This repository has been archived by the owner on Nov 4, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
/
antenna.c
591 lines (524 loc) · 16.3 KB
/
antenna.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
#include <time.h>
#include <gsl/gsl_multifit.h>
#include "util.h" // math utilities
#include "config.h" // configuration
#include "struct.h" // structures
#include "snr.h" // snr adjustment & mapping
/*
sudo apt-get install libgsl-dev
gcc -Wall antenna.c util.c struct.c snr.c -o antenna -lgsl -lgslcblas -lm
valgrind --tool=memcheck --leak-check=yes --leak-check=full -s --track-origins=yes --show-leak-kinds=all ./antenna
*/
#define C(i) (gsl_vector_get(c, (i)))
#define COV(i, j) (gsl_matrix_get(cov, (i), (j)))
int main(int argc, char **argv)
{
clock_t startTime = clock();
/*
File I/O
*/
FILE *fp = NULL;
FILE *fp2 = NULL;
FILE *fp3 = NULL;
FILE *fpw = NULL;
if (argc == 1)
{
fprintf(stderr, "No input file specified. Using default input file \"%s\"\n", INPUT_FILE_PATH_DEFAULT);
fp = fopen(INPUT_FILE_PATH_DEFAULT, "r");
if (fp == NULL)
{
fprintf(stderr, "Error opening input file \"%s\"\n", argv[1]);
return (-1);
}
}
else if (argc > 4)
{
fprintf(stderr, "Too many arguments. Usage:\n./antenna [input_1] [input_2] [input_3]\n");
return (-1);
}
else
{
fp = fopen(argv[1], "r");
if (fp == NULL)
{
fprintf(stderr, "Error opening input file \"%s\".\n", argv[1]);
return (-1);
}
if (argc != 2)
{
fp2 = fopen(argv[2], "r");
if (fp2 == NULL)
{
fprintf(stderr, "Error opening input file \"%s\".\n", argv[2]);
return (-1);
}
if (argc == 4)
{
fp3 = fopen(argv[3], "r");
if (fp3 == NULL)
{
fprintf(stderr, "Error opening input file \"%s\".\n", argv[3]);
return (-1);
}
}
}
}
fpw = fopen(OUTPUT_FILE_PATH_DEFAULT, "w");
if (fpw == NULL)
{
fprintf(stderr, "Error writing output file \"output.txt\".\n");
return (-1);
}
/*
record satArray
*/
Sat **satArray; // A sat array storing all satellite signals
satArray = (Sat **)malloc(MAX_NUM_SIGNAL * sizeof(Sat *));
long int satArrayIndex = 0;
char *line = malloc(sizeof(char) * (MAX_NUM_CHAR_LINE));
if (argc == 1) // default input file
{
argc++;
}
for (int i = 1; i < argc; i++)
{
FILE *fpThis;
if (i == 1) // first frequency
{
fpThis = fp;
}
else if (i == 2) // second frequency
{
fpThis = fp2;
}
else if (i == 3) // third frequency
{
fpThis = fp3;
}
fgets(line, MAX_NUM_CHAR_LINE, fpThis); // Skip header
while (fgets(line, MAX_NUM_CHAR_LINE, fpThis) != NULL)
{
char *time1 = (char *)malloc(sizeof(char) * (NUM_CHAR_DATE + 1));
char *time2 = (char *)malloc(sizeof(char) * (NUM_CHAR_TIME + 1));
char *prn = (char *)malloc(sizeof(char) * (NUM_CHAR_SAT + 1));
double *az = (double *)malloc(sizeof(double));
double *el = (double *)malloc(sizeof(double));
double *snrThis = (double *)malloc(sizeof(double));
double *mp = (double *)malloc(sizeof(double));
sscanf(line, "%s %s %s %lf %lf %lf %lf", time1, time2, prn, az, el, snrThis, mp);
if (!SIMULATION && (*az < 0 || *az > 360 || *el > 90 || *el < SAT_CUTOFF || *snrThis > SNR_CAP || *snrThis < SNR_FLOOR || prn[0] == 'C' || prn[0] == 'E')) // defense line 1: check raw input data for invalid data
{
if (DEBUG)
{
printf("Skipped invalid data found in Az, El or SNR.\n");
}
free(prn);
free(az);
free(el);
free(snrThis);
free(mp);
}
else
{
if (!SIMULATION)
{
if (i == 1)
{
adjSnr(prn, el, snrThis);
}
else if (i == 2)
{
adjSnr2(prn, el, snrThis);
}
else if (i == 3)
{
adjSnr3(prn, el, snrThis);
}
// if (*snrThis > ANT_SNR_ADJ_MAX + OUTLIER_FACTOR * ANT_SNR_STD_MIN || *snrThis < ANT_SNR_ADJ_MIN - OUTLIER_FACTOR * ANT_SNR_STD_MAX) // defense line 2: recorded, but will not be used in calculation, treated as outliers.
