forked from mindspore-lab/mindone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinpaint.py
325 lines (276 loc) · 11.3 KB
/
inpaint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import argparse
import datetime
import logging
import math
import os
import shutil
import sys
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
import mindspore as ms
from mindspore import Tensor
from mindspore import dtype as mstype
from mindspore import ops
workspace = os.path.dirname(os.path.abspath(__file__))
print("workspace:", workspace, flush=True)
sys.path.append(workspace)
from ldm.models.diffusion.plms import PLMSSampler
# from ldm.models.diffusion.ddim import DDIMSampler
# from ldm.models.diffusion.dpm_solver import DPMSolverSampler
# from ldm.models.diffusion.uni_pc import UniPCSampler
from ldm.modules.logger import set_logger
from ldm.modules.train.tools import set_random_seed
from ldm.util import instantiate_from_config
logger = logging.getLogger("inpaint")
def make_batch_sd(image, mask, txt, num_samples=1):
image = np.array(image.convert("RGB"))
image = image[None].transpose(0, 3, 1, 2)
image = Tensor(image, dtype=mstype.float32) / 127.5 - 1.0
mask = np.array(mask.convert("L"))
mask = mask.astype(np.float32) / 255.0
mask = mask[None, None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = Tensor(mask, dtype=mstype.float32)
masked_image = image * (mask < 0.5)
batch = {
"image": image.repeat(num_samples, axis=0),
"txt": num_samples * [txt],
"mask": mask.repeat(num_samples, axis=0),
"masked_image": masked_image.repeat(num_samples, axis=0),
}
return batch
def inpaint(sampler, image, mask, prompt, seed, scale, sample_steps, num_samples=1, w=512, h=512):
"""
mask: shape [H, W, 1]
"""
model = sampler.model
prng = np.random.RandomState(seed)
start_code = prng.randn(num_samples, 4, h // 8, w // 8)
start_code = Tensor(start_code, dtype=mstype.float32) # z_T
batch = make_batch_sd(image, mask, txt=prompt, num_samples=num_samples)
tokenized_prompts = model.tokenize(batch["txt"])
c = model.get_learned_conditioning(tokenized_prompts)
c_cat = list()
for ck in model.concat_keys: # ["mask", "masked_image"]
cc = batch[ck]
if ck != model.masked_image_key:
bchw = [num_samples, 4, h // 8, w // 8] # TODO: when not (Z=4, f_down=8)
cc = ops.ResizeNearestNeighbor((bchw[-2], bchw[-1]))(cc) # latent mask:[bs, 1, H/8, W/8]
else:
cc = model.get_first_stage_encoding(
model.encode_first_stage(cc)
) # latent masked image encoded by VAE.encoder, in shape [bs, 4, H/8, W/8]
c_cat.append(cc)
c_cat = ops.concat(c_cat, axis=1) # concat latent mask and latent masked image channel-wisely.
# hybrid conditions, work with DiffusionWrapper.construct
cond = {"c_concat": c_cat, "c_crossattn": c}
# unconditional guidance
uc_tokenized_prompts = model.tokenize(num_samples * [""])
uc_cross = model.get_learned_conditioning(uc_tokenized_prompts)
uc_full = {"c_concat": c_cat, "c_crossattn": uc_cross}
shape = [model.channels, h // 8, w // 8]
samples_cfg, intermediates = sampler.sample(
sample_steps,
num_samples,
shape,
cond, # hybrid condition
verbose=False,
eta=0.0,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc_full,
x_T=start_code, # z_T
x0=c_cat[:, 1:], # latent masked image
)
x_samples = model.decode_first_stage(samples_cfg)
result = ops.clip_by_value((x_samples + 1.0) / 2.0, clip_value_min=0.0, clip_value_max=1.0)
result = result.asnumpy().transpose(0, 2, 3, 1)
result = result * 255
result = [Image.fromarray(img.astype(np.uint8)) for img in result]
return result
def image_grid(imgs, rows, cols):
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
def main(args):
# set logger
set_logger(
name="",
output_dir=args.save_path,
rank=0,
log_level=eval(args.log_level),
)
# init
device_id = int(os.getenv("DEVICE_ID", 0))
ms.context.set_context(
mode=args.ms_mode,
# mode=ms.context.GRAPH_MODE,
device_target="Ascend",
device_id=device_id,
max_device_memory="30GB",
)
if args.save_graph:
save_graphs_path = "graph"
shutil.rmtree(save_graphs_path)
ms.context.set_context(save_graphs=True, save_graphs_path=save_graphs_path)
set_random_seed(args.seed)
if not os.path.isabs(args.config):
args.config = os.path.join(workspace, args.config)
config = OmegaConf.load(f"{args.config}")
# build model
model = load_model_from_config(config, args.ckpt_path)
# build sampler
# TODO: support more samplers
sname = args.sampler.lower()
if sname == "plms":
sampler = PLMSSampler(model)
# elif sname == 'dpm_solver_pp':
# sampler = DPMSolverSampler(model, "dpmsolver++", prediction_type='noise')
else:
raise TypeError(f"unsupported sampler type: {sname}")
# process inputs
img_size = args.img_size
num_samples = args.num_samples
prompt = args.prompt
image = Image.open(args.image).convert("RGB")
mask_image = Image.open(args.mask).convert("RGB")
if args.aug == "resize":
aug_func = lambda x_: x_.resize((img_size, img_size))
elif args.aug == "crop":
assert img_size % 2 == 0
