forked from transatlantic-comppsych/Database_Scripts_Github
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDAWBA_database_and_deletions.R
326 lines (257 loc) · 20.3 KB
/
DAWBA_database_and_deletions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#***********DAWBA = diagnostic information from participant screening
# to do:
# Loading patient info ----------------------------------------------------
if (exists("master_IRTA_latest")==FALSE) {
irta_master_file <- list.files(path = paste0(IRTA_tracker_location), pattern = "^MASTER_IRTA_DATABASE", all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
irta_master_file_time <- file.mtime(paste0(IRTA_tracker_location, "/", irta_master_file)) %>% as.Date()
irta_master_combined <- tibble(File=c(irta_master_file), Date=c(irta_master_file_time)) %>% arrange(desc(Date)) %>% slice(1)
master_IRTA_latest <- read_excel(paste0(IRTA_tracker_location, irta_master_combined[1]))
date_variabes <- c("DOB", "Screening_Start_Date", "Referral_Date", "Consent_Date", "Clinical_Visit_Date", "Clinicals_date", "Overall_date")
for(i in seq_len(max_tasks)) { date_variabes <- c(date_variabes, paste0("Task", i, "_Date"))}
master_IRTA_latest[date_variabes] <- lapply(master_IRTA_latest[date_variabes], as.Date)
rm(i, date_variabes, irta_master_file, irta_master_file_time, irta_master_combined)
} else {
print("master task tracker already imported")
}
if (exists("master_IRTA_oldest_screens_latest")==FALSE) {
irta_old_screens_file <- list.files(path = paste0(IRTA_tracker_location), pattern = "^OLD_REFERRALS_DATABASE", all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
irta_old_screens_file_time <- file.mtime(paste0(IRTA_tracker_location, "/", irta_old_screens_file)) %>% as.Date()
irta_old_screens_combined <- tibble(File=c(irta_old_screens_file), Date=c(irta_old_screens_file_time)) %>% arrange(desc(Date)) %>% slice(1)
master_IRTA_oldest_screens_latest <- read_excel(paste0(IRTA_tracker_location, irta_old_screens_combined[1]))
date_variabes <- c("DOB", "Screening_Start_Date", "Referral_Date", "Consent_Date", "Clinical_Visit_Date", "Clinicals_date", "Overall_date")
master_IRTA_oldest_screens_latest[date_variabes] <- lapply(master_IRTA_oldest_screens_latest[date_variabes], as.Date)
rm(date_variabes, irta_old_screens_file, irta_old_screens_file_time, irta_old_screens_combined)
} else {
print("master IRTA tracker + QC info already imported")
}
if (exists("master_IRTA_screens_latest")==FALSE) {
irta_ongoing_screens_file <- list.files(path = paste0(IRTA_tracker_location), pattern = "^REFERRAL_AND_SCREENING_DATABASE", all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)
irta_ongoing_screens_file_time <- file.mtime(paste0(IRTA_tracker_location, "/", irta_ongoing_screens_file)) %>% as.Date()
irta_ongoing_screens_combined <- tibble(File=c(irta_ongoing_screens_file), Date=c(irta_ongoing_screens_file_time)) %>%
arrange(desc(Date)) %>% slice(1)
master_IRTA_screens_latest <- read_excel(paste0(IRTA_tracker_location, irta_ongoing_screens_combined[1]))
date_variabes <- c("DOB", "Screening_Start_Date", "Referral_Date", "Consent_Date", "Clinical_Visit_Date", "Clinicals_date", "Overall_date")
master_IRTA_screens_latest[date_variabes] <- lapply(master_IRTA_screens_latest[date_variabes], as.Date)
