forked from mindspore-lab/mindone
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_text_to_image.py
463 lines (413 loc) · 19.6 KB
/
train_text_to_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
"""
Stable diffusion model training/finetuning
"""
import argparse
import importlib
import logging
import os
import shutil
import yaml
from common import init_env
from ldm.data.dataset import build_dataset
from ldm.modules.logger import set_logger
from ldm.modules.lora import inject_trainable_lora, inject_trainable_lora_to_textencoder
from ldm.modules.train.callback import EvalSaveCallback, OverflowMonitor
from ldm.modules.train.checkpoint import resume_train_network
from ldm.modules.train.ema import EMA
from ldm.modules.train.lr_schedule import create_scheduler
from ldm.modules.train.optim import build_optimizer
from ldm.modules.train.trainer import TrainOneStepWrapper
from ldm.util import count_params, is_old_ms_version, str2bool
from omegaconf import OmegaConf
from mindspore import Model, Profiler, load_checkpoint, load_param_into_net, nn
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
from mindspore.train.callback import TimeMonitor
os.environ["HCCL_CONNECT_TIMEOUT"] = "6000"
logger = logging.getLogger(__name__)
def build_model_from_config(config, enable_flash_attention=None):
config = OmegaConf.load(config).model
if args is not None:
if enable_flash_attention is not None:
config["params"]["unet_config"]["params"]["enable_flash_attention"] = enable_flash_attention
if "target" not in config:
if config == "__is_first_stage__":
return None
elif config == "__is_unconditional__":
return None
raise KeyError("Expected key `target` to instantiate.")
config_params = config.get("params", dict())
# config_params['cond_stage_trainable'] = cond_stage_trainable # TODO: easy config
return get_obj_from_str(config["target"])(**config_params)
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def load_pretrained_model(pretrained_ckpt, net, unet_initialize_random=False):
logger.info(f"Loading pretrained model from {pretrained_ckpt}")
if os.path.exists(pretrained_ckpt):
param_dict = load_checkpoint(pretrained_ckpt)
if unet_initialize_random:
pnames = list(param_dict.keys())
# pop unet params from pretrained weight
for pname in pnames:
if pname.startswith("model.diffusion_model"):
param_dict.pop(pname)
logger.warning("UNet will be initialized randomly")
if is_old_ms_version():
param_not_load = load_param_into_net(net, param_dict)
else:
param_not_load, ckpt_not_load = load_param_into_net(net, param_dict)
logger.info("Params not load: {}".format(param_not_load))
else:
logger.warning(f"Checkpoint file {pretrained_ckpt} dose not exist!!!")
def load_pretrained_model_vae_unet_cnclip(pretrained_ckpt, cnclip_ckpt, net):
new_param_dict = {}
logger.info(f"Loading pretrained model from {pretrained_ckpt}, {cnclip_ckpt}")
if os.path.exists(pretrained_ckpt) and os.path.exists(cnclip_ckpt):
param_dict = load_checkpoint(pretrained_ckpt)
cnclip_param_dict = load_checkpoint(pretrained_ckpt)
for key in param_dict:
if key.startswith("first") or key.startswith("model"):
new_param_dict[key] = param_dict[key]
for key in cnclip_param_dict:
new_param_dict[key] = cnclip_param_dict[key]
param_not_load = load_param_into_net(net, new_param_dict)
logger.info("Params not load: {}".format(param_not_load))
else:
logger.warning(f"Checkpoint file {pretrained_ckpt}, {cnclip_ckpt} dose not exist!!!")
