-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathDDPG_Prius.py
274 lines (239 loc) · 10.9 KB
/
DDPG_Prius.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# -*- coding: utf-8 -*-
"""
DDPG_Prius
"""
#import os
#os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
import tensorflow.compat.v1 as tf
import numpy as np
from Prius_model_new import Prius_model
import scipy.io as scio
import matplotlib.pyplot as plt
from Priority_Replay import Memory
np.random.seed(1)
tf.set_random_seed(1)
##################### hyper parameters ####################
MAX_EPISODES = 500
LR_A = 0.001 # learning rate for actor
LR_C = 0.001 # learning rate for critic
GAMMA = 0.9 # reward discount
TAU = 0.01 # soft replacement
MEMORY_CAPACITY = 10000
BATCH_SIZE = 64
RENDER = False
############################### DDPG ####################################
class DDPG(object):
def __init__(self, a_dim, s_dim, a_bound,):
# self.memory = np.zeros((MEMORY_CAPACITY, s_dim * 2 + a_dim + 1), dtype=np.float32)
self.memory = Memory(capacity = MEMORY_CAPACITY)
self.pointer = 0
self.sess = tf.Session()
self.a_dim, self.s_dim, self.a_bound = a_dim, s_dim, a_bound,
self.S = tf.placeholder(tf.float32, [None, s_dim], 's')
self.S_ = tf.placeholder(tf.float32, [None, s_dim], 's_')
self.R = tf.placeholder(tf.float32, [None, 1], 'r')
self.ISWeights = tf.placeholder(tf.float32, [None, 1], 'ISWeights')
with tf.variable_scope('Actor'):
self.a = self._build_a(self.S, scope='eval', trainable=True)
a_ = self._build_a(self.S_, scope='target', trainable=False)
with tf.variable_scope('Critic'):
# assign self.a = a in memory when calculating q for td_error,
# otherwise the self.a is from Actor when updating Actor
q = self._build_c(self.S, self.a, scope='eval', trainable=True)
q_ = self._build_c(self.S_, a_, scope='target', trainable=False)
# networks parameters
self.ae_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Actor/eval')
self.at_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Actor/target')
self.ce_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/eval')
self.ct_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Critic/target')
# target net replacement
self.soft_replace = [[tf.assign(ta, (1 - TAU) * ta + TAU * ea), tf.assign(tc, (1 - TAU) * tc + TAU * ec)]
for ta, ea, tc, ec in zip(self.at_params, self.ae_params, self.ct_params, self.ce_params)]
q_target = self.R + GAMMA * q_
# in the feed_dic for the td_error, the self.a should change to actions in memory
td_error = tf.losses.mean_squared_error(labels=q_target, predictions=q)
self.td_error_up = abs(q_target - q) * self.ISWeights
self.ctrain = tf.train.AdamOptimizer(LR_C).minimize(td_error * self.ISWeights, var_list=self.ce_params)
a_loss = tf.reduce_mean(q) # maximize the q
self.atrain = tf.train.AdamOptimizer(LR_A).minimize(a_loss, var_list=self.ae_params)
self.sess.run(tf.global_variables_initializer())
def choose_action(self, s):
return self.sess.run(self.a, {self.S: s[np.newaxis, :]})[0]
def learn(self):
# soft target replacement
self.sess.run(self.soft_replace)