// {
// *snrThis = -1;
// if (DEBUG)
// {
// printf("Removed an SNR outlier.\n");
// }
// }
}
char *time = concat(time1, time2);
double *snrOther1 = (double *)malloc(sizeof(double));
*snrOther1 = -1.0;
double *snrOther2 = (double *)malloc(sizeof(double));
*snrOther2 = -1.0;
if (i == 1)
{
satArray[satArrayIndex] = createSat(time, prn, az, el, snrThis, snrOther1, snrOther2, mp);
}
else if (i == 2)
{
satArray[satArrayIndex] = createSat(time, prn, az, el, snrOther1, snrThis, snrOther2, mp);
}
else if (i == 3)
{
satArray[satArrayIndex] = createSat(time, prn, az, el, snrOther1, snrOther2, snrThis, mp);
}
satArrayIndex++;
}
free(time1);
free(time2); // free memory because time1 and time2 are concatenated to a new char* time
}
fclose(fpThis);
}
free(line);
/*
catch empty data error
*/
if (satArrayIndex == 0)
{
fprintf(stderr, "No received signals found in file\n");
return (-1);
}
if (satArrayIndex < 3)
{
fprintf(stderr, "Less than 3 signals found in file\n");
return (-1);
}
/*
sort satArray by time
*/
qsort(satArray, satArrayIndex, sizeof(Sat *), cmpSatArray);
/*
form epochArray
*/
Epoch **epochArray; // A epoch array storing all epochs
epochArray = (Epoch **)malloc(MAX_NUM_EPOCH * sizeof(Epoch *));
long int *epochArrayIndex = (long int *)malloc(sizeof(long int));
*epochArrayIndex = 0;
long int *i = malloc(sizeof(long int)); // satArray counter
*i = 0;
while (true)
{
Sat **epochSatArray = (Sat **)malloc(MAX_NUM_SIGNAL_EPOCH * sizeof(Sat *));
int *epochSatArrayIndex = (int *)malloc(sizeof(int));
*epochSatArrayIndex = 0;
while (*i < satArrayIndex)
{
if (*epochSatArrayIndex == 0 && *i != satArrayIndex - 1) // first sat in epoch && not the last sat
{
epochSatArray[*epochSatArrayIndex] = satArray[*i];
*epochSatArrayIndex += 1;
}
else if (*epochSatArrayIndex == 0 && *i == satArrayIndex - 1) // first sat in epoch && the last sat
{
free(epochSatArrayIndex);
free(epochSatArray);
}
else if (strcmp(satArray[*i]->time, satArray[*i - 1]->time) == 0) // current one belongs to the same epoch
{
epochSatArray[*epochSatArrayIndex] = satArray[*i];
*epochSatArrayIndex += 1;
if (*i == satArrayIndex - 1)
{
if (*epochSatArrayIndex >= 3)
{
epochArray[*epochArrayIndex] = createEpoch(satArray[*i - 1]->time, epochSatArray, epochSatArrayIndex);
*epochArrayIndex += 1;
}
else // do not record to array
{
free(epochSatArrayIndex);
free(epochSatArray);
}
}
}
else if (strcmp(satArray[*i]->time, satArray[*i - 1]->time) != 0) // current one belongs to a new epoch
{
if (*epochSatArrayIndex >= 3)
{
epochArray[*epochArrayIndex] = createEpoch(satArray[*i - 1]->time, epochSatArray, epochSatArrayIndex);
*epochArrayIndex += 1;
}
else // do not record to array
{
free(epochSatArrayIndex);
free(epochSatArray);
}
if (*i != satArrayIndex - 1)
{
break; // if not the last sat: break the inner while loop; skip increment *i
}
}
*i += 1;
}
if (*i == satArrayIndex)
{
break; // break the outer while loop
}
}
free(i);
/*
print epoch array to check file input read
*/
if (DEBUG)
{
printEpochArray(epochArray, *epochArrayIndex);
}
/*
Axelrad's method (Axelrad & Behre, 1999) -- Compared to Duncan's method, this is the proper use of SNR in determining antenna boresight vector. It requires antenna gain mapping (the relationship between off-boresight angle and SNR for the antenna) and adjustment to measured SNR.