rm(date_variabes, irta_ongoing_screens_file, irta_ongoing_screens_file_time, irta_ongoing_screens_combined)
} else {
print("master IRTA tracker + QC info already imported")
}
# Isolating participant info I need & merging -----------------------------
master_IRTA_identifiers <- master_IRTA_latest %>%
select(FIRST_NAME, LAST_NAME, Initials, DAWBA_ID, PLUSID, SDAN, IRTA_tracker, SEX, DOB, Participant_Type2,
Clinical_Visit_Date, Screening_Start_Date, Referral_Date, Overall_date,
Eligible, Eligibility_notes, Scheduling_status, Scheduling_status_notes,
Parent_e_consented, Child_e_assented, Parent_DAWBA_completed, Child_DAWBA_completed, DAWBA_completed) %>%
group_by(Initials) %>% fill(., DAWBA_ID, PLUSID, .direction = c("down")) %>% fill(., DAWBA_ID, PLUSID, .direction = c("up")) %>%
arrange(Initials, Overall_date) %>% filter(1:n() == 1) %>% ungroup() %>%
mutate(Source = "Current participants") %>% filter(!is.na(DAWBA_ID) | !is.na(PLUSID))
master_current_screen_identifiers <- master_IRTA_screens_latest %>%
select(FIRST_NAME, LAST_NAME, Initials, DAWBA_ID, PLUSID, SDAN, IRTA_tracker, SEX, DOB, Participant_Type2,
Clinical_Visit_Date, Screening_Start_Date, Referral_Date, Overall_date,
Eligible, Eligibility_notes, Scheduling_status, Scheduling_status_notes,
Parent_e_consented, Child_e_assented, Parent_DAWBA_completed, Child_DAWBA_completed, DAWBA_completed) %>%
mutate(Source = "Current screens") %>% filter(!is.na(DAWBA_ID) | !is.na(PLUSID))
master_old_screen_identifiers <- master_IRTA_oldest_screens_latest %>%
select(FIRST_NAME, LAST_NAME, Initials, DAWBA_ID, PLUSID, SDAN, IRTA_tracker, SEX, DOB, Participant_Type2,
Clinical_Visit_Date, Screening_Start_Date, Referral_Date, Overall_date,
Eligible, Eligibility_notes, Scheduling_status, Scheduling_status_notes,
Parent_e_consented, Child_e_assented, Parent_DAWBA_completed, Child_DAWBA_completed, DAWBA_completed) %>%
mutate(Source = "OLD screens") %>% filter(!is.na(DAWBA_ID) | !is.na(PLUSID))
participant_identifiers_combined <- merge.default(master_IRTA_identifiers, master_current_screen_identifiers, all=TRUE) %>%
merge.default(., master_old_screen_identifiers, all=TRUE)
fill_names <- participant_identifiers_combined %>% select(-Initials) %>% colnames()
participant_identifiers_combined <- participant_identifiers_combined %>% group_by(Initials) %>%
fill(., all_of(fill_names), .direction = c("down")) %>%
fill(., all_of(fill_names), .direction = c("up")) %>%
arrange(Initials, Source) %>% filter(1:n() == 1) %>% ungroup()
# finish the split below
split1 <- colsplit(participant_identifiers_combined$DAWBA_ID, "/", names = c("DAWBA1", "DAWBA2", "DAWBA3"))
participant_identifiers_combined <- cbind(participant_identifiers_combined, split1)
participant_identifiers_combined <- melt(data = participant_identifiers_combined, id.vars =
c("FIRST_NAME", "LAST_NAME", "Initials", "PLUSID", "SDAN", "IRTA_tracker", "SEX", "DOB", "Participant_Type2", "Clinical_Visit_Date", "Screening_Start_Date",
"Referral_Date", "Overall_date", "Parent_e_consented", "Child_e_assented", "Parent_DAWBA_completed", "Child_DAWBA_completed", "DAWBA_completed",
"Eligible", "Eligibility_notes", "Scheduling_status", "Scheduling_status_notes", "Source"), measure.vars = c("DAWBA1", "DAWBA2")) %>%