# indices = np.random.choice(MEMORY_CAPACITY, size=BATCH_SIZE)
# bt = self.memory[indices, :]
tree_index, bt, ISWeights = self.memory.sample(BATCH_SIZE)
bs = bt[:, :self.s_dim]
ba = bt[:, self.s_dim: self.s_dim + self.a_dim]
br = bt[:, -self.s_dim - 1: -self.s_dim]
bs_ = bt[:, -self.s_dim:]
self.sess.run(self.atrain, {self.S: bs})
self.sess.run(self.ctrain, {self.S: bs, self.a: ba, self.R: br, self.S_: bs_, self.ISWeights: ISWeights})
abs_td_error = self.sess.run(self.td_error_up, {self.S: bs, self.a: ba, self.R: br, self.S_: bs_, self.ISWeights: ISWeights})
self.memory.batch_update(tree_index, abs_td_error)
def store_transition(self, s, a, r, s_):
transition = np.hstack((s, a, r, s_))
# index = self.pointer % MEMORY_CAPACITY # replace the old memory with new memory
# self.memory[index, :] = transition
self.memory.store(transition)
self.pointer += 1
def _build_a(self, s, scope, trainable):
with tf.variable_scope(scope):
net1 = tf.layers.dense(s, 200, activation=tf.nn.relu, name='l1', trainable=trainable)
net2 = tf.layers.dense(net1, 100, activation=tf.nn.relu, name = 'l2', trainable=trainable)
net3 = tf.layers.dense(net2, 50, activation=tf.nn.relu, name = 'l3', trainable=trainable)
a = tf.layers.dense(net3, self.a_dim, activation=tf.nn.sigmoid, name='a', trainable=trainable)
return tf.multiply(a, self.a_bound, name='scaled_a')
def _build_c(self, s, a, scope, trainable):
with tf.variable_scope(scope):
n_l1 = 200
n_l2 = 100
n_l3 = 50
w1_s = tf.get_variable('w1_s', [self.s_dim, n_l1], trainable=trainable)
w1_a = tf.get_variable('w1_a', [self.a_dim, n_l1], trainable=trainable)
b1 = tf.get_variable('b1', [1, n_l1], trainable=trainable)
w2 = tf.get_variable('w2', [n_l1, n_l2], trainable=trainable)
b2 = tf.get_variable('b2', [1, n_l2], trainable=trainable)
w3 = tf.get_variable('w3', [n_l2, n_l3], trainable=trainable)
b3 = tf.get_variable('b3', [1, n_l3], trainable=trainable)
net1 = tf.nn.relu(tf.matmul(s, w1_s) + tf.matmul(a, w1_a) + b1)
net2 = tf.nn.relu(tf.matmul(net1, w2) + b2)
net3 = tf.nn.relu(tf.matmul(net2, w3) + b3)
return tf.layers.dense(net3, 1, trainable=trainable) # Q(s,a)
def savemodel(self):
self.saver = tf.train.Saver(max_to_keep = MAX_EPISODES)
self.saver.save(self.sess, 'Checkpoints/Prius/save_net.ckpt', global_step = step_episode)
# def loadmodel(self):
# self.saver = tf.train.Saver()
# self.saver.restore(self.sess, 'Prius/save_net.ckpt')
##################### Training Process ####################
s_dim = 3
a_dim = 1
a_bound = 1
DDPG = DDPG(a_dim, s_dim, a_bound)
# control exploration
var = 2
data_path = 'Data_Standard Driving Cycles/Standard_NEDC.mat'
data = scio.loadmat(data_path)
car_spd_one = data['speed_vector']
total_milage = np.sum(car_spd_one) / 1000
total_step = 0
step_episode = 0
mean_reward_all = 0
cost_Engine_list = []
cost_all_list = []
cost_Engine_100Km_list = []
mean_reward_list = []
list_even = []
list_odd = []
mean_discrepancy_list = []
SOC_final_list = []
Prius = Prius_model()
for i in range(MAX_EPISODES):
SOC = 0.65
SOC_origin = SOC
ep_reward = 0
ep_reward_all = 0
step_episode += 1
SOC_data = []
P_req_list = []
P_out_list = []
Eng_spd_list = []
Eng_trq_list = []
Eng_pwr_list = []
Eng_pwr_opt_list = []