mask_idx = np.where(np.array(mask_image)[:, :, 0] > 127.5)
mask_center = np.array(list(map(np.mean, mask_idx)))[::-1].astype("int")
mask_center = [x_.clip(img_size // 2, size_ - img_size // 2) for x_, size_ in zip(mask_center, image.size)]
aug_func = lambda x_: x_.crop(
(
mask_center[0] - img_size // 2,
mask_center[1] - img_size // 2,
mask_center[0] + img_size // 2,
mask_center[1] + img_size // 2,
)
)
elif args.aug == "resizecrop":
mask_idx = np.where(np.array(mask_image)[:, :, 0] > 127.5)
mask_center = np.array(list(map(np.mean, mask_idx)))[::-1].astype("int")
mask_range = max(*[x_.max() - x_.min() for x_ in mask_idx])
new_img_size = math.ceil(mask_range / args.mask_ratio)
mask_center = [
x_.clip(new_img_size // 2, size_ - new_img_size // 2) for x_, size_ in zip(mask_center, image.size)
]
aug_func = lambda x_: x_.crop(
(
mask_center[0] - new_img_size // 2,
mask_center[1] - new_img_size // 2,
mask_center[0] + new_img_size // 2,
mask_center[1] + new_img_size // 2,
)
).resize((img_size, img_size))
else:
aug_func = lambda x_: x_
image = aug_func(image)
mask_image = aug_func(mask_image)
mask_image = Image.fromarray(np.array(mask_image)[:, :, -1] > 127.5)
images = [image, mask_image]
# log
key_info = "Key Settings:\n" + "=" * 50 + "\n"
key_info += "\n".join(
[
f"MindSpore mode[GRAPH(0)/PYNATIVE(1)]: {args.ms_mode}",
f"Model: StableDiffusion v-{args.version}",
f"Precision: {model.model.diffusion_model.dtype}",
f"Pretrained ckpt path: {args.ckpt_path}",
f"Sampler: {sname}",
f"Sampling steps: {args.sample_steps}",
f"Uncondition guidance scale: {args.guidance_scale}",
]
)
key_info += "\n" + "=" * 50
logger.info(key_info)
logger.info("Running text-guided image inpainting...")
# sampling
for _ in range(math.ceil(num_samples / args.batch_size)):
output = inpaint(
sampler=sampler,
image=image,
mask=mask_image,
prompt=prompt,
seed=args.seed,
scale=args.guidance_scale,
sample_steps=args.sample_steps,
num_samples=args.batch_size,
h=img_size,
w=img_size,
)
images.extend(output)
# save output
im_save = image_grid(images, 1, num_samples + 2)
ct = datetime.datetime.now().strftime("%Y_%d_%b_%H_%M_%S_")
img_name = ct + prompt.replace(" ", "_") + ".png"
os.makedirs(args.save_path, exist_ok=True)
im_save.save(os.path.join(args.save_path, img_name))
logger.info(f"Done! All generated images are saved in: {args.save_path}" f"\nEnjoy.")
def load_model_from_config(config, ckpt, verbose=False):
logger.info(f"Loading model from {ckpt}")
model = instantiate_from_config(config.model)
if os.path.exists(ckpt):
param_dict = ms.load_checkpoint(ckpt)
if param_dict:
param_not_load, _ = ms.load_param_into_net(model, param_dict)
logger.info("Net params not loaded: {}".format(param_not_load))
else:
logger.info(f"!!!Warning!!!: {ckpt} doesn't exist")
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--image", type=str, required=True, help="path to origin image")
parser.add_argument("--mask", type=str, required=True, help="path to mask image")
parser.add_argument("--save_path", type=str, default="output/inpaint", help="path to save image")
parser.add_argument("--prompt", type=str, required=True, help="")
parser.add_argument("--config", type=str, default=None, help="")
parser.add_argument("--ckpt_path", type=str, default=None, help="")
parser.add_argument("--aug", type=str, default="resize", help="augment type")
parser.add_argument("--mask_ratio", type=float, default=0.75, help="")
parser.add_argument(
"--ms_mode", type=int, default=0, help="Running in GRAPH_MODE(0) or PYNATIVE_MODE(1) (default=0)"
)
parser.add_argument("--num_samples", type=int, default=4, help="num of total samples")
parser.add_argument("--img_size", type=int, default=512, help="")
parser.add_argument("--batch_size", type=int, default=4, help="batch size of model")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument(
"--log_level",
type=str,
default="logging.INFO",
help="log level, options: logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR",
)
parser.add_argument("--guidance_scale", type=float, default=7.5, help="")
parser.add_argument("--sample_steps", type=int, default=50, help="")
parser.add_argument(
"--sampler", type=str, default="plms", help="support plms, ddim, dpm_solver, dpm_solver_pp, uni_pc"
)
parser.add_argument("--save_graph", action="store_true", help="")
parser.add_argument(
"-v",
"--version",
type=str,
nargs="?",
default="2.0",
help="Stable diffusion version, 1.5-wukong or 2.0",
)
args = parser.parse_args()
if args.ckpt_path is None:
if args.version in ["1.5_cn", "1.5-wukong"]:
args.ckpt_path = "models/wukong-huahua-inpaint-ms.ckpt"
else:
args.ckpt_path = "models/sd_v2_inpaint-f694d5cf.ckpt"
if args.config is None:
if args.version in ["1.5_cn", "1.5-wukong"]:
args.config = "configs/v1-inpaint-inference-chinese.yaml"
else:
args.config = "configs/v2-inpaint-inference.yaml"
if args.guidance_scale is None:
args.guidance_scale = 9.0 if args.version.startswith("2.") else 7.5
main(args)