-
Notifications
You must be signed in to change notification settings - Fork 25
/
train_semisup.py
184 lines (145 loc) · 8.9 KB
/
train_semisup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch
import torchvision.models as models
import torch.optim as optim
import argparse
from network.deeplabv3.deeplabv3 import *
from network.deeplabv2 import *
from build_data import *
from module_list import *
parser = argparse.ArgumentParser(description='Semi-supervised Segmentation with Perfect Labels')
parser.add_argument('--mode', default=None, type=str)
parser.add_argument('--port', default=None, type=int)
parser.add_argument('--gpu', default=0, type=int)
parser.add_argument('--num_labels', default=15, type=int, help='number of labelled training data, set 0 to use all training data')
parser.add_argument('--lr', default=2.5e-3, type=float)
parser.add_argument('--weight_decay', default=5e-4, type=float)
parser.add_argument('--dataset', default='cityscapes', type=str, help='pascal, cityscapes, sun')
parser.add_argument('--apply_aug', default='cutout', type=str, help='apply semi-supervised method: cutout cutmix classmix')
parser.add_argument('--id', default=1, type=int, help='number of repeated samples')
parser.add_argument('--weak_threshold', default=0.7, type=float)
parser.add_argument('--strong_threshold', default=0.97, type=float)
parser.add_argument('--apply_reco', action='store_true')
parser.add_argument('--num_negatives', default=512, type=int, help='number of negative keys')
parser.add_argument('--num_queries', default=256, type=int, help='number of queries per segment per image')
parser.add_argument('--temp', default=0.5, type=float)
parser.add_argument('--output_dim', default=256, type=int, help='output dimension from representation head')
parser.add_argument('--backbone', default='deeplabv3p', type=str, help='choose backbone: deeplabv3p, deeplabv2')
parser.add_argument('--seed', default=0, type=int)
args = parser.parse_args()
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
data_loader = BuildDataLoader(args.dataset, args.num_labels)
train_l_loader, train_u_loader, test_loader = data_loader.build(supervised=False)
# Load Semantic Network
device = torch.device("cuda:{:d}".format(args.gpu) if torch.cuda.is_available() else "cpu")
if args.backbone == 'deeplabv3p':
model = DeepLabv3Plus(models.resnet101(pretrained=True), num_classes=data_loader.num_segments, output_dim=args.output_dim).to(device)
elif args.backbone == 'deeplabv2':
model = DeepLabv2(models.resnet101(pretrained=True), num_classes=data_loader.num_segments, output_dim=args.output_dim).to(device)
total_epoch = 200
optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.weight_decay, momentum=0.9, nesterov=True)
scheduler = PolyLR(optimizer, total_epoch, power=0.9)
ema = EMA(model, 0.99) # Mean teacher model
train_epoch = len(train_l_loader)
test_epoch = len(test_loader)
avg_cost = np.zeros((total_epoch, 10))
iteration = 0
for index in range(total_epoch):
cost = np.zeros(3)
train_l_dataset = iter(train_l_loader)
train_u_dataset = iter(train_u_loader)
model.train()
ema.model.train()
l_conf_mat = ConfMatrix(data_loader.num_segments)
u_conf_mat = ConfMatrix(data_loader.num_segments)
for i in range(train_epoch):
train_l_data, train_l_label = train_l_dataset.next()
train_l_data, train_l_label = train_l_data.to(device), train_l_label.to(device)
train_u_data, train_u_label = train_u_dataset.next()
train_u_data, train_u_label = train_u_data.to(device), train_u_label.to(device)
optimizer.zero_grad()
# generate pseudo-labels
with torch.no_grad():
pred_u, _ = ema.model(train_u_data)
pred_u_large_raw = F.interpolate(pred_u, size=train_u_label.shape[1:], mode='bilinear', align_corners=True)
pseudo_logits, pseudo_labels = torch.max(torch.softmax(pred_u_large_raw, dim=1), dim=1)
# random scale images first
train_u_aug_data, train_u_aug_label, train_u_aug_logits = \
batch_transform(train_u_data, pseudo_labels, pseudo_logits,
data_loader.crop_size, data_loader.scale_size, apply_augmentation=False)
# apply mixing strategy: cutout, cutmix or classmix
train_u_aug_data, train_u_aug_label, train_u_aug_logits = \