def _check_cfgs_in_parser(cfgs: dict, parser: argparse.ArgumentParser):
actions_dest = [action.dest for action in parser._actions]
defaults_key = parser._defaults.keys()
for k in cfgs.keys():
if k not in actions_dest and k not in defaults_key:
raise KeyError(f"{k} does not exist in ArgumentParser!")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--train_config",
default="",
type=str,
help="train config path to load a yaml file that override the default arguments",
)
parser.add_argument("--mode", default=0, type=int, help="Specify the mode: 0 for graph mode, 1 for pynative mode")
parser.add_argument("--use_parallel", default=False, type=str2bool, help="use parallel")
parser.add_argument(
"--replace_small_images",
default=True,
type=str2bool,
help="replace the small-size images with other training samples",
)
parser.add_argument("--enable_modelarts", default=False, type=str2bool, help="run codes in ModelArts platform")
parser.add_argument("--num_workers", default=1, type=int, help="the number of modelarts workers")
parser.add_argument(
"--json_data_path",
default="mindone/examples/stable_diffusion_v2/ldm/data/num_samples_64_part.json",
type=str,
help="the path of num_samples.json containing a dictionary with 64 parts. "
"Each part is a large dictionary containing counts of samples of 533 tar packages.",
)
parser.add_argument("--data_path", default="dataset", type=str, help="data path")
parser.add_argument("--output_path", default="output/", type=str, help="output directory to save training results")
parser.add_argument(
"--resume",
default=False,
type=str,
help="resume training, can set True or path to resume checkpoint.(default=False)",
)
parser.add_argument("--profile", default=False, type=str2bool, help="Profile or not")
parser.add_argument("--model_config", default="configs/v1-train-chinese.yaml", type=str, help="model config path")
parser.add_argument("--custom_text_encoder", default="", type=str, help="use this to plug in custom clip model")
parser.add_argument(
"--pretrained_model_path", default="", type=str, help="Specify the pretrained model from this checkpoint"
)
parser.add_argument("--use_lora", default=False, type=str2bool, help="use lora finetuning")
parser.add_argument("--lora_ft_unet", default=True, type=str2bool, help="whether to apply lora finetune to unet")
parser.add_argument(
"--lora_ft_text_encoder", default=False, type=str2bool, help="whether to apply lora finetune to text encoder"
)
parser.add_argument(
"--lora_rank",
default=4,
type=int,
help="lora rank. The bigger, the larger the LoRA model will be, but usually gives better generation quality.",
)
parser.add_argument("--lora_fp16", default=True, type=str2bool, help="Whether use fp16 for LoRA params.")
parser.add_argument(
"--lora_scale",
default=1.0,
type=float,
help="scale, the higher, the more LoRA weights will affect orignal SD. If 0, LoRA has no effect.",
)
parser.add_argument("--unet_initialize_random", default=False, type=str2bool, help="initialize unet randomly")
parser.add_argument("--dataset_sink_mode", default=False, type=str2bool, help="sink mode")
parser.add_argument("--optim", default="adamw", type=str, help="optimizer")
parser.add_argument(
"--betas", type=float, default=[0.9, 0.999], help="Specify the [beta1, beta2] parameter for the Adam optimizer."
)
parser.add_argument("--weight_decay", default=1e-6, type=float, help="Weight decay.")
parser.add_argument("--seed", default=3407, type=int, help="data path")
parser.add_argument("--warmup_steps", default=1000, type=int, help="warmup steps")
parser.add_argument("--train_batch_size", default=10, type=int, help="batch size")
parser.add_argument("--callback_size", default=1, type=int, help="callback size.")
parser.add_argument("--start_learning_rate", default=1e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--end_learning_rate", default=1e-7, type=float, help="The end learning rate for Adam.")
parser.add_argument("--decay_steps", default=0, type=int, help="lr decay steps.")
parser.add_argument("--scheduler", default="cosine_decay", type=str, help="scheduler.")
parser.add_argument("--epochs", default=10, type=int, help="epochs")
parser.add_argument("--init_loss_scale", default=65536, type=float, help="loss scale")
parser.add_argument("--loss_scale_factor", default=2, type=float, help="loss scale factor")
parser.add_argument("--scale_window", default=1000, type=float, help="scale window")
parser.add_argument("--gradient_accumulation_steps", default=1, type=int, help="gradient accumulation steps")
# parser.add_argument("--cond_stage_trainable", default=False, type=str2bool, help="whether text encoder is trainable")
parser.add_argument("--use_ema", default=False, type=str2bool, help="whether use EMA")
