-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathrun_bert_span.py
262 lines (242 loc) · 13.8 KB
/
run_bert_span.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import torch
import warnings
from pathlib import Path
from argparse import ArgumentParser
from pydatagrand.train.ner_span_trainer import Trainer
from torch.utils.data import DataLoader
from pydatagrand.io.bert_span_processor import BertProcessor
from pydatagrand.common.tools import init_logger, logger
from pydatagrand.common.tools import seed_everything
from pydatagrand.configs.base import config
from pydatagrand.model.nn.bert_lstm_span import BERTLSTMSpan
from pydatagrand.callback import ModelCheckpoint
from pydatagrand.callback import TrainingMonitor
from pydatagrand.callback import BertAdam
from pydatagrand.callback import BERTReduceLROnPlateau
from torch.utils.data import RandomSampler, SequentialSampler
from pydatagrand.callback import Lookahead
from pydatagrand.train.losses import SpanLoss
warnings.filterwarnings("ignore")
def run_train(args):
processor = BertProcessor(vocab_path=args.pretrain_model / 'vocab.txt', do_lower_case=args.do_lower_case)
processor.tokenizer.save_vocabulary(str(args.model_path))
label_list = processor.get_labels()
label2id = {label: i for i, label in enumerate(label_list)}
train_data = processor.get_train(config['data_dir'] / f"{args.data_name}_train_fold_{args.fold}.pkl")
train_examples = processor.create_examples(lines=train_data,
example_type='train',
cached_file=config[
'data_dir'] / f"cached_train_span_examples")
train_features = processor.create_features(examples=train_examples,
max_seq_len=args.train_max_seq_len,
cached_file=config[
'data_dir'] / "cached_train_span_features_{}".format(
args.train_max_seq_len))
train_dataset = processor.create_dataset(train_features, is_sorted=args.sorted)
if args.sorted:
train_sampler = SequentialSampler(train_dataset)
else:
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
valid_data = processor.get_dev(config['data_dir'] / f'{args.data_name}_valid_fold_{args.fold}.pkl')
valid_examples = processor.create_examples(lines=valid_data,
example_type='valid',
cached_file=config[
'data_dir'] / f"cached_valid_span_examples")
valid_features = processor.create_features(examples=valid_examples,
max_seq_len=args.eval_max_seq_len,
cached_file=config[
'data_dir'] / "cached_valid_span_features_{}".format(
args.eval_max_seq_len))
logger.info("initializing model")
if args.resume_path:
args.resume_path = Path(args.resume_path)
model = BERTLSTMSpan.from_pretrained(args.resume_path, label2id=label2id, soft_label=args.soft_label)
else:
model = BERTLSTMSpan.from_pretrained(args.pretrain_model, label2id=label2id, soft_label=args.soft_label)
model = model.to(args.device)
t_total = int(len(train_dataloader) / args.gradient_accumulation_steps * args.epochs)
bert_param_optimizer = list(model.bert.named_parameters())
lstm_param_optimizer = list(model.bilstm.named_parameters())
start_fc_param_optimizer = list(model.start_fc.named_parameters())
end_fc_param_optimizer = list(model.end_fc.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in bert_param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01,
'lr': args.learning_rate},
{'params': [p for n, p in bert_param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0,
'lr': args.learning_rate},
{'params': [p for n, p in lstm_param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01,
'lr': 0.0005},
{'params': [p for n, p in lstm_param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0,
'lr': 0.0005},
{'params': [p for n, p in start_fc_param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay': 0.01,
'lr': 0.0005},
{'params': [p for n, p in start_fc_param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0,
'lr': 0.0005},
{'params': [p for n, p in end_fc_param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01,
'lr': 0.0005},
{'params': [p for n, p in end_fc_param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0,
'lr': 0.0005}
]
if args.optimizer == 'adam':
optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate,
warmup=args.warmup_proportion, t_total=t_total)
else:
base_optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate,
warmup=args.warmup_proportion, t_total=t_total)
optimizer = Lookahead(base_optimizer, k=5, alpha=0.5)
lr_scheduler = BERTReduceLROnPlateau(optimizer, lr=args.learning_rate, mode=args.mode, factor=0.5, patience=5,
verbose=1, epsilon=1e-8, cooldown=0, min_lr=0, eps=1e-8)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
logger.info("initializing callbacks")
train_monitor = TrainingMonitor(file_dir=config['figure_dir'], arch=args.arch)
model_checkpoint = ModelCheckpoint(checkpoint_dir=args.model_path,
mode=args.mode,
monitor=args.monitor,
arch=args.arch,
save_best_only=args.save_best)
# **************************** training model ***********************
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Num Epochs = %d", args.epochs)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
trainer = Trainer(n_gpu=args.n_gpu,
model=model,
logger=logger,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
label2id=label2id,
criterion = SpanLoss(),
training_monitor=train_monitor,
fp16=args.fp16,
resume_path=args.resume_path,
grad_clip=args.grad_clip,
model_checkpoint=model_checkpoint,
