|
| 1 | +// Copyright lowRISC contributors (OpenTitan project). |
| 2 | +// Licensed under the Apache License, Version 2.0, see LICENSE for details. |
| 3 | +// SPDX-License-Identifier: Apache-2.0 |
| 4 | +#include <assert.h> |
| 5 | +#include <stdint.h> |
| 6 | + |
| 7 | +#include "sw/device/lib/base/mmio.h" |
| 8 | +#include "sw/device/lib/dif/dif_i2c.h" |
| 9 | +#include "sw/device/lib/dif/dif_rv_plic.h" |
| 10 | +#include "sw/device/lib/runtime/irq.h" |
| 11 | +#include "sw/device/lib/testing/i2c_testutils.h" |
| 12 | +#include "sw/device/lib/testing/rv_plic_testutils.h" |
| 13 | +#include "sw/device/lib/testing/test_framework/check.h" |
| 14 | +#include "sw/device/lib/testing/test_framework/ottf_main.h" |
| 15 | + |
| 16 | +#include "hw/top_earlgrey/sw/autogen/top_earlgrey.h" |
| 17 | +#include "i2c_regs.h" // Generated. |
| 18 | + |
| 19 | +static_assert(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__, |
| 20 | + "This test assumes the target platform is little endian."); |
| 21 | + |
| 22 | +OTTF_DEFINE_TEST_CONFIG(); |
| 23 | + |
| 24 | +/* |
| 25 | + * This test emulates a simple memory device over Opentitan's I2C target mode. |
| 26 | + * The device consists of a 256-byte memory that can be written and read. |
| 27 | + * |
| 28 | + * On a write transfer to the device, the first byte written sets the pointer |
| 29 | + * to which subsequent bytes are written to and read from. |
| 30 | + * Subsequent written bytes set the value in memory at the pointer's location |
| 31 | + * and increment it. Reads from the device read from the memory at the |
| 32 | + * pointer's location and increment it. |
| 33 | + * |
| 34 | + * We also listen for another address on the I2C bus. Writes to that address |
| 35 | + * are used to signal successful termination of the test with a magic value. |
| 36 | + * |
| 37 | + * This test runs in QEMU. Read and write transfers should be performed with |
| 38 | + * Opentitantool. |
| 39 | + */ |
| 40 | + |
| 41 | +enum { |
| 42 | + kHart = kTopEarlgreyPlicTargetIbex0, |
| 43 | + // Our address on the bus. On this address, emulates a memory device |
| 44 | + kI2cTargetMemoryDeviceAddr = 0x40u, |
| 45 | + // Second address for our device. Sending a magic value to this address causes |
| 46 | + // the test to terminate successfully. |
| 47 | + kI2cTargetMagicDeviceAddr = 0x41u, |
| 48 | + // Our address mask for I2C target mode: All 1s except least significant bit, |
| 49 | + // to match addresses 0x40 and 0x41 |
| 50 | + kI2cTargetDeviceMask = 0x7eu, |
| 51 | + // TX level threshold and how much to fill to for device reads |
| 52 | + kTxThreshold = 4u, |
| 53 | + kTxFill = 2u * kTxThreshold, |
| 54 | + // Memory device memory size |
| 55 | + kMemorySize = 256u, |
| 56 | + // Magic number to terminate the test successfully |
| 57 | + kMagic = 0xaau, |
| 58 | +}; |
| 59 | + |
| 60 | +static_assert( |
| 61 | + kMemorySize <= 256u, |
| 62 | + "Memory size must be at most the number of representable byte values"); |
| 63 | + |
| 64 | +static dif_i2c_t i2cs[3]; |
| 65 | +static dif_rv_plic_t plic; |
| 66 | + |