parser.add_argument("--clip_grad", default=False, type=str2bool, help="whether apply gradient clipping")
# parser.add_argument("--use_recompute", default=None, type=str2bool, help="whether use recompute")
parser.add_argument(
"--enable_flash_attention",
default=None,
type=str2bool,
help="whether enable flash attention. If not None, it will overwrite the value in model config yaml.",
)
parser.add_argument("--drop_overflow_update", default=True, type=str2bool, help="drop overflow update")
parser.add_argument("--loss_scaler_type", default="dynamic", type=str, help="dynamic or static")
parser.add_argument(
"--max_grad_norm",
default=1.0,
type=float,
help="max gradient norm for clipping, effective when `clip_grad` enabled.",
)
parser.add_argument("--ckpt_save_interval", default=1, type=int, help="save checkpoint every this epochs or steps")
parser.add_argument(
"--step_mode",
default=False,
type=str2bool,
help="whether save ckpt by steps. If False, save ckpt by epochs.",
)
parser.add_argument("--random_crop", default=False, type=str2bool, help="random crop")
parser.add_argument("--filter_small_size", default=True, type=str2bool, help="filter small images")
parser.add_argument("--image_size", default=512, type=int, help="images size")
parser.add_argument("--image_filter_size", default=256, type=int, help="image filter size")
parser.add_argument(
"--log_level",
type=str,
default="logging.INFO",
help="log level, options: logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR",
)
abs_path = os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), ""))
default_args = parser.parse_args()
if default_args.train_config:
default_args.train_config = os.path.join(abs_path, default_args.train_config)
with open(default_args.train_config, "r") as f:
cfg = yaml.safe_load(f)
_check_cfgs_in_parser(cfg, parser)
parser.set_defaults(**cfg)
args = parser.parse_args()
args.model_config = os.path.join(abs_path, args.model_config)
logger.info(args)
return args
def main(args):
if args.profile:
profiler = Profiler(output_path="./profiler_data")
args.epochs = 3
# init
device_id, rank_id, device_num = init_env(
args.mode,
seed=args.seed,
distributed=args.use_parallel,
enable_modelarts=args.enable_modelarts,
num_workers=args.num_workers,
json_data_path=args.json_data_path,
)
set_logger(name="", output_dir=args.output_path, rank=rank_id, log_level=eval(args.log_level))
# build model
latent_diffusion_with_loss = build_model_from_config(args.model_config, args.enable_flash_attention)
if args.custom_text_encoder is not None and os.path.exists(args.custom_text_encoder):
load_pretrained_model_vae_unet_cnclip(
args.pretrained_model_path, args.custom_text_encoder, latent_diffusion_with_loss
)
else:
load_pretrained_model(
args.pretrained_model_path, latent_diffusion_with_loss, unet_initialize_random=args.unet_initialize_random
)
# build dataset
tokenizer = latent_diffusion_with_loss.cond_stage_model.tokenizer
dataset = build_dataset(
data_path=args.data_path,
train_batch_size=args.train_batch_size,
tokenizer=tokenizer,
image_size=args.image_size,
image_filter_size=args.image_filter_size,
device_num=device_num,
rank_id=rank_id,
random_crop=args.random_crop,
filter_small_size=args.filter_small_size,
replace=args.replace_small_images,
enable_modelarts=args.enable_modelarts,
)
# lora injection
if args.use_lora:
# freeze network
for param in latent_diffusion_with_loss.get_parameters():
param.requires_grad = False
# inject lora params
num_injected_params = 0
if args.lora_ft_unet:
unet_lora_layers, unet_lora_params = inject_trainable_lora(
latent_diffusion_with_loss,
rank=args.lora_rank,
use_fp16=args.lora_fp16,
scale=args.lora_scale,
)
num_injected_params += len(unet_lora_params)
if args.lora_ft_text_encoder:
text_encoder_lora_layers, text_encoder_lora_params = inject_trainable_lora_to_textencoder(
latent_diffusion_with_loss,
rank=args.lora_rank,
use_fp16=args.lora_fp16,
scale=args.lora_scale,
)
num_injected_params += len(text_encoder_lora_params)
assert (
len(latent_diffusion_with_loss.trainable_params()) == num_injected_params
), "Only lora params {} should be trainable. but got {} trainable params".format(
num_injected_params, len(latent_diffusion_with_loss.trainable_params())
)
# print('Trainable params: ', latent_diffusion_with_loss.model.trainable_params())
dataset_size = dataset.get_dataset_size()
if not args.decay_steps:
args.decay_steps = args.epochs * dataset_size - args.warmup_steps # fix lr scheduling
if args.decay_steps <= 0:
logger.warning(
f"decay_steps is {args.decay_steps}, please check epochs, dataset_size and warmup_steps. "
f"Will force decay_steps to be set to 1."