*/
Sol **solArray = malloc(sizeof(Sol *) * *epochArrayIndex);
fprintf(fpw, "Epoch (GPS Time), # of Signals, E, N, U, Az (deg), El (deg)\n");
for (long int i = 0; i < *epochArrayIndex; i++)
{
/*
Observation equation X*b = cos(a) corresponds to X*c = y below
See GNU Scientific Library Reference Manual for more: https://www.gnu.org/software/gsl/doc/html/lls.html
*/
int n = *(epochArray[i]->numSat); // number of observations in the epoch
Sol *sol = malloc(sizeof(Sol));
sol->x = calloc(1, sizeof(double));
sol->y = calloc(1, sizeof(double));
sol->z = calloc(1, sizeof(double));
sol->az = calloc(1, sizeof(double));
sol->el = calloc(1, sizeof(double));
/* set up size of matrices for least squares (LS) regression */
double chisq;
gsl_matrix *X, *cov;
gsl_vector *y, *w, *c;
X = gsl_matrix_alloc(n, 3);
y = gsl_vector_alloc(n); // n*1 matrix
w = gsl_vector_alloc(n); // n diagonal elements of n*n weight matrix
c = gsl_vector_alloc(3); // coefficients (x, y, z) -> the boresight vector
cov = gsl_matrix_alloc(3, 3); // cov = inverse(transpose(X) W X)
for (int j = 0; j < n; j++)
{
/* calculate LOS vector from azimuth and elevation*/
double xyz[3]; // x is E, y is N, z is U
ae2xyz(*(*epochArray[i]).epochSatArray[j]->az, *(*epochArray[i]).epochSatArray[j]->el, xyz);
double cosA;
double spdDeg;
double sigma; // standard deviation of cosA for this observation
if (SIMULATION)
{
if (*(*epochArray[i]).epochSatArray[j]->snr > SNR_C)
{
spdDeg = 0;
}
else if (*(*epochArray[i]).epochSatArray[j]->snr < (SNR_C - SNR_A))
{
spdDeg = 90;
}
else
{
spdDeg = sqrt((SNR_C - (*(*epochArray[i]).epochSatArray[j]->snr)) * 8100.0 / SNR_A); // quadratic
}
// printf("snr = %f \n", *(*epochArray[i]).epochSatArray[j]->snr);
// printf("spdDeg = %f \n", spdDeg);
cosA = cos(deg2rad(spdDeg));
sigma = SNR_STD_MAX + ((SNR_STD_MIN - SNR_STD_MAX) / 90.0) * (*(*epochArray[i]).epochSatArray[j]->el);
}
else // real data, not simulation
{
if (*(*epochArray[i]).epochSatArray[j]->snr > 0) // check if snr is valid. invalid is assigned with value of -1
{
cosA = getCosA((epochArray[i])->epochSatArray[j]->prn, (*epochArray[i]).epochSatArray[j]->snr);
}
else if (*(*epochArray[i]).epochSatArray[j]->snr2 > 0)
{
cosA = getCosA2((epochArray[i])->epochSatArray[j]->prn, (*epochArray[i]).epochSatArray[j]->snr2);
}
else if (*(*epochArray[i]).epochSatArray[j]->snr3 > 0)
{
cosA = getCosA2((epochArray[i])->epochSatArray[j]->prn, (*epochArray[i]).epochSatArray[j]->snr3);
}
if (WEIGHT_METHOD == 0)
{
sigma = 1;
}
else if (WEIGHT_METHOD == 1)
{
sigma = 8.9318725763 * pow((*(*epochArray[i]).epochSatArray[j]->el), -0.4908794196); // ublox antenna}
}
else if (WEIGHT_METHOD == 2)
{
sigma = 1.0 + fabs(*(*epochArray[i]).epochSatArray[j]->mp) * 5 / 0.5;
}
}
// Set each observation equation
gsl_matrix_set(X, j, 0, xyz[0]); // coefficient c0 = x
gsl_matrix_set(X, j, 1, xyz[1]); // coefficient c1 = y
