]
print("Size of the training set : ",len(df_trainvalidate_energyconsumption))
print("Size of the testing set : ",len(df_test_energyconsumption))
# Define the inputs and the output
output = "dailyconsumption"
allinputs = list(df_trainvalidate_energyconsumption.columns)
allinputs.remove(output)
print("Output to predict : ", output)
print("Inputs for the prediction : ", allinputs)
# Build different sets of features for the model
possible_inputs = {
"all" : allinputs,
"only_allday_inputs" : ["weekday", "month", "is_holiday", "week"],
"only_allweatheravg_inputs" : ["avg_min_temperature", "avg_max_temperature", "avg_mean_temperature","wavg_min_temperature", "wavg_max_temperature", "wavg_mean_temperature"],
"only_meanweather_inputs_avg" : ["avg_mean_temperature"],
"only_meanweather_inputs_wavg" : ["wavg_mean_temperature"],
}
# Prepare the output of the model
array_output_train = np.array(df_trainvalidate_energyconsumption[output])
array_output_test = np.array(df_test_energyconsumption[output])
# Launch the experiment on mlflow
experiment_name = "electricityconsumption-forecast"
mlflow.set_experiment(experiment_name)
# Define the evaluation function that will do the computation of the different metrics of accuracy (RMSE,MAE,R2)
def evaluation_model(y_test, y_pred):
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
mae = mean_absolute_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
metrics = {
"rmse" : rmse,
"r2" : r2,
"mae" : mae,
}
return metrics
# KNN regressor
from sklearn.neighbors import KNeighborsRegressor
def train_knnmodel(parameters, inputs, tags, log = False):
with mlflow.start_run(nested = True):
# Prepare the data
array_inputs_train = np.array(df_trainvalidate_energyconsumption[inputs])
array_inputs_test = np.array(df_test_energyconsumption[inputs])
# Build the model
tic = time.time()
model = KNeighborsRegressor(parameters["nbr_neighbors"], weights = parameters["weight_method"])
model.fit(array_inputs_train, array_output_train)
duration_training = time.time() - tic
# Make the prediction
tic1 = time.time()
prediction = model.predict(array_inputs_test)
duration_prediction = time.time() - tic1
# Evaluate the model prediction
metrics = evaluation_model(array_output_test, prediction)
# Log in the console
if log:
print(f"KNN regressor:")
print(parameters)
print(metrics)
# Log in mlflow (parameter)
mlflow.log_params(parameters)
# Log in mlflow (metrics)
metrics["duration_training"] = duration_training
metrics["duration_prediction"] = duration_prediction
mlflow.log_metrics(metrics)
# log in mlflow (model)
mlflow.sklearn.log_model(model, f"model")
# Tag the model
mlflow.set_tags(tags)
# Test the different combinations of KNN parameters
configurations = []
for nbr_neighbors in [1,2,5,10]:
for weight_method in ['uniform','distance']:
for field in possible_inputs:
parameters = {
"nbr_neighbors" : nbr_neighbors,
"weight_method" : weight_method
}
tags = {
"model" : "knn",
"inputs" : field
}
configurations.append([parameters, tags])
train_knnmodel(parameters, possible_inputs[field], tags)
# MLP regressor
from sklearn.neural_network import MLPRegressor
def train_mlpmodel(parameters, inputs, tags, log = False):
with mlflow.start_run(nested = True):
# Prepare the data
array_inputs_train = np.array(df_trainvalidate_energyconsumption[inputs])
array_inputs_test = np.array(df_test_energyconsumption[inputs])
# Build the model
tic = time.time()
model = MLPRegressor(
hidden_layer_sizes = parameters["hidden_layers"],
activation = parameters["activation"],
solver = parameters["solver"],
max_iter = parameters["nbr_iteration"],
random_state = 0)
model.fit(array_inputs_train, array_output_train)
duration_training = time.time() - tic
# Make the prediction
tic1 = time.time()
prediction = model.predict(array_inputs_test)
duration_prediction = time.time() - tic1