rename(DAWBA_ID = value) %>% mutate(DAWBA_ID = as.character(DAWBA_ID)) %>% filter(variable=="DAWBA1" | !is.na(DAWBA_ID)) %>% select(-variable)
# DAWBA import ------------------------------------------------------------
# new DAWBA import:
DAWBA_Data_Download_raw <- read.delim(paste0(dawba_pull, latest_dawba_pull, ".csv"), sep="\t", quote="", encoding="UTF-8", row.names = NULL, header = TRUE, stringsAsFactors = FALSE)
DAWBA_Data_Download_raw[DAWBA_Data_Download_raw==-2] <- NA
DAWBA_Data_Download_raw %>% write_xlsx(paste0(dawba_pull, "old/DAWBA_", todays_date_formatted, "_raw.xlsx"))
# dawba_col_names <- DAWBA_Data_Download_raw %>% colnames() %>% as.data.frame()
# dawba_col_names %>% write_xlsx(paste0(dawba_pull, "DAWBA_colnames_", todays_date_formatted, ".xlsx"))
# importing existing DAWBA archive:
DAWBA_Archive <- read_excel(paste0(database_location, "other_data_never_delete/dawba_archive_raw.xlsx"))
# merging old & new, clean up & then save new DAWBA archive
dawba_combined <- merge.default(DAWBA_Archive, DAWBA_Data_Download_raw, all=TRUE) %>%
# the following DAWBA IDs to be removed are those given to other people to demo DAWBA, not valid IDs:
filter(sid !="234110") %>% filter(sid !="234111") %>% filter(sid !="234112") %>% filter(sid !="234113") %>% filter(sid !="None")
fill_names <- dawba_combined %>% select(-sid) %>% colnames()
dawba_combined[fill_names] <- lapply(dawba_combined[fill_names], na_if, "")
dawba_combined <- dawba_combined %>%
group_by(sid) %>%
fill(., fill_names, .direction = "down") %>%
fill(., fill_names, .direction = "up") %>%
ungroup() %>%
distinct(., .keep_all = TRUE)
dawba_combined %>% write_xlsx(paste0(dawba_pull, "old/dawba_archive_raw_", todays_date_formatted, ".xlsx"))
dawba_combined %>% write_xlsx(paste0(database_location, "other_data_never_delete/dawba_archive_raw.xlsx"))
# reducing down to the DAWBA variables we're interested in right now
dawba_columns <- read_excel(paste0(database_location, "other_data_never_delete/dawba_column_names_and_descriptions.xlsx"))
setnames(dawba_combined, old=c(dawba_columns$old_name), new=c(dawba_columns$new_name), skip_absent=TRUE)
DAWBA_Data_Download <- dawba_combined %>% select(dawba_columns$new_name) %>% arrange(DAWBA_ID)
# Clean up -------------------------------------------
DAWBA_Data_Download$DAWBA_SEX[DAWBA_Data_Download$DAWBA_SEX==1] <- 'MALE'
DAWBA_Data_Download$DAWBA_SEX[DAWBA_Data_Download$DAWBA_SEX==2] <- 'FEMALE'
dawba_date_variables <- c("p_dawba_sdq_date", "s_dawba_sdq_date")
DAWBA_Data_Download[dawba_date_variables] <- lapply(DAWBA_Data_Download[dawba_date_variables], as.Date, "%d.%m.%y")
dawba_w_names <- merge.default(participant_identifiers_combined, DAWBA_Data_Download, all=TRUE) %>% filter(!is.na(Initials) | !is.na(dawba_logins))
dawba_w_names$Eligible <- recode(dawba_w_names$Eligible, "0"="Include",
"1"="Include: can't scan (braces, etc.)","2"="On hold: contact again after specified amount of time","3"="On hold: low priority",
"4"="Excluded: cannot be reached or scheduled, all contact options exhausted ",
"5"="Excluded: does not meet criteria",
"6"="Excluded: meets exclusionary criteria (substance use, psychosis, etc.)",
"7"="Did not or withdrew assent/consent", "8"="Ruled as ineligible for treatment during baseline assessment (didn't meet inclusionary or met exclusionary criteria)",