gsl_matrix_set(X, j, 2, xyz[2]); // coefficient c2 = z
gsl_vector_set(y, j, cosA);
gsl_vector_set(w, j, 1.0 / (sigma * sigma)); // inverse variance weight
// printf("sat el = %lf mp = %lf sigma snr = %lf\n", *(*epochArray[i]).epochSatArray[j]->el, *(*epochArray[i]).epochSatArray[j]->mp, sigma);
}
/* run multi-parameter regression */
gsl_multifit_linear_workspace *work = gsl_multifit_linear_alloc(n, 3);
gsl_multifit_wlinear(X, w, y, c, cov, &chisq, work);
gsl_multifit_linear_free(work);
/* save best fit */
*(sol->x) = C(0);
*(sol->y) = C(1);
*(sol->z) = C(2);
/* least squares stats */
// printf("# covariance matrix:\n");
// printf("[ %+.5e, %+.5e, %+.5e \n", COV(0, 0), COV(0, 1), COV(0, 2));
// printf(" %+.5e, %+.5e, %+.5e \n", COV(1, 0), COV(1, 1), COV(1, 2));
// printf(" %+.5e, %+.5e, %+.5e ]\n", COV(2, 0), COV(2, 1), COV(2, 2));
// printf("# chisq = %g\n", chisq);
/*
double redChiSq = chisq / (n - 3); // reduced chisq = chisq / (# of signals - 3)
double lsStdX = sqrt(redChiSq * COV(0, 0))));
double lsStdY = sqrt(redChiSq * COV(1, 1))));
double lsStdZ = sqrt(redChiSq * COV(2, 2))));
*/
/* free matrices for LS */
gsl_matrix_free(X);
gsl_vector_free(y);
gsl_vector_free(w);
gsl_vector_free(c);
gsl_matrix_free(cov);
/* normalize the resulting vector to get xyz solution*/
normalize(sol);
/* from xyz solution derive azimuth-elevation solution*/
xyz2aeSol(*(sol->x), *(sol->y), *(sol->z), sol);
/* apply convergence correction built by simulation FOR UBLOX patch antenna */
if (CONVERGENCE_CORRECTION)
{
//*(sol->el) -= 18.73;
*(sol->el) += 3 * (0.00000001706777591383 * pow(*(sol->el), 5) - 0.00000365830463561523 * pow(*(sol->el), 4) + 0.00029184216767805400 * pow(*(sol->el), 3) - 0.01844501736946570000 * pow(*(sol->el), 2) + 1.38136248571286000000 * (*(sol->el)) - 48.36802167429280000000);
if (*(sol->el) > 90)
{
*(sol->el) = 90;
}
else if (*(sol->el) < -90)
{
*(sol->el) = -90;
}
// recompute xyz
ae2xyzSol(*(sol->az), *(sol->el), sol);
}
/* save result */
fprintf(fpw, "%s,%i,%lf,%lf,%lf,%lf,%lf\n", (*epochArray[i]).time, *(*epochArray[i]).numSat, *(sol->x), *(sol->y), *(sol->z), *(sol->az), *(sol->el));
/* save to array */
solArray[i] = sol;
}
/*
Statistics
*/
/* convergence */
double mX = 0.0, mY = 0.0, mZ = 0.0;
for (long int i = 0; i < *epochArrayIndex; i++)
{
mX += *solArray[i]->x;
mY += *solArray[i]->y;
mZ += *solArray[i]->z;
}
mX /= *epochArrayIndex;
mY /= *epochArrayIndex;
mZ /= *epochArrayIndex;
double mXyz[3] = {mX, mY, mZ};
normalizeXyz(mXyz);
double mAe[2] = {-1.0, -1.0};
xyz2ae(mXyz[0], mXyz[1], mXyz[2], mAe);
/* RMSE and standard deviation */
double trueAntennaXyz[3];
ae2xyz(TRUE_AZ, TRUE_EL, trueAntennaXyz);
double rmsX, rmsY, rmsZ;
double sumX = 0;
double sumY = 0;
double sumZ = 0;
double stdX, stdY, stdZ;
double sumX2 = 0;
double sumY2 = 0;
double sumZ2 = 0;
for (long int i = 0; i < *epochArrayIndex; i++)
