forked from mindspore-lab/mindone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontrolnet_image2image.py
250 lines (215 loc) · 9.33 KB
/
controlnet_image2image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import logging
logger = logging.getLogger("canny2image")
# logger.setLevel(logging.ERROR)
import datetime
import os
import sys
import cv2
import numpy as np
from cldm.ddim_hacked import DDIMSampler
from cldm.model import create_model, load_model
from conditions.canny.canny_detector import CannyDetector
from conditions.segmentation.segment_detector import SegmentDetector
from conditions.utils import HWC3, resize_image
from ldm.modules.logger import set_logger
from PIL import Image
import mindspore as ms
import mindspore.ops as ops
MODE = {
"canny": "canny",
"segmentation": "segmentation",
}
workspace = os.path.dirname(os.path.abspath(__file__))
sys.path.append(workspace)
def main(args):
ms.set_seed(args.seed)
# set logger
set_logger(
name="",
output_dir=args.output_path,
rank=0,
log_level=eval(args.log_level),
)
work_dir = os.path.dirname(os.path.abspath(__file__))
logger.info(f"WORK DIR:{work_dir}")
outpath = os.path.join(
work_dir, args.output_path + args.task_name + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
)
os.makedirs(outpath, exist_ok=True)
logger.info(f"Output:{outpath}")
# set ms context
device_id = int(os.getenv("DEVICE_ID", 0))
ms.set_context(mode=ms.context.PYNATIVE_MODE, device_target="Ascend", device_id=device_id)
# ms.set_context(mode=ms.context.GRAPH_MODE, device_target='Ascend', device_id=6)
# create model
if os.path.exists(args.model_config):
model = create_model(args.model_config)
model.set_train(False)
else:
logger.error(f"model config file {args.model_config} not exists")
if os.path.exists(args.model_ckpt):
load_model(model, args.model_ckpt)
else:
logger.error(f"model checkpoint file {args.model_ckpt} not exists")
if os.path.exists(args.input_image):
image_path = args.input_image
image = cv2.imread(image_path)
input_image = np.array(image, dtype=np.uint8)
else:
raise ValueError(f"input image file {args.input_image} not exists")
sampler = DDIMSampler(model)
image_resolution = args.image_resolution # 256~768
num_samples = args.n_samples # 1~12
strength = args.strength # 1~2
guess_mode = args.guess_mode
low_threshold = args.low_threshold # 100# 1~255
high_threshold = args.high_threshold # 200 # 1~255
ddim_steps = args.sampling_steps # 1~100
scale = args.scale # 0.1~30
eta = args.ddim_eta
# a_prompt = 'best quality, extremely detailed'
a_prompt = args.a_prompt
n_prompt = args.n_prompt
prompt = "" if args.prompt is None else args.prompt
img = resize_image(HWC3(input_image), image_resolution)
H, W, C = img.shape
# log
key_info = "Key Settings:\n" + "=" * 50 + "\n"
key_info += "".join(
[
f"image_resolution: {image_resolution}\n",
f"num_samples: {num_samples}\n",
f"low_threshold: {low_threshold}\n",
f"high_threshold: {high_threshold}\n",
f"strength: {strength}\n",
f"guess_mode: {guess_mode}\n",
f"ddim_steps: {ddim_steps}\n",
f"scale: {scale}\n",
f"seed: {args.seed}\n",
f"eta: {eta}\n",
f"a_prompt: {a_prompt}\n",
f"n_prompt: {n_prompt}\n",
f"prompt: {prompt}\n",
f"mode: {args.mode}\n",
f"input_image: {image_path}\n",
f"output_path: {outpath}\n",
f"model_config: {args.model_config}\n",
f"model_ckpt: {args.model_ckpt}\n",
f"log_level: {args.log_level}\n",
f"task_name: {args.task_name}\n",
]
)
key_info += "\n" + "=" * 50
logger.info(key_info)
if args.mode == MODE["canny"]:
apply_canny = CannyDetector()
detected_map = apply_canny(img, low_threshold, high_threshold)
detected_map = HWC3(detected_map)
elif args.mode == MODE["segmentation"]:
if os.path.exists(args.condition_ckpt_path):
apply_segment = SegmentDetector(ckpt_path=args.condition_ckpt_path)
else:
logger.warning(
f"!!!Warning!!!: Condition Detector checkpoint path {args.condition_ckpt_path} doesn't exist"
)
detected_map = apply_segment(img)
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
else:
raise NotImplementedError(f"mode {args.mode} not supported")
Image.fromarray(detected_map).save(