"9"="Patient (or parent) withdrew from treatment", "10"="Excluded after commencing treatment: some treatment received before participant was later excluded (e.g. bad scanner, now meets exclusionary criteria, etc.)",
"11"="Completed treatment", .missing = NULL)
# Adding BDD predictions --------------------------------------------------
#####
# Parent
# criterion a = a lot of worry beyond normal (pz1) plus a lot of worry about a specific body part (pz2a-pz2i)
pca <- dawba_w_names %>% select(DAWBA_ID, PLUSID, Initials, p_bdd_1_concerns_appearance, matches("p_bdd_2"), -p_bdd_2_text)
pca[,4:ncol(pca)] <- lapply(pca[,4:ncol(pca)], as.numeric)
pca$no_columns <- pca %>% select(p_bdd_1_concerns_appearance, matches('p_bdd_2')) %>% ncol() %>% as.numeric()
pca$NA_count <- pca %>% select(p_bdd_1_concerns_appearance, matches('p_bdd_2')) %>% apply(., 1, count_na)
pca$diff <- c(pca$no_columns - pca$NA_count)
pca <- pca %>% filter(diff>0) %>% select(-no_columns, -NA_count, -diff)
pca$p_bdd_2_sum <- pca %>% select(matches("p_bdd_2")) %>% rowSums(na.rm=TRUE)
pca2 <- pca %>% filter(p_bdd_1_concerns_appearance=="2" |
(p_bdd_1_concerns_appearance=="1" &
(p_bdd_2a_skin_condition=="2" | p_bdd_2b_skin_colour=="2" | p_bdd_2c_hair_colour_or_condition=="2" |
p_bdd_2d_muscle_bulk=="2" | p_bdd_2e_body_shape_or_size=="2" |
p_bdd_2f_facial_features=="2" | p_bdd_2g_other_body_part=="2" |
p_bdd_2h_asymmetry=="2" | p_bdd_2i_other_aspect_of_appearance=="2"))) %>%
mutate(p_bdd_criterion_a = 1) %>% select(DAWBA_ID, p_bdd_criterion_a)
pca <- left_join(pca, pca2, all=TRUE) %>% select(DAWBA_ID, PLUSID, Initials, p_bdd_2_sum, p_bdd_criterion_a)
# criterion b = repetitive behaviours
pcb <- dawba_w_names %>% select(DAWBA_ID, PLUSID, Initials, matches("p_bdd_4"))
pcb[,4:ncol(pcb)] <- lapply(pcb[,4:ncol(pcb)], FUN = function(x) recode(x, `0`=0, `1`=0, `2`=1, .missing = NULL))
pcb$no_columns <- pcb %>% select(matches('p_bdd_4')) %>% ncol() %>% as.numeric()
pcb$NA_count <- pcb %>% select(matches('p_bdd_4')) %>% apply(., 1, count_na)
pcb$diff <- c(pcb$no_columns - pcb$NA_count)
pcb <- pcb %>% filter(diff>0) %>% select(-no_columns, -NA_count, -diff)
pcb$p_bdd_4_sum <- pcb %>% select(matches("p_bdd_4")) %>% rowSums(na.rm=TRUE)
pcb <- pcb %>% mutate(p_bdd_criterion_b = ifelse(p_bdd_4_sum>2, 1, NA)) %>%
select(DAWBA_ID, PLUSID, Initials, p_bdd_4_sum, p_bdd_criterion_b)
# criterion c = clinically significant distress
pcc <- dawba_w_names %>%
select(DAWBA_ID, PLUSID, Initials, p_bdd_5a_time_spent_worrying_appearance,
p_bdd_5b_time_spent_hiding_improving_appearance,
p_bdd_8_distress, p_bdd_9a_impact_on_family_life,
p_bdd_9b_impact_on_friendships, p_bdd_9c_impact_on_learning,
p_bdd_9d_impact_on_leisure)
pcc[,4:5] <- lapply(pcc[,4:5], FUN = function(x) recode(x, `0`=0, `1`=0, `2`=0, `3`=3, `4`=3, .missing = NULL))
pcc <- pcc %>% filter(p_bdd_5a_time_spent_worrying_appearance=="3" | p_bdd_5b_time_spent_hiding_improving_appearance=="3" |
p_bdd_8_distress=="3" | p_bdd_9a_impact_on_family_life=="3" |
p_bdd_9b_impact_on_friendships=="3" | p_bdd_9b_impact_on_friendships=="3" |
p_bdd_9c_impact_on_learning=="3" | p_bdd_9d_impact_on_leisure=="3") %>%
mutate(p_bdd_criterion_c = 1) %>%
select(DAWBA_ID, PLUSID, Initials, p_bdd_criterion_c)
