forked from vikhyat/moondream
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gradio_demo.py
66 lines (57 loc) · 1.96 KB
/
gradio_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import argparse
import torch
import gradio as gr
from moondream import detect_device, LATEST_REVISION
from threading import Thread
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
parser = argparse.ArgumentParser()
parser.add_argument("--cpu", action="store_true")
args = parser.parse_args()
if args.cpu:
device = torch.device("cpu")
dtype = torch.float32
else:
device, dtype = detect_device()
if device != torch.device("cpu"):
print("Using device:", device)
print("If you run into issues, pass the `--cpu` flag to this script.")
print()
model_id = "vikhyatk/moondream2"
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=LATEST_REVISION)
moondream = AutoModelForCausalLM.from_pretrained(
model_id, trust_remote_code=True, revision=LATEST_REVISION
).to(device=device, dtype=dtype)
moondream.eval()
def answer_question(img, prompt):
image_embeds = moondream.encode_image(img)
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
thread = Thread(
target=moondream.answer_question,
kwargs={
"image_embeds": image_embeds,
"question": prompt,
"tokenizer": tokenizer,
"streamer": streamer,
},
)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
with gr.Blocks() as demo:
gr.Markdown(
"""
# 🌔 moondream
### A tiny vision language model. [GitHub](https://github.com/vikhyat/moondream)
"""
)
with gr.Row():
prompt = gr.Textbox(label="Input Prompt", placeholder="Type here...", scale=4)
submit = gr.Button("Submit")
with gr.Row():
img = gr.Image(type="pil", label="Upload an Image")
output = gr.TextArea(label="Response")
submit.click(answer_question, [img, prompt], output)
prompt.submit(answer_question, [img, prompt], output)
demo.queue().launch(debug=True)