forked from Dao-AILab/causal-conv1d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
155 lines (131 loc) · 4.94 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright (c) 2024, Tri Dao.
import sys
import os
import re
import ast
from pathlib import Path
import platform
from setuptools import setup, find_packages
from wheel.bdist_wheel import bdist_wheel as _bdist_wheel
import torch
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
with open("README.md", "r", encoding="utf-8") as fh:
long_description = fh.read()
# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))
PACKAGE_NAME = "causal_conv1d"
BASE_WHEEL_URL = "https://github.com/Dao-AILab/causal-conv1d/releases/download/{tag_name}/{wheel_name}"
# FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
# SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
FORCE_BUILD = os.getenv("CAUSAL_CONV1D_FORCE_BUILD", "FALSE") == "TRUE"
SKIP_CUDA_BUILD = os.getenv("CAUSAL_CONV1D_SKIP_CUDA_BUILD", "FALSE") == "TRUE"
# For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
FORCE_CXX11_ABI = os.getenv("CAUSAL_CONV1D_FORCE_CXX11_ABI", "FALSE") == "TRUE"
def get_platform():
"""
Returns the platform name as used in wheel filenames.
"""
if sys.platform.startswith("linux"):
return "linux_x86_64"
elif sys.platform == "darwin":
mac_version = ".".join(platform.mac_ver()[0].split(".")[:2])
return f"macosx_{mac_version}_x86_64"
elif sys.platform == "win32":
return "win_amd64"
else:
raise ValueError("Unsupported platform: {}".format(sys.platform))
cmdclass = {}
ext_modules = []
if not SKIP_CUDA_BUILD:
print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
print("Please note that rocm >= 6.0 is required for it to build correctly and run efficiently.")
TORCH_MAJOR = int(torch.__version__.split(".")[0])
TORCH_MINOR = int(torch.__version__.split(".")[1])
# HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as
# torch._C._GLIBCXX_USE_CXX11_ABI
# https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920
if FORCE_CXX11_ABI:
torch._C._GLIBCXX_USE_CXX11_ABI = True
ext_modules.append(
CUDAExtension(
name="causal_conv1d_cuda",
sources=[
"csrc/causal_conv1d.cpp",
"csrc/causal_conv1d_fwd.cu",
"csrc/causal_conv1d_bwd.cu",
"csrc/causal_conv1d_update.cu",
],
extra_compile_args={
"cxx": ["-O3"],
"nvcc":
[
"-O3",
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"-U__CUDA_NO_BFLOAT16_OPERATORS__",
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
"-U__CUDA_NO_BFLOAT162_OPERATORS__",
"-U__CUDA_NO_BFLOAT162_CONVERSIONS__",
"-ffast-math",
"-munsafe-fp-atomics"
],
},
include_dirs=[Path(this_dir) / "csrc" / "causal_conv1d"],
extra_link_args=["-z", "muldefs"]
)
)
def get_package_version():
with open(Path(this_dir) / "causal_conv1d" / "__init__.py", "r") as f:
version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE)
public_version = ast.literal_eval(version_match.group(1))
local_version = os.environ.get("CAUSAL_CONV1D_LOCAL_VERSION")
if local_version:
return f"{public_version}+{local_version}"
else:
return str(public_version)
class CachedWheelsCommand(_bdist_wheel):
"""
Fragment from the CUDA version. There aren't any prebuilt wheels,
so this just calls run.
"""
def run(self):
super().run()
setup(
name=PACKAGE_NAME,
version=get_package_version(),
packages=find_packages(
exclude=(
"build",
"csrc",
"include",
"tests",
"dist",
"docs",
"benchmarks",
"causal_conv1d.egg-info",
)
),
author="Tri Dao",
author_email="[email protected]",
description="Causal depthwise conv1d in CUDA, with a PyTorch interface",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/Dao-AILab/causal-conv1d",
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: BSD License",
"Operating System :: Unix",
],
ext_modules=ext_modules,
cmdclass={"bdist_wheel": CachedWheelsCommand, "build_ext": BuildExtension}
if ext_modules
else {
"bdist_wheel": CachedWheelsCommand,
},
python_requires=">=3.7",
install_requires=[
"torch",
"packaging",
"ninja",
],
)