# recombining
p_bdd_combined <- merge.default(pca, pcb, all=TRUE) %>% merge.default(., pcc, all=TRUE)
p_bdd_combined$p_bdd_criterion_a[is.na(p_bdd_combined$p_bdd_criterion_a)] <- 0
p_bdd_combined$p_bdd_criterion_b[is.na(p_bdd_combined$p_bdd_criterion_b)] <- 0
p_bdd_combined$p_bdd_criterion_c[is.na(p_bdd_combined$p_bdd_criterion_c)] <- 0
# determining whether a diagnosis is met
p_bdd_combined <- p_bdd_combined %>% mutate(p_bdd_diag = (as.numeric(p_bdd_criterion_a) + as.numeric(p_bdd_criterion_b) + as.numeric(p_bdd_criterion_c)))
#####
# Child
sca <- dawba_w_names %>% select(DAWBA_ID, PLUSID, Initials, s_bdd_1_concerns_appearance, matches("s_bdd_2"), -s_bdd_2_text)
sca[,4:ncol(sca)] <- lapply(sca[,4:ncol(sca)], as.numeric)
sca$no_columns <- sca %>% select(s_bdd_1_concerns_appearance, matches('s_bdd_2')) %>% ncol() %>% as.numeric()
sca$NA_count <- sca %>% select(s_bdd_1_concerns_appearance, matches('s_bdd_2')) %>% apply(., 1, count_na)
sca$diff <- c(sca$no_columns - sca$NA_count)
sca <- sca %>% filter(diff>0) %>% select(-no_columns, -NA_count, -diff)
sca$s_bdd_2_sum <- sca %>% select(matches("s_bdd_2")) %>% rowSums(na.rm=TRUE)
sca2 <- sca %>% filter(s_bdd_1_concerns_appearance=="2" |
(s_bdd_1_concerns_appearance=="1" &
(s_bdd_2a_skin_condition=="2" | s_bdd_2b_skin_colour=="2" | s_bdd_2c_hair_colour_or_condition=="2" |
s_bdd_2d_muscle_bulk=="2" | s_bdd_2e_body_shape_or_size=="2" |
s_bdd_2f_facial_features=="2" | s_bdd_2g_other_body_part=="2" |
s_bdd_2h_asymmetry=="2" | s_bdd_2i_other_aspect_of_appearance=="2"))) %>%
mutate(s_bdd_criterion_a = 1) %>% select(DAWBA_ID, s_bdd_criterion_a)
sca <- left_join(sca, sca2, all=TRUE) %>% select(DAWBA_ID, PLUSID, Initials, s_bdd_2_sum, s_bdd_criterion_a)
# criterion b = repetitive behaviours
scb <- dawba_w_names %>% select(DAWBA_ID, PLUSID, Initials, matches("s_bdd_4"))
scb[,4:ncol(scb)] <- lapply(scb[,4:ncol(scb)], FUN = function(x) recode(x, `0`=0, `1`=0, `2`=1, .missing = NULL))
scb$no_columns <- scb %>% select(matches('s_bdd_4')) %>% ncol() %>% as.numeric()
scb$NA_count <- scb %>% select(matches('s_bdd_4')) %>% apply(., 1, count_na)
scb$diff <- c(scb$no_columns - scb$NA_count)
scb <- scb %>% filter(diff>0) %>% select(-no_columns, -NA_count, -diff)
scb$s_bdd_4_sum <- scb %>% select(matches("s_bdd_4")) %>% rowSums(na.rm=TRUE)
scb <- scb %>% mutate(s_bdd_criterion_b = ifelse(s_bdd_4_sum>2, 1, NA)) %>%
select(DAWBA_ID, PLUSID, Initials, s_bdd_4_sum, s_bdd_criterion_b)
# criterion c = clinically significant distress
scc <- dawba_w_names %>%
select(DAWBA_ID, PLUSID, Initials, s_bdd_5a_time_spent_worrying_appearance,
s_bdd_5b_time_spent_hiding_improving_appearance,
s_bdd_8_distress, s_bdd_9a_impact_on_family_life,
s_bdd_9b_impact_on_friendships, s_bdd_9c_impact_on_learning,
s_bdd_9d_impact_on_leisure)
scc[,4:5] <- lapply(scc[,4:5], FUN = function(x) recode(x, `0`=0, `1`=0, `2`=0, `3`=3, `4`=3, .missing = NULL))
scc <- scc %>% filter(s_bdd_5a_time_spent_worrying_appearance=="3" | s_bdd_5b_time_spent_hiding_improving_appearance=="3" |
s_bdd_8_distress=="3" | s_bdd_9a_impact_on_family_life=="3" |
s_bdd_9b_impact_on_friendships=="3" | s_bdd_9b_impact_on_friendships=="3" |
s_bdd_9c_impact_on_learning=="3" | s_bdd_9d_impact_on_leisure=="3") %>%
mutate(s_bdd_criterion_c = 1) %>%