os.path.join(outpath, f"{datetime.datetime.now().strftime('%Y%m%d-%H%M%S')}_detected_map.png")
)
control = ms.Tensor(detected_map.copy()).float() / 255.0
control = control.permute(2, 0, 1)
control = ops.stack([control for _ in range(num_samples)], axis=0)
c_crossattn = model.get_learned_conditioning(model.tokenize([prompt + ", " + a_prompt] * num_samples))
cond = {"c_concat": [control], "c_crossattn": [c_crossattn]}
un_cond_c_crossattn = model.get_learned_conditioning(model.tokenize([n_prompt] * num_samples))
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [un_cond_c_crossattn]}
shape = (4, H // 8, W // 8)
model.control_scales = (
[strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13)
) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
logger.info("Start inference")
samples, intermediates = sampler.sample(
ddim_steps,
num_samples,
shape,
cond,
verbose=False,
eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond,
)
def decode_and_save_result(args, samples, detected_map, outpath, filename):
x_samples = model.decode_first_stage(samples)
x_samples = (ops.transpose(x_samples, (0, 2, 3, 1)) * 127.5 + 127.5).asnumpy().clip(0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
if args.mode == MODE["canny"]:
results = [255 - detected_map] + results
elif args.mode == MODE["segmentation"]:
results = [detected_map] + results
else:
raise NotImplementedError(f"mode {args.mode} not supported")
for i, result in enumerate(results):
img = Image.fromarray(result)
tmp_filename = f"{filename}_index{i}_{datetime.datetime.now().strftime('%Y%m%d-%H%M%S')}.png"
img.save(os.path.join(outpath, tmp_filename))
logger.info(f"Save result with filename {tmp_filename} done.")
# print(result)
decode_and_save_result(args, samples, detected_map, outpath, "results")
logger.info(f"Save result to {outpath} done.")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--log_level",
type=str,
default="logging.INFO",
help="log level, options: logging.INFO, logging.WARNING, logging.ERROR",
)
parser.add_argument("--output_path", type=str, nargs="?", default="output/", help="dir to write results to")
parser.add_argument("--input_image", type=str, help="path to input image")
parser.add_argument(
"--task_name", type=str, default="canny2image", help="task name as folder name, used to save results"
)
parser.add_argument("--model_config", type=str, required=True, help="model config file (.yaml)")
parser.add_argument("--model_ckpt", type=str, required=True, help="model checkpoint file path")
parser.add_argument("--n_samples", type=int, default=4, choices=range(1, 13), help="num samples")
parser.add_argument("--image_resolution", type=int, default=512, choices=range(256, 769), help="image resolution")
parser.add_argument("--strength", type=float, default=1, help="strength")
parser.add_argument("--guess_mode", type=bool, default=False, help="guess mode")
parser.add_argument(
"--sampling_steps", type=int, default=20, choices=range(1, 101), help="number of ddim sampling steps"
)
parser.add_argument("--scale", type=float, default=9.0, help="scale")
parser.add_argument(
"--ddim_eta", type=float, default=0.0, help="ddim eta (eta=0.0 corresponds to deterministic sampling"
)
parser.add_argument("--seed", type=int, default=42, help="seed")
parser.add_argument("--a_prompt", type=str, default="best quality", help="added prompt")
parser.add_argument(
"--n_prompt",
type=str,
default="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
help="negative prompt",
)
parser.add_argument("--prompt", type=str, default=None, help="prompt")
parser.add_argument(
"--mode",
type=str,
default="canny",
choices=list(MODE.keys()),
help="control net task mode, only support canny now",
)
# args for canny
parser.add_argument("--low_threshold", type=int, default=100, choices=range(1, 256), help="low threshold for canny")
parser.add_argument(
"--high_threshold", type=int, default=200, choices=range(1, 256), help="high threshold for canny"
)
# args for model-based condition ckpt path
parser.add_argument(
"--condition_ckpt_path", type=str, default="", help="checkpoint path for contition control model"
)
args = parser.parse_args()
main(args)