Gen_spd_list = []
Gen_trq_list = []
Gen_pwr_list = []
Mot_spd_list = []
Mot_trq_list = []
Mot_pwr_list = []
Batt_pwr_list = []
inf_batt_list = []
inf_batt_one_list = []
Reward_list = []
Reward_list_all = []
T_list = []
Mot_eta_list = []
Gen_eta_list = []
car_spd = car_spd_one[:, 0]
car_a = car_spd_one[:, 0] - 0
s = np.zeros(s_dim)
s[0] = car_spd / 33.4
s[1] = (car_a - (-1.5)) / (1.5- (-1.5))
s[2] = SOC
for j in range(car_spd_one.shape[1] - 1):
action = DDPG.choose_action(s)
a = np.clip(np.random.laplace(action, var), 0, 1)
Eng_pwr_opt = (a[0]) * 56000
out, cost, I = Prius.run(car_spd, car_a, Eng_pwr_opt, SOC)
P_req_list.append(float(out['P_req']))
P_out_list.append(float(out['P_out']))
Eng_spd_list.append(float(out['Eng_spd']))
Eng_trq_list.append(float(out['Eng_trq']))
Eng_pwr_list.append(float(out['Eng_pwr']))
Eng_pwr_opt_list.append(float(out['Eng_pwr_opt']))
Mot_spd_list.append(float(out['Mot_spd']))
Mot_trq_list.append(float(out['Mot_trq']))
Mot_pwr_list.append(float(out['Mot_pwr']))
Gen_spd_list.append(float(out['Gen_spd']))
Gen_trq_list.append(float(out['Gen_trq']))
Gen_pwr_list.append(float(out['Gen_pwr']))
Batt_pwr_list.append(float(out['Batt_pwr']))
inf_batt_list.append(int(out['inf_batt']))
inf_batt_one_list.append(int(out['inf_batt_one']))
Mot_eta_list.append(float(out['Mot_eta']))
Gen_eta_list.append(float(out['Gen_eta']))
T_list.append(float(out['T']))
SOC_new = float(out['SOC'])
SOC_data.append(SOC_new)
cost = float(cost)
r = cost
ep_reward += r
Reward_list.append(r)
if SOC_new < 0.6 or SOC_new > 0.85:
r = ((350 * ((0.6 - SOC_new) ** 2)) + cost)
# Obtained from the wheel speed sensor
car_spd = car_spd_one[:, j + 1]
car_a = car_spd_one[:, j + 1] - car_spd_one[:, j]
s_ = np.zeros(s_dim)
s_[0] = car_spd / 33.4
s_[1] = (car_a - (-1.5)) / (1.5- (-1.5))
s_[2] = SOC_new
DDPG.store_transition(s, a, r, s_)
if total_step > MEMORY_CAPACITY:
var *= 0.99993
DDPG.learn()
s = s_
ep_reward_all += r
Reward_list_all.append(r)
total_step += 1
SOC = SOC_new
cost_Engine = (ep_reward / 0.72 / 1000)
cost_all = (ep_reward_all / 0.72 / 1000)
if j == (car_spd_one.shape[1] - 2):
SOC_final_list.append(SOC)
mean_reward = ep_reward_all / car_spd_one.shape[1]
mean_reward_list.append(mean_reward)
cost_Engine += (SOC < SOC_origin) * (SOC_origin - SOC) * (201.6 * 6.5) * 3600 /(42600000) / 0.72
cost_Engine_list.append(cost_Engine)
cost_Engine_100Km_list.append(cost_Engine * (100 / total_milage))
cost_all += (SOC < SOC_origin) * (SOC_origin - SOC) * (201.6 * 6.5) * 3600 /(42600000) / 0.72
cost_all_list.append(cost_all)
print('Episode:', i, ' cost_Engine: %.3f' % cost_Engine, ' Fuel_100Km: %.3f' % (cost_Engine * (100 / total_milage)), ' SOC-final: %.3f' % SOC, ' Explore: %.2f' % var)
mean_reward_all += mean_reward
if (step_episode % 10) == 0 and step_episode >= 10:
if (step_episode / 10) % 2 == 0:
list_even.append(mean_reward_all)
else:
list_odd.append(mean_reward_all)
mean_reward_all = 0
DDPG.savemodel()
mean_discrepancy_list = list(map(lambda x, y: y - x, list_even, list_odd))
x = np.arange(0, len(SOC_data), 1)
y = SOC_data
plt.plot(x, y)
plt.xlabel('time')
plt.ylabel('SOC')