| 67 | +// Memory device that Opentitan will be emulating in I2C Target Mode |
| 68 | +struct device { |
| 69 | + /* Memory data */ |
| 70 | + uint8_t data[kMemorySize]; |
| 71 | + // Index into memory data, set by first write on byte and then |
| 72 | + // auto-incremented on read/write byte |
| 73 | + uint8_t ptr; |
| 74 | + // Whether the next byte is the first byte to set the memory pointer |
| 75 | + bool first_byte; |
| 76 | + // Target used for this transfer, used by the device to emulate different |
| 77 | + // functionality based on the address used |
| 78 | + uint8_t address; |
| 79 | +}; |
| 80 | + |
| 81 | +static struct device devices[3]; |
| 82 | + |
| 83 | +static volatile bool quit; |
| 84 | +static volatile status_t isr_status; |
| 85 | + |
| 86 | +static status_t external_isr(void); |
| 87 | + |
| 88 | +void ottf_external_isr(uint32_t *exc_info) { |
| 89 | + OT_DISCARD(exc_info); |
| 90 | + isr_status = external_isr(); |
| 91 | +} |
| 92 | + |
| 93 | +// Fill TX FIFO with memory data |
| 94 | +status_t i2c_mem_device_tx_fill(size_t i2c_idx) { |
| 95 | + dif_i2c_t *i2c = &i2cs[i2c_idx]; |
| 96 | + struct device *device = &devices[i2c_idx]; |
| 97 | + dif_i2c_level_t tx_lvl; |
| 98 | + do { |
| 99 | + TRY(dif_i2c_transmit_byte(i2c, device->data[device->ptr])); |
| 100 | + device->ptr = (device->ptr + 1) % kMemorySize; |
| 101 | + TRY(dif_i2c_get_fifo_levels(i2c, NULL, NULL, &tx_lvl, NULL)); |
| 102 | + } while (tx_lvl < kTxFill); |
| 103 | + return OK_STATUS(); |
| 104 | +} |
| 105 | + |
| 106 | +status_t i2c_mem_device_start(size_t i2c_idx, uint8_t data) { |
| 107 | + dif_i2c_t *i2c = &i2cs[i2c_idx]; |
| 108 | + struct device *device = &devices[i2c_idx]; |
| 109 | + device->first_byte = true; |
| 110 | + if ((data & 0x1u) == 1u) { |
| 111 | + // is a read command, enable tx threshold interrupts and queue |
| 112 | + // response bytes, reading from the memory |
| 113 | + TRY(dif_i2c_reset_tx_fifo(i2c)); |
| 114 | + TRY(i2c_mem_device_tx_fill(i2c_idx)); |
| 115 | + TRY(dif_i2c_set_target_watermarks(i2c, /*tx level=*/kTxThreshold, |
| 116 | + /* acq_level */ 0u)); |
| 117 | + TRY(dif_i2c_irq_set_enabled(i2c, kDifI2cIrqTxThreshold, kDifToggleEnabled)); |
| 118 | + } |
| 119 | + return OK_STATUS(); |
| 120 | +} |
| 121 | + |
| 122 | +status_t i2c_mem_device_process_byte(size_t i2c_idx, uint8_t data) { |
| 123 | + struct device *device = &devices[i2c_idx]; |
| 124 | + // Only received during an ongoing write transaction, so this is a write |
| 125 | + // command |
| 126 | + if (device->first_byte) { |
| 127 | + device->first_byte = false; |
| 128 | + device->ptr = data; |
| 129 | + } else { |
| 130 | + device->data[device->ptr] = data; |
| 131 | + device->ptr = (device->ptr + 1) % kMemorySize; |
| 132 | + } |
| 133 | + return OK_STATUS(); |
| 134 | +} |
| 135 | + |
| 136 | +status_t i2c_mem_device_stop(size_t i2c_idx) { |
| 137 | + dif_i2c_t *i2c = &i2cs[i2c_idx]; |
| 138 | + TRY(dif_i2c_irq_set_enabled(i2c, kDifI2cIrqTxThreshold, kDifToggleDisabled)); |
| 139 | + TRY(dif_i2c_set_target_watermarks(i2c, /*tx level=*/0u, |
| 140 | + /* acq_level */ 0u)); |