generate_unsup_data(train_u_aug_data, train_u_aug_label, train_u_aug_logits, mode=args.apply_aug)
# apply augmentation: color jitter + flip + gaussian blur
train_u_aug_data, train_u_aug_label, train_u_aug_logits = \
batch_transform(train_u_aug_data, train_u_aug_label, train_u_aug_logits,
data_loader.crop_size, (1.0, 1.0), apply_augmentation=True)
# generate labelled and unlabelled data loss
pred_l, rep_l = model(train_l_data)
pred_l_large = F.interpolate(pred_l, size=train_l_label.shape[1:], mode='bilinear', align_corners=True)
pred_u, rep_u = model(train_u_aug_data)
pred_u_large = F.interpolate(pred_u, size=train_l_label.shape[1:], mode='bilinear', align_corners=True)
rep_all = torch.cat((rep_l, rep_u))
pred_all = torch.cat((pred_l, pred_u))
# supervised-learning loss
sup_loss = compute_supervised_loss(pred_l_large, train_l_label)
# unsupervised-learning loss
unsup_loss = compute_unsupervised_loss(pred_u_large, train_u_aug_label, train_u_aug_logits, args.strong_threshold)
# apply regional contrastive loss
if args.apply_reco:
with torch.no_grad():
train_u_aug_mask = train_u_aug_logits.ge(args.weak_threshold).float()
mask_all = torch.cat(((train_l_label.unsqueeze(1) >= 0).float(), train_u_aug_mask.unsqueeze(1)))
mask_all = F.interpolate(mask_all, size=pred_all.shape[2:], mode='nearest')
label_l = F.interpolate(label_onehot(train_l_label, data_loader.num_segments), size=pred_all.shape[2:], mode='nearest')
label_u = F.interpolate(label_onehot(train_u_aug_label, data_loader.num_segments), size=pred_all.shape[2:], mode='nearest')
label_all = torch.cat((label_l, label_u))
prob_l = torch.softmax(pred_l, dim=1)
prob_u = torch.softmax(pred_u, dim=1)
prob_all = torch.cat((prob_l, prob_u))
reco_loss = compute_reco_loss(rep_all, label_all, mask_all, prob_all, args.strong_threshold,
args.temp, args.num_queries, args.num_negatives)
else:
reco_loss = torch.tensor(0.0)
loss = sup_loss + unsup_loss + reco_loss
loss.backward()
optimizer.step()
ema.update(model)
l_conf_mat.update(pred_l_large.argmax(1).flatten(), train_l_label.flatten())
u_conf_mat.update(pred_u_large_raw.argmax(1).flatten(), train_u_label.flatten())
cost[0] = sup_loss.item()
cost[1] = unsup_loss.item()
cost[2] = reco_loss.item()
avg_cost[index, :3] += cost / train_epoch
iteration += 1
avg_cost[index, 3:5] = l_conf_mat.get_metrics()
avg_cost[index, 5:7] = u_conf_mat.get_metrics()
with torch.no_grad():
ema.model.eval()
test_dataset = iter(test_loader)
conf_mat = ConfMatrix(data_loader.num_segments)
for i in range(test_epoch):
test_data, test_label = test_dataset.next()
test_data, test_label = test_data.to(device), test_label.to(device)
pred, rep = ema.model(test_data)
pred = F.interpolate(pred, size=test_label.shape[1:], mode='bilinear', align_corners=True)
loss = compute_supervised_loss(pred, test_label)
conf_mat.update(pred.argmax(1).flatten(), test_label.flatten())
avg_cost[index, 7] += loss.item() / test_epoch
avg_cost[index, 8:] = conf_mat.get_metrics()
scheduler.step()
print('EPOCH: {:04d} ITER: {:04d} | TRAIN [Loss | mIoU | Acc.]: {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} || Test [Loss | mIoU | Acc.]: {:.4f} {:.4f} {:.4f}'
.format(index, iteration, avg_cost[index][0], avg_cost[index][1], avg_cost[index][2],
avg_cost[index][3], avg_cost[index][4], avg_cost[index][5], avg_cost[index][6], avg_cost[index][7], avg_cost[index][8],
avg_cost[index][9]))
print('Top: mIoU {:.4f} Acc {:.4f}'.format(avg_cost[:, 8].max(), avg_cost[:, 9].max()))
if avg_cost[index][8] >= avg_cost[:, 8].max():
if args.apply_reco:
torch.save(ema.model.state_dict(), 'model_weights/{}_label{}_semi_{}_reco_{}.pth'.format(args.dataset, args.num_labels, args.apply_aug, args.seed))
else:
torch.save(ema.model.state_dict(), 'model_weights/{}_label{}_semi_{}_{}.pth'.format(args.dataset, args.num_labels, args.apply_aug, args.seed))
if args.apply_reco:
np.save('logging/{}_label{}_semi_{}_reco_{}.npy'.format(args.dataset, args.num_labels, args.apply_aug, args.seed), avg_cost)
else:
np.save('logging/{}_label{}_semi_{}_{}.npy'.format(args.dataset, args.num_labels, args.apply_aug, args.seed), avg_cost)