-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
96 lines (72 loc) · 2.78 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import numpy as np
from network import C3D_model
import cv2
torch.backends.cudnn.benchmark = True
def CenterCrop(frame, size):
h, w = np.shape(frame)[0:2]
th, tw = size
x1 = int(round((w - tw) / 2.))
y1 = int(round((h - th) / 2.))
frame = frame[y1:y1 + th, x1:x1 + tw, :]
return np.array(frame).astype(np.uint8)
def center_crop(frame):
frame = frame[8:120, 30:142, :]
return np.array(frame).astype(np.uint8)
def main():
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Device being used:", device)
with open('./dataloaders/ucf_labels.txt', 'r') as f:
class_names = f.readlines()
f.close()
# init model
model = C3D_model.C3D(num_classes=101, pretrained=True)
checkpoint = torch.load('./models/ucf101-caffe.pth', map_location=lambda storage, loc: storage)
# model.load_state_dict(checkpoint['state_dict'])
state_dict = model.state_dict()
for k1, k2 in zip(state_dict.keys(), checkpoint.keys()):
print(k1, state_dict[k1].shape)
print(k2, checkpoint[k2].shape)
# if k1 in ["fc8.weight", "fc8.bias"]:
# continue
# state_dict[k1] = checkpoint[k2]
return
model.load_state_dict(state_dict)
model.to(device)
model.eval()
# read video
video = 'dataset/UCF-101/ApplyLipstick/v_ApplyLipstick_g04_c02.avi'
video = 'dataset/UCF-101/Swing/v_Swing_g01_c03.avi'
cap = cv2.VideoCapture(video)
retaining = True
clip = []
while retaining:
retaining, frame = cap.read()
if not retaining and frame is None:
continue
tmp_ = center_crop(cv2.resize(frame, (171, 128)))
tmp = tmp_ - np.array([[[90.0, 98.0, 102.0]]])
clip.append(tmp)
if len(clip) == 16:
inputs = np.array(clip).astype(np.float32)
inputs = np.expand_dims(inputs, axis=0)
inputs = np.transpose(inputs, (0, 4, 1, 2, 3))
inputs = torch.from_numpy(inputs)
inputs = torch.autograd.Variable(inputs, requires_grad=False).to(device)
with torch.no_grad():
outputs = model.forward(inputs)
probs = torch.nn.Softmax(dim=1)(outputs)
label = torch.max(probs, 1)[1].detach().cpu().numpy()[0]
cv2.putText(frame, class_names[label].split(' ')[-1].strip(), (20, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.6,
(0, 0, 255), 1)
cv2.putText(frame, "prob: %.4f" % probs[0][label], (20, 40),
cv2.FONT_HERSHEY_SIMPLEX, 0.6,
(0, 0, 255), 1)
clip.pop(0)
cv2.imshow('result', frame)
cv2.waitKey(30)
cap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()