| 141 | + TRY(dif_i2c_reset_tx_fifo(i2c)); |
| 142 | + return OK_STATUS(); |
| 143 | +} |
| 144 | + |
| 145 | +// Handle I2C transaction state change and data write |
| 146 | +status_t i2c_device_process_byte(size_t i2c_idx, uint8_t data, |
| 147 | + dif_i2c_signal_t signal) { |
| 148 | + struct device *device = &devices[i2c_idx]; |
| 149 | + switch (signal) { |
| 150 | + case kDifI2cSignalStart: |
| 151 | + device->address = (data >> 1u); |
| 152 | + if (device->address == kI2cTargetMemoryDeviceAddr) { |
| 153 | + // emulate the memory device |
| 154 | + TRY(i2c_mem_device_start(i2c_idx, data)); |
| 155 | + } else if (device->address != kI2cTargetMagicDeviceAddr) { |
| 156 | + // unreachable |
| 157 | + return ABORTED(); |
| 158 | + } |
| 159 | + break; |
| 160 | + case kDifI2cSignalStop: |
| 161 | + if (device->address == kI2cTargetMemoryDeviceAddr) { |
| 162 | + // emulate the memory device |
| 163 | + TRY(i2c_mem_device_stop(i2c_idx)); |
| 164 | + } else if (device->address != kI2cTargetMagicDeviceAddr) { |
| 165 | + // unreachable |
| 166 | + return ABORTED(); |
| 167 | + } |
| 168 | + break; |
| 169 | + case kDifI2cSignalNone: |
| 170 | + if (device->address == kI2cTargetMemoryDeviceAddr) { |
| 171 | + TRY(i2c_mem_device_process_byte(i2c_idx, data)); |
| 172 | + } else if (device->address == kI2cTargetMagicDeviceAddr) { |
| 173 | + // quit if magic value was written |
| 174 | + quit = (data == kMagic); |
| 175 | + } else { |
| 176 | + // unreachable |
| 177 | + return ABORTED(); |
| 178 | + } |
| 179 | + break; |
| 180 | + default: |
| 181 | + return ABORTED(); |
| 182 | + } |
| 183 | + return OK_STATUS(); |
| 184 | +} |
| 185 | + |
| 186 | +status_t i2c_device_acq_bytes(size_t i2c_idx) { |
| 187 | + dif_i2c_t *i2c = &i2cs[i2c_idx]; |
| 188 | + dif_i2c_status_t status; |
| 189 | + do { |
| 190 | + uint8_t acq_byte = 0u; |
| 191 | + dif_i2c_signal_t signal = kDifI2cSignalNone; |
| 192 | + TRY(dif_i2c_acquire_byte(i2c, &acq_byte, &signal)); |
| 193 | + TRY(i2c_device_process_byte(i2c_idx, acq_byte, signal)); |
| 194 | + TRY(dif_i2c_get_status(i2c, &status)); |
| 195 | + } while (!status.acq_fifo_empty); |
| 196 | + return OK_STATUS(); |
| 197 | +} |
| 198 | + |
| 199 | +status_t i2c_device_emulate(size_t i2c_idx, dif_i2c_irq_t irq) { |
| 200 | + if (irq == kDifI2cIrqAcqThreshold) { |
| 201 | + TRY(i2c_device_acq_bytes(i2c_idx)); |
| 202 | + } else if (irq == kDifI2cIrqTxThreshold) { |
| 203 | + TRY(i2c_mem_device_tx_fill(i2c_idx)); |
| 204 | + } else { |
| 205 | + // Unexpected IRQ |
| 206 | + return ABORTED(); |
| 207 | + } |
| 208 | + return OK_STATUS(); |
| 209 | +} |
| 210 | + |
| 211 | +static status_t i2c_setup(dif_i2c_t *i2c) { |
| 212 | + dif_i2c_id_t i2c_address = {.address = kI2cTargetMemoryDeviceAddr, |
| 213 | + .mask = kI2cTargetDeviceMask}; |
| 214 | + TRY(dif_i2c_set_device_id(i2c, &i2c_address, NULL)); |
| 215 | + TRY(dif_i2c_set_target_watermarks(i2c, /*tx level=*/0u, |
| 216 | + /* acq_level */ 0u)); |
| 217 | + TRY(dif_i2c_device_set_enabled(i2c, kDifToggleEnabled)); |
| 218 | + return OK_STATUS(); |
| 219 | +} |
| 220 | + |