)
args.decay_steps = 1
# build learning rate scheduler
lr = create_scheduler(
steps_per_epoch=dataset_size,
scheduler=args.scheduler,
lr=args.start_learning_rate,
min_lr=args.end_learning_rate,
warmup_steps=args.warmup_steps,
decay_steps=args.decay_steps,
num_epochs=args.epochs,
)
# build optimizer
optimizer = build_optimizer(
model=latent_diffusion_with_loss,
name=args.optim,
betas=args.betas,
weight_decay=args.weight_decay,
lr=lr,
)
if args.loss_scaler_type == "dynamic":
loss_scaler = DynamicLossScaleUpdateCell(
loss_scale_value=args.init_loss_scale, scale_factor=args.loss_scale_factor, scale_window=args.scale_window
)
elif args.loss_scaler_type == "static":
loss_scaler = nn.FixedLossScaleUpdateCell(args.init_loss_scale)
else:
raise ValueError
# resume ckpt
if rank_id == 0:
ckpt_dir = os.path.join(args.output_path, "ckpt")
os.makedirs(ckpt_dir, exist_ok=True)
start_epoch = 0
if args.resume:
resume_ckpt = os.path.join(ckpt_dir, "train_resume.ckpt") if isinstance(args.resume, bool) else args.resume
start_epoch, loss_scale, cur_iter, last_overflow_iter = resume_train_network(
latent_diffusion_with_loss, optimizer, resume_ckpt
)
loss_scaler.loss_scale_value = loss_scale
loss_scaler.cur_iter = cur_iter
loss_scaler.last_overflow_iter = last_overflow_iter
# trainer (standalone and distributed)
ema = (
EMA(
latent_diffusion_with_loss, # .model, #TODO: remove .model if not only train UNet
ema_decay=0.9999,
)
if args.use_ema
else None
)
net_with_grads = TrainOneStepWrapper(
latent_diffusion_with_loss,
optimizer=optimizer,
scale_sense=loss_scaler,
drop_overflow_update=args.drop_overflow_update, # TODO: allow config
gradient_accumulation_steps=args.gradient_accumulation_steps,
clip_grad=args.clip_grad,
clip_norm=args.max_grad_norm,
ema=ema,
)
model = Model(net_with_grads)
# callbacks
callback = [TimeMonitor(args.callback_size)]
ofm_cb = OverflowMonitor()
callback.append(ofm_cb)
if rank_id == 0:
save_cb = EvalSaveCallback(
network=latent_diffusion_with_loss, # TODO: save unet/vae seperately
use_lora=args.use_lora,
rank_id=rank_id,
ckpt_save_dir=ckpt_dir,
ema=ema,
ckpt_save_policy="latest_k",
ckpt_max_keep=10,
step_mode=args.step_mode,
ckpt_save_interval=args.ckpt_save_interval,
lora_rank=args.lora_rank,
log_interval=args.callback_size,
start_epoch=start_epoch,
record_lr=False, # LR retrival is not supportted on 910b currently
)
callback.append(save_cb)
# log
if rank_id == 0:
num_params_unet, _ = count_params(latent_diffusion_with_loss.model.diffusion_model)
num_params_text_encoder, _ = count_params(latent_diffusion_with_loss.cond_stage_model)
num_params_vae, _ = count_params(latent_diffusion_with_loss.first_stage_model)
num_params, num_trainable_params = count_params(latent_diffusion_with_loss)
key_info = "Key Settings:\n" + "=" * 50 + "\n"
key_info += "\n".join(
[
f"MindSpore mode[GRAPH(0)/PYNATIVE(1)]: {args.mode}",
f"Distributed mode: {args.use_parallel}",
f"Data path: {args.data_path}",
f"Num params: {num_params:,} (unet: {num_params_unet:,}, text encoder: {num_params_text_encoder:,}, vae: {num_params_vae:,})",
f"Num trainable params: {num_trainable_params:,}",
f"Precision: {latent_diffusion_with_loss.model.diffusion_model.dtype}",
f"Use LoRA: {args.use_lora}",
f"LoRA rank: {args.lora_rank}",
f"Learning rate: {args.start_learning_rate}",
f"Batch size: {args.train_batch_size}",
f"Weight decay: {args.weight_decay}",
f"Grad accumulation steps: {args.gradient_accumulation_steps}",
f"Num epochs: {args.epochs}",
f"Loss scaler: {args.loss_scaler_type}",
f"Init loss scale: {args.init_loss_scale}",
f"Grad clipping: {args.clip_grad}",
f"Max grad norm: {args.max_grad_norm}",
f"EMA: {args.use_ema}",
f"Enable flash attention: {args.enable_flash_attention}",
]
)
key_info += "\n" + "=" * 50
logger.info(key_info)
logger.info("Start training...")
# backup config files
shutil.copyfile(args.model_config, os.path.join(args.output_path, "model_config.yaml"))
with open(os.path.join(args.output_path, "args.yaml"), "w") as f:
yaml.safe_dump(vars(args), stream=f, default_flow_style=False, sort_keys=False)
# train
model.train(
args.epochs, dataset, callbacks=callback, dataset_sink_mode=args.dataset_sink_mode, initial_epoch=start_epoch
)
if args.profile:
profiler.analyse()
if __name__ == "__main__":
logger.debug("process id:", os.getpid())
args = parse_args()
main(args)