-
Notifications
You must be signed in to change notification settings - Fork 25
/
build_data.py
559 lines (488 loc) · 23 KB
/
build_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
from torch.utils.data.dataset import Dataset
from PIL import Image
from PIL import ImageFilter
import pandas as pd
import numpy as np
import torch
import os
import random
import glob
import torch.utils.data.sampler as sampler
import torchvision.transforms as transforms
import torchvision.transforms.functional as transforms_f
from module_list import *
# --------------------------------------------------------------------------------
# Define data augmentation
# --------------------------------------------------------------------------------
def transform(image, label, logits=None, crop_size=(512, 512), scale_size=(0.8, 1.0), augmentation=True):
# Random rescale image
raw_w, raw_h = image.size
scale_ratio = random.uniform(scale_size[0], scale_size[1])
resized_size = (int(raw_h * scale_ratio), int(raw_w * scale_ratio))
image = transforms_f.resize(image, resized_size, Image.BILINEAR)
label = transforms_f.resize(label, resized_size, Image.NEAREST)
if logits is not None:
logits = transforms_f.resize(logits, resized_size, Image.NEAREST)
# Add padding if rescaled image size is less than crop size
if crop_size == -1: # use original im size without crop or padding
crop_size = (raw_h, raw_w)
if crop_size[0] > resized_size[0] or crop_size[1] > resized_size[1]:
right_pad, bottom_pad = max(crop_size[1] - resized_size[1], 0), max(crop_size[0] - resized_size[0], 0)
image = transforms_f.pad(image, padding=(0, 0, right_pad, bottom_pad), padding_mode='reflect')
label = transforms_f.pad(label, padding=(0, 0, right_pad, bottom_pad), fill=255, padding_mode='constant')
if logits is not None:
logits = transforms_f.pad(logits, padding=(0, 0, right_pad, bottom_pad), fill=0, padding_mode='constant')
# Random Cropping
i, j, h, w = transforms.RandomCrop.get_params(image, output_size=crop_size)
image = transforms_f.crop(image, i, j, h, w)
label = transforms_f.crop(label, i, j, h, w)
if logits is not None:
logits = transforms_f.crop(logits, i, j, h, w)
if augmentation:
# Random color jitter
if torch.rand(1) > 0.2:
# color_transform = transforms.ColorJitter((0.75, 1.25), (0.75, 1.25), (0.75, 1.25), (-0.25, 0.25)) For PyTorch 1.9/TorchVision 0.10 users
color_transform = transforms.ColorJitter.get_params((0.75, 1.25), (0.75, 1.25), (0.75, 1.25), (-0.25, 0.25))
image = color_transform(image)
# Random Gaussian filter
if torch.rand(1) > 0.5:
sigma = random.uniform(0.15, 1.15)
image = image.filter(ImageFilter.GaussianBlur(radius=sigma))
# Random horizontal flipping
if torch.rand(1) > 0.5:
image = transforms_f.hflip(image)
label = transforms_f.hflip(label)
if logits is not None:
logits = transforms_f.hflip(logits)
# Transform to tensor
image = transforms_f.to_tensor(image)
label = (transforms_f.to_tensor(label) * 255).long()
label[label == 255] = -1 # invalid pixels are re-mapped to index -1
if logits is not None:
logits = transforms_f.to_tensor(logits)
# Apply (ImageNet) normalisation
image = transforms_f.normalize(image, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
if logits is not None:
return image, label, logits
else:
return image, label
def batch_transform(data, label, logits, crop_size, scale_size, apply_augmentation):
data_list, label_list, logits_list = [], [], []
device = data.device
for k in range(data.shape[0]):
data_pil, label_pil, logits_pil = tensor_to_pil(data[k], label[k], logits[k])
aug_data, aug_label, aug_logits = transform(data_pil, label_pil, logits_pil,
crop_size=crop_size,
scale_size=scale_size,
augmentation=apply_augmentation)
data_list.append(aug_data.unsqueeze(0))
label_list.append(aug_label)
logits_list.append(aug_logits)
data_trans, label_trans, logits_trans = \
torch.cat(data_list).to(device), torch.cat(label_list).to(device), torch.cat(logits_list).to(device)
return data_trans, label_trans, logits_trans
# --------------------------------------------------------------------------------
# Define segmentation label re-mapping
# --------------------------------------------------------------------------------
def cityscapes_class_map(mask):
# source: https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/helpers/labels.py
mask_map = np.zeros_like(mask)
