forked from pierotofy/OpenSplat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_trainer.cpp
212 lines (184 loc) · 7.8 KB
/
simple_trainer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#include <iostream>
#include <cmath>
#include <filesystem>
#include <torch/torch.h>
#ifdef USE_HIP
#include <hip/hip_runtime.h>
#elif defined(USE_CUDA)
#include <torch/cuda.h>
#endif
#include <opencv2/core/core.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include "project_gaussians.hpp"
#include "rasterize_gaussians.hpp"
#include "constants.hpp"
#include "cv_utils.hpp"
#include <cxxopts.hpp>
using namespace torch::indexing;
namespace fs = std::filesystem;
int main(int argc, char **argv){
cxxopts::Options options("simple_trainer", "Test program for gsplat execution - " APP_VERSION);
options.add_options()
("cpu", "Force CPU execution")
("width", "Test image width", cxxopts::value<int>()->default_value("256"))
("height", "Test image height", cxxopts::value<int>()->default_value("256"))
("iters", "Number of iterations", cxxopts::value<int>()->default_value("1000"))
("points", "Number of gaussians", cxxopts::value<int>()->default_value("100000"))
("lr", "Learning rate", cxxopts::value<float>()->default_value("0.01"))
("render", "Save rendered images to folder", cxxopts::value<std::string>()->default_value(""))
("h,help", "Print usage")
("version", "Print version")
;
cxxopts::ParseResult result;
try {
result = options.parse(argc, argv);
}
catch (const std::exception &e) {
std::cerr << e.what() << std::endl;
std::cerr << options.help() << std::endl;
return EXIT_FAILURE;
}
if (result.count("help")) {
std::cout << options.help() << std::endl;
return EXIT_SUCCESS;
}
if (result.count("version")) {
std::cout << APP_VERSION << std::endl;
return EXIT_SUCCESS;
}
int width = result["width"].as<int>(),
height = result["height"].as<int>();
int numPoints = result["points"].as<int>();
int iterations = result["iters"].as<int>();
float learningRate = result["lr"].as<float>();
std::string render = result["render"].as<std::string>();
if (!render.empty() && !fs::exists(render)) fs::create_directories(render);
torch::Device device = torch::kCPU;
if (torch::cuda::is_available() && result.count("cpu") == 0){
std::cout << "Using CUDA" << std::endl;
device = torch::kCUDA;
}else if(torch::mps::is_available() && result.count("cpu") == 0){
std::cout << "Using MPS" << std::endl;
device = torch::kMPS;
}else{
std::cout << "Using CPU" << std::endl;
}
// Test image
// Top left red
// Bottom right blue
torch::Tensor gtImage = torch::ones({height, width, 3});
gtImage.index_put_({Slice(None, height / 2), Slice(None, width / 2), Slice()}, torch::tensor({1.0, 0.0, 0.0}));
gtImage.index_put_({Slice(height / 2, None), Slice(width / 2, None), Slice()}, torch::tensor({0.0, 0.0, 1.0}));
// cv::Mat image = tensorToImage(gtImage);
// cv::cvtColor(image, image, cv::COLOR_RGB2BGR);
// cv::imwrite("test.png", image);
gtImage = gtImage.to(device);
double fovX = PI / 2.0; // horizontal field of view (90 deg)
double focal = 0.5 * static_cast<double>(width) / std::tan(0.5 * fovX);
TileBounds tileBounds = std::make_tuple((width + BLOCK_X - 1) / BLOCK_X,
(height + BLOCK_Y - 1) / BLOCK_Y,
