forked from mindspore-lab/mindone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_dataset.py
56 lines (39 loc) · 1.44 KB
/
convert_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
"""
Convert hugging face parquet format dataset to raw format that is trainable with stable diffusion in mindone
Usage: python python convert_hf_datset.py
The conversion is run serially and is slow now.
"""
import os
import pandas as pd
from datasets import load_dataset
from tqdm import tqdm
DATASET_NAME_MAPPING = {
"lambdalabs/pokemon-blip-captions": ("image", "text"),
}
def convert_hf_dataset_to_raw(
dn="lambdalabs/pokemon-blip-captions",
save_folder="pokemon_raw",
):
csv_fn = "img_txt.csv"
dataset = load_dataset(dn, cache_dir="./downloads")
column_names = dataset["train"].column_names
print(column_names)
dataset_columns = DATASET_NAME_MAPPING.get(dn, None)
image_column = dataset_columns[0]
caption_column = dataset_columns[0]
num_samples = len(dataset["train"]) # only train split in pokemon dataset
print("Num samples: ", num_samples)
img_fns = []
texts = []
for i in tqdm(range(num_samples)):
pil_obj = dataset["train"][image_column][i]
text = dataset["train"][caption_column][i]
img_fn = f"img{i}.png"
pil_obj.save(f"{save_folder}/{img_fn}")
img_fns.append(img_fn)
texts.append(text)
frame = pd.DataFrame({"dir": img_fns, "text": texts})
frame.to_csv(os.path.join(save_folder, csv_fn), index=False, sep=",")
print("Completed! Output saved in ", save_folder)
if __name__ == "__main__":
convert_hf_dataset_to_raw()