mask_map[np.isin(mask, [0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 18, 29, 30])] = 255
mask_map[np.isin(mask, [7])] = 0
mask_map[np.isin(mask, [8])] = 1
mask_map[np.isin(mask, [11])] = 2
mask_map[np.isin(mask, [12])] = 3
mask_map[np.isin(mask, [13])] = 4
mask_map[np.isin(mask, [17])] = 5
mask_map[np.isin(mask, [19])] = 6
mask_map[np.isin(mask, [20])] = 7
mask_map[np.isin(mask, [21])] = 8
mask_map[np.isin(mask, [22])] = 9
mask_map[np.isin(mask, [23])] = 10
mask_map[np.isin(mask, [24])] = 11
mask_map[np.isin(mask, [25])] = 12
mask_map[np.isin(mask, [26])] = 13
mask_map[np.isin(mask, [27])] = 14
mask_map[np.isin(mask, [28])] = 15
mask_map[np.isin(mask, [31])] = 16
mask_map[np.isin(mask, [32])] = 17
mask_map[np.isin(mask, [33])] = 18
return mask_map
def sun_class_map(mask):
# -1 is equivalent to 255 in uint8
return mask - 1
# --------------------------------------------------------------------------------
# Define indices for labelled, unlabelled training images, and test images
# --------------------------------------------------------------------------------
def get_pascal_idx(root, train=True, label_num=5):
root = os.path.expanduser(root)
if train:
file_name = root + '/train_aug.txt'
else:
file_name = root + '/val.txt'
with open(file_name) as f:
idx_list = f.read().splitlines()
if train:
labeled_idx = []
save_idx = []
idx_list_ = idx_list.copy()
random.shuffle(idx_list_)
label_counter = np.zeros(21)
label_fill = np.arange(21)
while len(labeled_idx) < label_num:
if len(idx_list_) > 0:
idx = idx_list_.pop()
else:
idx_list_ = save_idx.copy()
idx = idx_list_.pop()
save_idx = []
mask = np.array(Image.open(root + '/SegmentationClassAug/{}.png'.format(idx)))
mask_unique = np.unique(mask)[:-1] if 255 in mask else np.unique(mask) # remove void class
unique_num = len(mask_unique) # number of unique classes
# sample image if it includes the lowest appeared class and with more than 3 distinctive classes
if len(labeled_idx) == 0 and unique_num >= 3:
labeled_idx.append(idx)
label_counter[mask_unique] += 1
elif np.any(np.in1d(label_fill, mask_unique)) and unique_num >= 3:
labeled_idx.append(idx)
label_counter[mask_unique] += 1
else:
save_idx.append(idx)
# record any segmentation index with lowest appearance
label_fill = np.where(label_counter == label_counter.min())[0]
return labeled_idx, [idx for idx in idx_list if idx not in labeled_idx]
else:
return idx_list
def get_cityscapes_idx(root, train=True, label_num=5):
root = os.path.expanduser(root)
if train:
file_list = glob.glob(root + '/images/train/*.png')
else:
file_list = glob.glob(root + '/images/val/*.png')
idx_list = [int(file[file.rfind('/') + 1: file.rfind('.')]) for file in file_list]
if train:
labeled_idx = []
save_idx = []
idx_list_ = idx_list.copy()
random.shuffle(idx_list_)
label_counter = np.zeros(19)
label_fill = np.arange(19)
while len(labeled_idx) < label_num:
if len(idx_list_) > 0:
idx = idx_list_.pop()
else:
idx_list_ = save_idx.copy()
idx = idx_list_.pop()
save_idx = []
mask = cityscapes_class_map(np.array(Image.open(root + '/labels/train/{}.png'.format(idx))))
mask_unique = np.unique(mask)[:-1] if 255 in mask else np.unique(mask) # remove void class
unique_num = len(mask_unique) # number of unique classes
# sample image if it includes the lowest appeared class and with more than 12 distinctive classes
if len(labeled_idx) == 0 and unique_num >= 12:
labeled_idx.append(idx)
label_counter[mask_unique] += 1
elif np.any(np.in1d(label_fill, mask_unique)) and unique_num >= 12:
labeled_idx.append(idx)
label_counter[mask_unique] += 1
else:
save_idx.append(idx)
# record any segmentation index with lowest occurrence
label_fill = np.where(label_counter == label_counter.min())[0]
return labeled_idx, [idx for idx in idx_list if idx not in labeled_idx]
else:
return idx_list
def get_sun_idx(root, train=True, label_num=5):
root = os.path.expanduser(root)
if train:
file_list = glob.glob(root + '/SUNRGBD-train_images/*.jpg')
idx_list = [int(file[file.rfind('-') + 1: file.rfind('.')]) for file in file_list]
else:
file_list = glob.glob(root + '/SUNRGBD-test_images/*.jpg')
idx_list = [int(file[file.rfind('-') + 1: file.rfind('.')]) for file in file_list]
if train:
labeled_idx = []
idx_list_ = idx_list.copy()
random.shuffle(idx_list_)