1);
// Init gaussians
#ifdef USE_CUDA
torch::cuda::manual_seed_all(0);
#endif
torch::manual_seed(0);
// Random points, scales and colors
torch::Tensor means = 2.0 * (torch::rand({numPoints, 3}, torch::kCPU) - 0.5); // Positions [-1, 1]
torch::Tensor scales = torch::rand({numPoints, 3}, torch::kCPU);
// torch::Tensor means = torch::tensor({{0.5f, 0.5f, -5.0f}, {0.5f, 0.5f, -6.0f}, {0.25f, 0.25f, -4.0f}}, torch::kCPU);
// torch::Tensor scales = torch::tensor({{0.5f, 0.5f, 0.5f}, {1.0f, 1.0f, 1.0f}, {1.0f, 1.0f, 1.0f}}, torch::kCPU);
torch::Tensor rgbs = torch::rand({numPoints, 3}, torch::kCPU);
// Random rotations (quaternions)
// quats = ( sqrt(1-u) sin(2πv), sqrt(1-u) cos(2πv), sqrt(u) sin(2πw), sqrt(u) cos(2πw))
torch::Tensor u = torch::rand({numPoints, 1}, torch::kCPU);
torch::Tensor v = torch::rand({numPoints, 1}, torch::kCPU);
torch::Tensor w = torch::rand({numPoints, 1}, torch::kCPU);
means = means.to(device);
scales = scales.to(device);
rgbs = rgbs.to(device);
u = u.to(device);
v = v.to(device);
w = w.to(device);
torch::Tensor quats = torch::cat({
torch::sqrt(1.0 - u) * torch::sin(2.0 * PI * v),
torch::sqrt(1.0 - u) * torch::cos(2.0 * PI * v),
torch::sqrt(u) * torch::sin(2.0 * PI * w),
torch::sqrt(u) * torch::cos(2.0 * PI * w),
}, -1);
torch::Tensor opacities = torch::ones({numPoints, 1}, device);
// View matrix (translation in Z by 8 units)
torch::Tensor viewMat = torch::tensor({
{1.0, 0.0, 0.0, 0.0},
{0.0, 1.0, 0.0, 0.0},
{0.0, 0.0, 1.0, 8.0},
{0.0, 0.0, 0.0, 1.0}
}, device);
torch::Tensor background = torch::zeros(gtImage.size(2), device);
means.requires_grad_();
scales.requires_grad_();
quats.requires_grad_();
rgbs.requires_grad_();
opacities.requires_grad_();
torch::optim::Adam optimizer({rgbs, means, scales, opacities, quats}, learningRate);
torch::nn::MSELoss mseLoss;
torch::Tensor outImg;
for (size_t i = 0; i < iterations; i++){
if (device == torch::kCPU){
auto p = ProjectGaussiansCPU::apply(means, scales, 1,
quats, viewMat, viewMat,
focal, focal,
width / 2,
height / 2,
height,
width);
outImg = RasterizeGaussiansCPU::apply(
p[0], // xys
p[1], // radii,
p[2], // conics
torch::sigmoid(rgbs),
torch::sigmoid(opacities),
p[3], // cov2d
p[4], // camDepths
height,
width,
background);
}else{
#if defined(USE_HIP) || defined(USE_CUDA) || defined(USE_MPS)
auto p = ProjectGaussians::apply(means, scales, 1,
quats, viewMat, viewMat,
focal, focal,
width / 2,
height / 2,
height,
width,
tileBounds);
outImg = RasterizeGaussians::apply(
p[0], // xys
p[1], // depths
p[2], // radii,
p[3], // conics
p[4], // numTilesHit
torch::sigmoid(rgbs),
torch::sigmoid(opacities),
height,
width,
background);
#else
throw std::runtime_error("GPU support not built, use --cpu");
#endif
}
outImg.requires_grad_();
torch::Tensor loss = mseLoss(outImg, gtImage);
optimizer.zero_grad();
loss.backward();
optimizer.step();
std::cout << "Iteration " << std::to_string(i + 1) << "/" << std::to_string(iterations) << " Loss: " << loss.item<float>() << std::endl;
if (!render.empty()){
cv::Mat image = tensorToImage(outImg.detach().cpu());
cv::cvtColor(image, image, cv::COLOR_RGB2BGR);
cv::imwrite((fs::path(render) / (std::to_string(i + 1) + ".png")).string(), image);
}
}
}