gradient_accumulation_steps=args.gradient_accumulation_steps)
trainer.train(train_data=train_dataloader, valid_data=valid_features, epochs=args.epochs, seed=args.seed)
def run_test(args):
from pydatagrand.callback import ProgressBar
from pydatagrand.train.ner_utils import bert_extract_item
from pydatagrand.common.tools import save_pickle
processor = BertProcessor(args.model_path / 'vocab.txt', do_lower_case=args.do_lower_case)
label_list = processor.get_labels()
label2id = {label: i for i, label in enumerate(label_list)}
id2label = {i: label for i, label in enumerate(label_list)}
model = BERTLSTMSpan.from_pretrained(args.resume_path, label2id=label2id, soft_label=args.soft_label)
model.to(args.device)
max_seq_len = args.eval_max_seq_len
tokenizer = processor.tokenizer
test_data = []
with open(str(config['data_dir'] / 'test.txt'), 'r') as fr:
for line in fr:
line = line.strip("\n")
test_data.append(line)
test_result_path = config['result_dir'] / f'{args.arch}_test_submit.txt'
fw = open(str(test_result_path), 'w')
pbar = ProgressBar(n_total=len(test_data), desc='Testing')
pred_logits = []
for step, line in enumerate(test_data):
token_a = line.split("_")
tokens = tokenizer.tokenize(token_a)
if len(tokens) >= max_seq_len - 1:
tokens = tokens[0:(max_seq_len - 2)]
ntokens = []
segment_ids = []
ntokens.append("[CLS]")
segment_ids.append(0)
for i, token in enumerate(tokens):
ntokens.append(token)
segment_ids.append(0)
ntokens.append("[SEP]")
segment_ids.append(0)
input_ids = tokenizer.convert_tokens_to_ids(ntokens)
input_mask = [1] * len(input_ids)
model.eval()
with torch.no_grad():
input_ids = torch.tensor([input_ids], dtype=torch.long)
segment_ids = torch.tensor([segment_ids], dtype=torch.long)
input_mask = torch.tensor([input_mask], dtype=torch.long)
input_ids = input_ids.to(args.device)
input_mask = input_mask.to(args.device)
segment_ids = segment_ids.to(args.device)
start_logits, end_logits = model(input_ids, segment_ids, input_mask, start_point=None)
R = bert_extract_item(start_logits, end_logits)
pred_logits.append([start_logits, end_logits])
if len(R) == 0:
record = "_".join(token_a) + "/o"
else:
labels = []
for (s_l, i, j) in R:
lb = id2label[s_l]
tokens = token_a[i:j + 1]
labels.append("_".join(tokens) + f"/{lb}")
record = " ".join(labels)
fw.write(record + "\n")
pbar(step=step)
fw.close()
save_pickle(pred_logits, file_path=str(config['result_dir'] / f'{args.arch}_test_logits.pkl'))
def main():
parser = ArgumentParser()
parser.add_argument("--arch", default='bert_lstm_span', type=str)
parser.add_argument("--do_train", action='store_true')
parser.add_argument("--do_test", action='store_true')
parser.add_argument("--save_best", action='store_true')
parser.add_argument("--do_lower_case", action='store_true')
parser.add_argument('--soft_label', action='store_true')
parser.add_argument('--data_name', default='datagrand', type=str)
parser.add_argument('--optimizer', default='adam', type=str, choices=['adam', 'lookahead'])
parser.add_argument('--markup', default='bios', type=str, choices=['bio', 'bios'])
parser.add_argument('--checkpoint', default=900000, type=int)
parser.add_argument('--fold', default=0, type=int)
parser.add_argument("--epochs", default=50.0, type=int)
parser.add_argument("--resume_path", default='', type=str)
parser.add_argument("--mode", default='max', type=str)
parser.add_argument("--monitor", default='valid_f1', type=str)
parser.add_argument("--local_rank", type=int, default=-1)
parser.add_argument("--sorted", default=1, type=int, help='1 : True 0:False ')
parser.add_argument("--n_gpu", type=str, default='0', help='"0,1,.." or "0" or "" ')
parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
parser.add_argument("--train_batch_size", default=24, type=int)
parser.add_argument('--eval_batch_size', default=48, type=int)
parser.add_argument("--train_max_seq_len", default=128, type=int)
parser.add_argument("--eval_max_seq_len", default=512, type=int)
parser.add_argument('--loss_scale', type=float, default=0)
parser.add_argument("--warmup_proportion", default=0.1, type=float)
parser.add_argument("--weight_decay", default=0.01, type=float)
parser.add_argument("--adam_epsilon", default=1e-8, type=float)
parser.add_argument("--grad_clip", default=5.0, type=float)
parser.add_argument("--learning_rate", default=1e-4, type=float)
parser.add_argument('--seed', type=int, default=42)
parser.add_argument("--no_cuda", action='store_true')
parser.add_argument('--fp16', action='store_true')
parser.add_argument('--fp16_opt_level', type=str, default='O1')
args = parser.parse_args()
args.pretrain_model = config['checkpoint_dir'] / f'lm-checkpoint-{args.checkpoint}'
args.device = torch.device(f"cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.arch = args.arch + f"_{args.markup}_fold_{args.fold}"
if args.optimizer == 'lookahead':
args.arch += "_lah"
args.model_path = config['checkpoint_dir'] / args.arch
args.model_path.mkdir(exist_ok=True)
# Good practice: save your training arguments together with the trained model
torch.save(args, config['checkpoint_dir'] / 'training_args.bin')
seed_everything(args.seed)
init_logger(log_file=config['log_dir'] / f"{args.arch}.log")
logger.info("Training/evaluation parameters %s", args)
if args.do_train:
run_train(args)
if args.do_test:
run_test(args)
if __name__ == '__main__':
main()