# create a label dictionary class_list [[Image_ID for class 0], [Image_ID for class 1], ...]
class_list = [[] for _ in range(37)]
for i in range(len(idx_list_)):
idx = idx_list_[i]
mask = sun_class_map(np.array(Image.open(root + '/sunrgbd_train_test_labels/img-{:06d}.png'.format(idx))))
mask_unique = np.unique(mask)[:-1] if 255 in mask else np.unique(mask) # remove void class
for k in mask_unique:
class_list[k].append(idx)
label_counter = np.zeros(37)
label_fill = np.arange(37)
ignore_val = []
ignore_mask = np.ones(37, dtype=bool) # store any semantic id has sampled all possible images
while len(labeled_idx) < label_num:
if len(class_list[label_fill[0]]) > 0:
idx = class_list[label_fill[0]].pop()
else:
ignore_val.append(label_fill[0])
ignore_mask[ignore_val] = False
# sample image by the current lowest appeared class
if idx not in labeled_idx:
labeled_idx.append(idx)
mask = sun_class_map(np.array(Image.open(root + '/sunrgbd_train_test_labels/img-{:06d}.png'.format(idx))))
mask_unique = np.unique(mask)[:-1] if 255 in mask else np.unique(mask) # remove void class
label_counter[mask_unique] += 1
# record any segmentation index with lowest occurrence
label_fill = np.where(label_counter == label_counter[ignore_mask].min())[0]
ignore_ind = [np.where(label_fill == i) for i in ignore_val if i in label_fill]
if len(ignore_ind) > 0: # ignore index when reaching all available images
label_fill = np.delete(label_fill, ignore_ind)
return labeled_idx, [idx for idx in idx_list if idx not in labeled_idx]
else:
return idx_list
# --------------------------------------------------------------------------------
# Create dataset in PyTorch format
# --------------------------------------------------------------------------------
class BuildDataset(Dataset):
def __init__(self, root, dataset, idx_list, crop_size=(512, 512), scale_size=(0.5, 2.0),
augmentation=True, train=True, apply_partial=None, partial_seed=None):
self.root = os.path.expanduser(root)
self.train = train
self.crop_size = crop_size
self.augmentation = augmentation
self.dataset = dataset
self.idx_list = idx_list
self.scale_size = scale_size
self.apply_partial = apply_partial
self.partial_seed = partial_seed
def __getitem__(self, index):
if self.dataset == 'pascal':
image_root = Image.open(self.root + '/JPEGImages/{}.jpg'.format(self.idx_list[index]))
if self.apply_partial is None:
label_root = Image.open(self.root + '/SegmentationClassAug/{}.png'.format(self.idx_list[index]))
else:
label_root = Image.open(self.root + '/SegmentationClassAug_{}_{}/{}.png'.format(self.apply_partial, self.partial_seed, self.idx_list[index],))
image, label = transform(image_root, label_root, None, self.crop_size, self.scale_size, self.augmentation)
return image, label.squeeze(0)
if self.dataset == 'cityscapes':
if self.train:
image_root = Image.open(self.root + '/images/train/{}.png'.format(self.idx_list[index]))
if self.apply_partial is None:
label_root = Image.open(self.root + '/labels/train/{}.png'.format(self.idx_list[index]))
else:
label_root = Image.open(self.root + '/labels/train_{}_{}/{}.png'.format(self.apply_partial, self.partial_seed, self.idx_list[index]))
label_root = Image.fromarray(cityscapes_class_map(np.array(label_root)))
else:
image_root = Image.open(self.root + '/images/val/{}.png'.format(self.idx_list[index]))
label_root = Image.open(self.root + '/labels/val/{}.png'.format(self.idx_list[index]))
label_root = Image.fromarray(cityscapes_class_map(np.array(label_root)))
image, label = transform(image_root, label_root, None, self.crop_size, self.scale_size, self.augmentation)
return image, label.squeeze(0)
if self.dataset == 'sun':
if self.train:
image_root = Image.open(self.root + '/SUNRGBD-train_images/img-{:06d}.jpg'.format(self.idx_list[index]))
label_root = Image.open(self.root + '/sunrgbd_train_test_labels/img-{:06d}.png'.format(self.idx_list[index]))