select(DAWBA_ID, PLUSID, Initials, s_bdd_criterion_c)
# recombining
s_bdd_combined <- merge.default(sca, scb, all=TRUE) %>% merge.default(., scc, all=TRUE)
s_bdd_combined$s_bdd_criterion_a[is.na(s_bdd_combined$s_bdd_criterion_a)] <- 0
s_bdd_combined$s_bdd_criterion_b[is.na(s_bdd_combined$s_bdd_criterion_b)] <- 0
s_bdd_combined$s_bdd_criterion_c[is.na(s_bdd_combined$s_bdd_criterion_c)] <- 0
# determining whether a diagnosis is met
s_bdd_combined <- s_bdd_combined %>% mutate(s_bdd_diag = (as.numeric(s_bdd_criterion_a) + as.numeric(s_bdd_criterion_b) + as.numeric(s_bdd_criterion_c)))
#####
# Integrating the BDD probabilities into the DAWBA database
all_bdd_combined <- merge.default(s_bdd_combined, p_bdd_combined, all=TRUE)
fill_names <- all_bdd_combined %>% select(-DAWBA_ID) %>% colnames()
all_bdd_combined[fill_names] <- lapply(all_bdd_combined[fill_names], na_if, "")
all_bdd_combined <- all_bdd_combined %>% group_by(DAWBA_ID) %>%
fill(., fill_names, .direction = "down") %>%
fill(., fill_names, .direction = "up") %>%
distinct(., .keep_all = TRUE) %>% ungroup()
dawba_w_names <- merge.default(dawba_w_names, all_bdd_combined, all=TRUE)
fill_names <- dawba_w_names %>% select(-DAWBA_ID, -matches("date"), -matches("Date"), -DOB) %>% colnames()
dawba_w_names[fill_names] <- lapply(dawba_w_names[fill_names], na_if, "")
fill_names <- dawba_w_names %>% select(-DAWBA_ID) %>% colnames()
dawba_w_names <- dawba_w_names %>% group_by(DAWBA_ID) %>%
fill(., fill_names, .direction = "down") %>%
fill(., fill_names, .direction = "up") %>%
arrange(DAWBA_ID, desc(dawba_logins)) %>% slice(1) %>%
ungroup()
# Exporting the database --------------------------------------------------
dawba_w_names %>% write_xlsx(paste0(dawba_pull, "old/dawba_archive_", todays_date_formatted, ".xlsx"))
dawba_w_names %>% write_xlsx(paste0(database_location, "MASTER_DATABASE_DAWBA.xlsx"))
# DAWBA deletions ---------------------------------------------------------
# creating lists of DAWBA IDs to delete
dawba_removal <- DAWBA_Data_Download_raw %>% filter(!is.na(logins)) %>%
select(sid, firstcreated, logins, plogins, slogins, psdqdate, ssdqdate) %>%
rename(DAWBA_ID="sid")
dawba_removal$psdqdate <- as.Date(dawba_removal$psdqdate, "%d.%m.%y")
dawba_removal$ssdqdate <- as.Date(dawba_removal$ssdqdate, "%d.%m.%y")
dawba_removal$Overall_date <- coalesce(dawba_removal$ssdqdate, dawba_removal$psdqdate)
dawba_removal <- dawba_removal %>% filter(!is.na(Overall_date))
dawba_removal$since_sdq <- ((difftime(dawba_removal$Overall_date, todays_date_formatted, units = "weeks"))/4) %>% round(., digits = 2)
# SDQ completed > 4 months ago
dawba_removal %>% filter(since_sdq < -5) %>% select(DAWBA_ID, Overall_date, since_sdq) %>%
write_xlsx(paste0(database_location, "dawba_deletions/", "dawba_greater_3m_", todays_date_formatted, ".xlsx"))
# Removing unnecessary variables ------------------------------------------
rm(pca, pca2, pcb, pcc, sca, sca2, scb, scc, split1, s_bdd_combined, p_bdd_combined, participant_identifiers_combined, all_bdd_combined,
master_IRTA_identifiers, master_current_screen_identifiers, master_old_screen_identifiers, DAWBA_Data_Download,
DAWBA_Data_Download_raw, DAWBA_Archive, dawba_combined, dawba_columns, dawba_date_variables, dawba_removal)