| 221 | +static status_t external_isr(void) { |
| 222 | + dif_rv_plic_irq_id_t plic_irq_id; |
| 223 | + // Claim IRQ |
| 224 | + CHECK_DIF_OK(dif_rv_plic_irq_claim(&plic, kHart, &plic_irq_id)); |
| 225 | + |
| 226 | + top_earlgrey_plic_peripheral_t peripheral = (top_earlgrey_plic_peripheral_t) |
| 227 | + top_earlgrey_plic_interrupt_for_peripheral[plic_irq_id]; |
| 228 | + |
| 229 | + size_t i2c_idx = 0; |
| 230 | + dif_i2c_irq_t i2c_irq_id = 0; |
| 231 | + switch (peripheral) { |
| 232 | + case kTopEarlgreyPlicPeripheralI2c0: |
| 233 | + i2c_idx = 0; |
| 234 | + i2c_irq_id = (dif_i2c_irq_t)(plic_irq_id - |
| 235 | + (dif_rv_plic_irq_id_t) |
| 236 | + kTopEarlgreyPlicIrqIdI2c0FmtThreshold); |
| 237 | + break; |
| 238 | + case kTopEarlgreyPlicPeripheralI2c1: |
| 239 | + i2c_idx = 1; |
| 240 | + i2c_irq_id = (dif_i2c_irq_t)(plic_irq_id - |
| 241 | + (dif_rv_plic_irq_id_t) |
| 242 | + kTopEarlgreyPlicIrqIdI2c1FmtThreshold); |
| 243 | + break; |
| 244 | + case kTopEarlgreyPlicPeripheralI2c2: |
| 245 | + i2c_idx = 2; |
| 246 | + i2c_irq_id = (dif_i2c_irq_t)(plic_irq_id - |
| 247 | + (dif_rv_plic_irq_id_t) |
| 248 | + kTopEarlgreyPlicIrqIdI2c2FmtThreshold); |
| 249 | + break; |
| 250 | + default: |
| 251 | + CHECK(false, "Interrupt from unexpected peripheral triggered"); |
| 252 | + } |
| 253 | + |
| 254 | + status_t ret = i2c_device_emulate(i2c_idx, i2c_irq_id); |
| 255 | + |
| 256 | + // Acknowledge IRQ and return |
| 257 | + CHECK_DIF_OK(dif_i2c_irq_acknowledge(&i2cs[i2c_idx], i2c_irq_id)); |
| 258 | + CHECK_DIF_OK(dif_rv_plic_irq_complete(&plic, kHart, plic_irq_id)); |
| 259 | + return ret; |
| 260 | +} |
| 261 | + |
| 262 | +bool test_main(void) { |
| 263 | + memset(&devices, 0u, sizeof(devices)); |
| 264 | + |
| 265 | + const uintptr_t kI2cBaseAddrs[3] = {TOP_EARLGREY_I2C0_BASE_ADDR, |
| 266 | + TOP_EARLGREY_I2C1_BASE_ADDR, |
| 267 | + TOP_EARLGREY_I2C2_BASE_ADDR}; |
| 268 | + |
| 269 | + for (size_t i = 0; i < ARRAYSIZE(i2cs); i++) { |
| 270 | + mmio_region_t i2c_region; |
| 271 | + i2c_region = mmio_region_from_addr(kI2cBaseAddrs[i]); |
| 272 | + CHECK_DIF_OK(dif_i2c_init(i2c_region, &i2cs[i])); |
| 273 | + CHECK_STATUS_OK(i2c_setup(&i2cs[i])); |
| 274 | + } |
| 275 | + |
| 276 | + mmio_region_t plic_region = |
| 277 | + mmio_region_from_addr(TOP_EARLGREY_RV_PLIC_BASE_ADDR); |
| 278 | + CHECK_DIF_OK(dif_rv_plic_init(plic_region, &plic)); |
| 279 | + |
| 280 | + rv_plic_testutils_irq_range_enable(&plic, kHart, |
| 281 | + kTopEarlgreyPlicIrqIdI2c0FmtThreshold, |
| 282 | + kTopEarlgreyPlicIrqIdI2c2HostTimeout); |
| 283 | + |
| 284 | + for (size_t i = 0; i < ARRAYSIZE(i2cs); i++) { |
| 285 | + CHECK_DIF_OK(dif_i2c_irq_set_enabled(&i2cs[i], kDifI2cIrqAcqThreshold, |
| 286 | + kDifToggleEnabled)); |
| 287 | + } |
| 288 | + |
| 289 | + quit = false; |
| 290 | + isr_status = OK_STATUS(); |
| 291 | + |
| 292 | + irq_external_ctrl(true); |
| 293 | + LOG_INFO("SYNC: Device Ready"); |
| 294 | + |
| 295 | + ATOMIC_WAIT_FOR_INTERRUPT(quit == true || !status_ok(isr_status)); |
| 296 | + |
| 297 | + return status_ok(isr_status); |
| 298 | +} |
0 commit comments