# Evaluate the model prediction
metrics = evaluation_model(array_output_test, prediction)
# Log in the console
if log:
print(f"Random forest regressor:")
print(parameters)
print(metrics)
# Log in mlflow (parameter)
mlflow.log_params(parameters)
# Log in mlflow (metrics)
metrics["duration_training"] = duration_training
metrics["duration_prediction"] = duration_prediction
mlflow.log_metrics(metrics)
# log in mlflow (model)
mlflow.sklearn.log_model(model, f"model")
# Tag the model
mlflow.set_tags(tags)
# Test the different combinations of MLP parameters
for hiddenlayers in [4,8,16]:
for activation in ["identity","logistic",]:
for solver in ["lbfgs"]:
for nbriteration in [10,100,1000]:
for field in possible_inputs:
parameters = {
"hidden_layers" : hiddenlayers,
"activation" : activation,
"solver" : solver,
"nbr_iteration" : nbriteration
}
tags = {
"model" : "mlp",
"inputs" : field
}
train_mlpmodel(parameters, possible_inputs[field], tags)
# Use a handmade model (scipy approach)
class PTG:
def __init__(self, thresholds_x0, thresholds_a, thresholds_b):
self.thresholds_x0 = thresholds_x0
self.thresholds_a = thresholds_a
self.thresholds_b = thresholds_b
def get_ptgmodel(self, x, a, b, x0):
return np.piecewise(x, [x < x0, x >= x0], [lambda x: a*x + b , lambda x : a*x0 + b])
def fit(self, dfx, y):
x = np.array(dfx)
# Define the bounds
bounds_min = [thresholds_a[0], thresholds_b[0], thresholds_x0[0]]
bounds_max = [thresholds_a[1], thresholds_b[1], thresholds_x0[1]]
bounds = (bounds_min, bounds_max)
# Fit a model
popt, pcov = scipy.optimize.curve_fit(self.get_ptgmodel, x, y, bounds = bounds)
# Get the parameter of the model
a = popt[0]
b = popt[1]
x0 = popt[2]
self.coefficients = [a, b, x0]
def predict(self,dfx):
x = np.array(dfx)
predictions = []
for elt in x:
forecast = self.get_ptgmodel(elt, self.coefficients[0], self.coefficients[1], self.coefficients[2])
predictions.append(forecast)
return np.array(predictions)
def train_ptgmodel(parameters, inputs, tags, log = False):
with mlflow.start_run(nested = True):
# Prepare the data
df_inputs_train = df_trainvalidate_energyconsumption[inputs[0]]
df_inputs_test = df_test_energyconsumption[inputs[0]]
# Build the model
tic = time.time()
model = PTG(parameters["thresholds_x0"], parameters["thresholds_a"], parameters["thresholds_b"])
model.fit(df_inputs_train, array_output_train)
duration_training = time.time() - tic
# Make the prediction
tic1 = time.time()
prediction = model.predict(df_inputs_test)
duration_prediction = time.time() - tic1
# Evaluate the model prediction
metrics = evaluation_model(array_output_test, prediction)
# Log in the console
if log:
print(f"PTG:")
print(parameters)
print(metrics)
# Log in mlflow (parameter)
mlflow.log_params(parameters)
# Log in mlflow (metrics)
metrics["duration_training"] = duration_training
metrics["duration_prediction"] = duration_prediction
mlflow.log_metrics(metrics)
# log in mlflow (model)
mlflow.sklearn.log_model(model, f"model")
# Tag the model
mlflow.set_tags(tags)
# Test the different combinations of parameters
thresholds_x0 = [0, 20]
thresholds_a = [-200000, -50000]
thresholds_b = [1000000, 3000000]
parameters = {
"thresholds_x0" : thresholds_x0,
"thresholds_a" : thresholds_a,
"thresholds_b" : thresholds_b
}
for field in ["only_meanweather_inputs_avg", "only_meanweather_inputs_wavg"]:
tags = {
"model" : "ptg",
"inputs" : field
}
train_ptgmodel(parameters, possible_inputs[field], tags, log = False)
# Select the run of the experiment
df_runs = mlflow.search_runs(experiment_ids="0")
print("Number of runs done : ", len(df_runs))
# Quick sorting to get the best models based on the RMSE metric
df_runs.sort_values(["metrics.rmse"], ascending = True, inplace = True)
df_runs.head()
# Get the best one
runid_selected = df_runs.head(1)["run_id"].values[0]
runid_selected