forked from translationalneuromodeling/tapas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtapas_logsumexp.m
42 lines (35 loc) · 1.31 KB
/
tapas_logsumexp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
function [y_sum,y_mean] = tapas_logsumexp(x)
%% -------------------------------------------------------------------------------------------
% [y_sum,y_mean] = tapas_logsumexp(x) takes the values in x, exponates
% them, then takes the sum over the column, and finally applies the natural logarithm.
% The calculation uses the "log-sum-exp" trick: See e.g. http://gregorygundersen.com/blog/2020/02/09/log-sum-exp/
% The function also returns the log-mean-exp.
%---------------------------------------------------------------------------------------------
% INPUT:
% x - A column vector or matrix of values. All computations are
% made along the direction of a column.
%
% Optional:
%
%--------------------------------------------------------------------------------------------
% OUTPUT:
% y_sum - The log-sum-exp of all columns of x.
% y_mean - The log-mean-exp of all columns of x.
%
% Author: Jakob Heinzle, TNU, UZH & ETHZ - April, 2021
%
% REVISION LOG:
%
% Jakob Heinzle, 2021/04/16: new function
%
%%
sz = size(x);
if numel(sz)~=2
error('Input x needs to be a matrix of 2 dimensions');
end
max_x = max(x); %compute maximum of each column
y_sum = max_x + log(sum(exp(x-ones(sz(1),1)*max_x)));
if nargout==2
y_mean = y_sum-log(sz(1)); % compute mean if necessary.
end
return;