label_root = Image.fromarray(sun_class_map(np.array(label_root)))
else:
image_root = Image.open(self.root + '/SUNRGBD-test_images/img-{:06d}.jpg'.format(self.idx_list[index]))
label_root = Image.open(self.root + '/sunrgbd_train_test_labels/img-{:06d}.png'.format(self.idx_list[index]))
label_root = Image.fromarray(sun_class_map(np.array(label_root)))
image, label = transform(image_root, label_root, None, self.crop_size, self.scale_size, self.augmentation)
return image, label.squeeze(0)
def __len__(self):
return len(self.idx_list)
# --------------------------------------------------------------------------------
# Create data loader in PyTorch format
# --------------------------------------------------------------------------------
class BuildDataLoader:
def __init__(self, dataset, num_labels):
self.dataset = dataset
if dataset == 'pascal':
self.data_path = 'dataset/pascal'
self.im_size = [513, 513]
self.crop_size = [321, 321]
self.num_segments = 21
self.scale_size = (0.5, 1.5)
self.batch_size = 10
self.train_l_idx, self.train_u_idx = get_pascal_idx(self.data_path, train=True, label_num=num_labels)
self.test_idx = get_pascal_idx(self.data_path, train=False)
if dataset == 'cityscapes':
self.data_path = 'dataset/cityscapes'
self.im_size = [512, 1024]
self.crop_size = [512, 512]
self.num_segments = 19
self.scale_size = (1.0, 1.0)
self.batch_size = 2
self.train_l_idx, self.train_u_idx = get_cityscapes_idx(self.data_path, train=True, label_num=num_labels)
self.test_idx = get_cityscapes_idx(self.data_path, train=False)
if dataset == 'sun':
self.data_path = 'dataset/sun'
self.im_size = [385, 513]
self.crop_size = [321, 321]
self.num_segments = 37
self.scale_size = (0.5, 1.5)
self.batch_size = 5
self.train_l_idx, self.train_u_idx = get_sun_idx(self.data_path, train=True, label_num=num_labels)
self.test_idx = get_sun_idx(self.data_path, train=False)
if num_labels == 0: # using all data
self.train_l_idx = self.train_u_idx
def build(self, supervised=False, partial=None, partial_seed=None):
train_l_dataset = BuildDataset(self.data_path, self.dataset, self.train_l_idx,
crop_size=self.crop_size, scale_size=self.scale_size,
augmentation=True, train=True, apply_partial=partial, partial_seed=partial_seed)
train_u_dataset = BuildDataset(self.data_path, self.dataset, self.train_u_idx,
crop_size=self.crop_size, scale_size=(1.0, 1.0),
augmentation=False, train=True, apply_partial=partial, partial_seed=partial_seed)
test_dataset = BuildDataset(self.data_path, self.dataset, self.test_idx,
crop_size=self.im_size, scale_size=(1.0, 1.0),
augmentation=False, train=False)
if supervised: # no unlabelled dataset needed, double batch-size to match the same number of training samples
self.batch_size = self.batch_size * 2
num_samples = self.batch_size * 200 # for total 40k iterations with 200 epochs
train_l_loader = torch.utils.data.DataLoader(
train_l_dataset,
batch_size=self.batch_size,
sampler=sampler.RandomSampler(data_source=train_l_dataset,
replacement=True,
num_samples=num_samples),
drop_last=True,
)
if not supervised:
train_u_loader = torch.utils.data.DataLoader(
train_u_dataset,
batch_size=self.batch_size,
sampler=sampler.RandomSampler(data_source=train_u_dataset,
replacement=True,
num_samples=num_samples),
drop_last=True,
)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=4,
shuffle=False,
)
if supervised:
return train_l_loader, test_loader
else:
return train_l_loader, train_u_loader, test_loader
# --------------------------------------------------------------------------------
# Create Color-mapping for visualisation
# --------------------------------------------------------------------------------
def create_cityscapes_label_colormap():
"""Creates a label colormap used in CityScapes segmentation benchmark.
Returns:
A colormap for visualizing segmentation results.