{
sumX += pow((*solArray[i]->x - trueAntennaXyz[0]), 2);
sumY += pow((*solArray[i]->y - trueAntennaXyz[1]), 2);
sumZ += pow((*solArray[i]->z - trueAntennaXyz[2]), 2);
sumX2 += pow((*solArray[i]->x - mXyz[0]), 2);
sumY2 += pow((*solArray[i]->y - mXyz[1]), 2);
sumZ2 += pow((*solArray[i]->z - mXyz[2]), 2);
}
/* RMSE by component */
rmsX = sqrt(sumX / *epochArrayIndex);
rmsY = sqrt(sumY / *epochArrayIndex);
rmsZ = sqrt(sumZ / *epochArrayIndex);
double rmsA = rad2deg(sqrt(pow(rmsX, 2) + pow(rmsY, 2) + pow(rmsZ, 2)));
/* STD by component */
stdX = sqrt(sumX2 / (*epochArrayIndex));
stdY = sqrt(sumY2 / (*epochArrayIndex));
stdZ = sqrt(sumZ2 / (*epochArrayIndex));
double stdA = rad2deg(sqrt(pow(stdX, 2) + pow(stdY, 2) + pow(stdZ, 2)));
printf("----------\nStatistics\n----------\nNumber of epochs\n%li\n", *epochArrayIndex);
if ((TRUE_EL >= -90 && TRUE_EL <= 90 && TRUE_AZ <= 360 && TRUE_AZ >= 0)) // if antenna truth is provided by the user)
{
printf("\nAntenna truth by user input (E, N, U, Az, El)\n%.2f, %.2f, %.2f, %.2f°, %.2f°\n", trueAntennaXyz[0], trueAntennaXyz[1], trueAntennaXyz[2], (double)TRUE_AZ, (double)TRUE_EL);
}
printf("\nConvergence (E, N, U, Az, El)\n");
printf("%.2f, %.2f, %.2f, %.2f°, %.2f°\n", mXyz[0], mXyz[1], mXyz[2], mAe[0], mAe[1]);
printf("\nStandard deviation\nE = %.2f°\nN = %.2f°\nU = %.2f°\n3D = %.2f°\n", rad2deg(stdX), rad2deg(stdY), rad2deg(stdZ), stdA);
if (RMS && (TRUE_EL >= -90 && TRUE_EL <= 90 && TRUE_AZ <= 360 && TRUE_AZ >= 0)) // if antenna truth is provided by the user
{
printf("\nRMS\nE = %.2f°\nN = %.2f°\nU = %.2f°\n3D = %.2f°\n", rad2deg(rmsX), rad2deg(rmsY), rad2deg(rmsZ), rmsA);
}
/* close output file */
fclose(fpw);
/*
free() file input
*/
for (long int i = 0; i < satArrayIndex; i++)
{
free(satArray[i]->time);
free(satArray[i]->prn);
free(satArray[i]->az);
free(satArray[i]->el);
free(satArray[i]->snr);
free(satArray[i]->snr2);
free(satArray[i]->snr3);
free(satArray[i]->mp); // free attributes
free(satArray[i]); // free Sat
}
free(satArray); // free satArray
for (long int i = 0; i < *epochArrayIndex; i++)
{
// time freed in satArray[i]
free(epochArray[i]->epochSatArray); // epochSatArray[i] freed in satArray[i]
free(epochArray[i]->numSat);
free(epochArray[i]); // free Epoch
}
free(epochArray);
/*
free() solutions
*/
for (long int i = 0; i < *epochArrayIndex; i++)
{
free(solArray[i]->x);
free(solArray[i]->y);
free(solArray[i]->z);
free(solArray[i]->az);
free(solArray[i]->el);
free(solArray[i]);
}
free(solArray);
free(epochArrayIndex);
clock_t endTime = clock();
double timeSpent = (double)(endTime - startTime) / CLOCKS_PER_SEC;
if (SIMULATION) // remind it is simulation
{
printf("\nRun in SIMULATION mode");
}
else
{
printf("\nRun in REAL DATA mode");
}
printf("\nProgram execution time: %.2f seconds\n", timeSpent);
/*
exit
*/
return 0;
} // end of main()