"""
colormap = np.zeros((256, 3), dtype=np.uint8)
colormap[0] = [128, 64, 128]
colormap[1] = [244, 35, 232]
colormap[2] = [70, 70, 70]
colormap[3] = [102, 102, 156]
colormap[4] = [190, 153, 153]
colormap[5] = [153, 153, 153]
colormap[6] = [250, 170, 30]
colormap[7] = [220, 220, 0]
colormap[8] = [107, 142, 35]
colormap[9] = [152, 251, 152]
colormap[10] = [70, 130, 180]
colormap[11] = [220, 20, 60]
colormap[12] = [255, 0, 0]
colormap[13] = [0, 0, 142]
colormap[14] = [0, 0, 70]
colormap[15] = [0, 60, 100]
colormap[16] = [0, 80, 100]
colormap[17] = [0, 0, 230]
colormap[18] = [119, 11, 32]
return colormap
def create_pascal_label_colormap():
"""Creates a label colormap used in Pascal segmentation benchmark.
Returns:
A colormap for visualizing segmentation results.
"""
colormap = 255 * np.ones((256, 3), dtype=np.uint8)
colormap[0] = [0, 0, 0]
colormap[1] = [128, 0, 0]
colormap[2] = [0, 128, 0]
colormap[3] = [128, 128, 0]
colormap[4] = [0, 0, 128]
colormap[5] = [128, 0, 128]
colormap[6] = [0, 128, 128]
colormap[7] = [128, 128, 128]
colormap[8] = [64, 0, 0]
colormap[9] = [192, 0, 0]
colormap[10] = [64, 128, 0]
colormap[11] = [192, 128, 0]
colormap[12] = [64, 0, 128]
colormap[13] = [192, 0, 128]
colormap[14] = [64, 128, 128]
colormap[15] = [192, 128, 128]
colormap[16] = [0, 64, 0]
colormap[17] = [128, 64, 0]
colormap[18] = [0, 192, 0]
colormap[19] = [128, 192, 0]
colormap[20] = [0, 64, 128]
return colormap
def create_sun_label_colormap():
"""Creates a label colormap used in SUN RGB-D segmentation benchmark.
Returns:
A colormap for visualizing segmentation results.
"""
colormap = np.zeros((256, 3), dtype=np.uint8)
colormap[0] = [148, 65, 137]
colormap[1] = [255, 116, 69]
colormap[2] = [86, 156, 137]
colormap[3] = [202, 179, 158]
colormap[4] = [155, 99, 235]
colormap[5] = [161, 107, 108]
colormap[6] = [133, 160, 103]
colormap[7] = [76, 152, 126]
colormap[8] = [84, 62, 35]
colormap[9] = [44, 80, 130]
colormap[10] = [31, 184, 157]
colormap[11] = [101, 144, 77]
colormap[12] = [23, 197, 62]
colormap[13] = [141, 168, 145]
colormap[14] = [142, 151, 136]
colormap[15] = [115, 201, 77]
colormap[16] = [100, 216, 255]
colormap[17] = [57, 156, 36]
colormap[18] = [88, 108, 129]
colormap[19] = [105, 129, 112]
colormap[20] = [42, 137, 126]
colormap[21] = [155, 108, 249]
colormap[22] = [166, 148, 143]
colormap[23] = [81, 91, 87]
colormap[24] = [100, 124, 51]
colormap[25] = [73, 131, 121]
colormap[26] = [157, 210, 220]
colormap[27] = [134, 181, 60]
colormap[28] = [221, 223, 147]
colormap[29] = [123, 108, 131]
colormap[30] = [161, 66, 179]
colormap[31] = [163, 221, 160]
colormap[32] = [31, 146, 98]
colormap[33] = [99, 121, 30]
colormap[34] = [49, 89, 240]
colormap[35] = [116, 108, 9]
colormap[36] = [161, 176, 169]
return colormap
def create_nyuv2_label_colormap():
"""Creates a label colormap used in NYUv2 segmentation benchmark.
Returns:
A colormap for visualizing segmentation results.
"""
colormap = np.zeros((256, 3), dtype=np.uint8)
colormap[0] = [0, 0, 255]
colormap[1] = [233, 89, 48]
colormap[2] = [0, 218, 0]
colormap[3] = [149, 0, 240]
colormap[4] = [222, 241, 24]
colormap[5] = [255, 206, 206]
colormap[6] = [0, 224., 229]
colormap[7] = [10., 136., 204]
colormap[8] = [117, 29, 41]
colormap[9] = [240, 35, 235]
colormap[10] = [0, 167, 156.]
colormap[11] = [249, 139, 0]
colormap[12] = [225, 229, 194]
return colormap
def color_map(mask, colormap):
color_mask = np.zeros([mask.shape[0], mask.shape[1], 3])
for i in np.unique(mask):
color_mask[mask == i] = colormap[i]
return np.uint8(color_mask)