-
Notifications
You must be signed in to change notification settings - Fork 0
/
pendoloNormale.tex
161 lines (156 loc) · 5.9 KB
/
pendoloNormale.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
\chapter{Pendolo su carrello}
\section{Equazioni e linearizzazione del modello}
\begin{center}
\includegraphics[scale=0.6]{pendolo.png}
\end{center}
Modello del pendolo su carrello realizzato con LEGO MINDSTORM EV3\\\\
\textbf{Bilanciamento forse sull'asta}\\
Asse x:
\begin{equation}
m\ddot{x}_m=H
\end{equation}
Asse y:
\begin{equation}
m\ddot{y}_m=V-mg
\end{equation}
Avendo:\\
\begin{equation}
x_m = x_M+l_a\sin(\theta) \quad \Rightarrow \quad \ddot{x}_m=\ddot{x}_M-l_a\sin(\theta)\dot{\theta}^2+l_a\cos(\theta)\ddot{\theta}
\end{equation}
\begin{equation}
y_m=y_F-l_a\cos(\theta) \quad \Rightarrow \quad \ddot{y}_m=l_a(\ddot{\theta}\sin(\theta)+\dot{\theta}^2\cos(\theta))
\end{equation}
Si ottiene:
\begin{equation}\label{H}
H=m\ddot{x}_M-ml_a\sin(\theta)\dot{\theta}^2+ml_a\cos(\theta)\ddot{\theta}
\end{equation}
\begin{equation}\label{V}
V=mg+ml_a\cos(\theta)\dot{\theta}^2+ml_a\sin(\theta)\ddot{\theta}
\end{equation}
\textbf{Bilanciamento forze sul carrello}
\begin{equation}
M\ddot{x}_M=u-H
\end{equation}
sostituendo la \ref{H} si ha:
$$
M\ddot{x}_M=u-m\ddot{x}_M+ml_a\sin(\theta)\dot{\theta}^2-ml_a\cos(\theta)\ddot{\theta}
$$
\begin{equation}\label{FCarr}
(M+m)\ddot{x}_M+ml_a\cos(\theta)\ddot{\theta}=u+ml_a\dot{\theta}^2\sin(\theta)
\end{equation}
\textbf{Bilanciamento momenti del sistema asta-massa}
\begin{equation}
I_m\ddot{\theta}=l_aV\sin(\theta)+l_aH\cos(\theta)
\end{equation}
sostituendo la \ref{H} e la \ref{V}:
$$
I_m\dot{\theta}=l_a\sin(\theta)[mg+ml_a\cos(\theta)\dot{\theta}^2+ml_a\sin(\theta)\ddot{\theta}]+l_a\cos(\theta)[m\ddot{x}_M-ml_a\sin(\theta)\dot{\theta}^2+ml_a\cos(\theta)\ddot{\theta}]=
$$
$$
=mgl_a\sin(\theta)+ml_a^2\sin(\theta)\cos(\theta)\dot{\theta}^2+ml_a^2\sin^2(\theta)\ddot{\theta}+ml_a\ddot{x}_M\cos(\theta)-ml_a^2\cos(\theta)\sin(\theta)\dot{\theta}^2$$
$$+ml_a^2\cos^2(\theta)\ddot{\theta}=$$
$$=mgl_a\sin(\theta)+ml_a^2\ddot{\theta}+ml_a\ddot{x}_M\cos(\theta) =
$$
\begin{equation} \label{momInThetaP}
=ml_a(g\sin(\theta)+l_a\ddot{\theta}+\ddot{x}_M\cos(\theta))
\end{equation}
Il sistema che deriva dalla \ref{FCarr} e dalla \ref{momInThetaP} è dunque il seguente:
\\\\
$\begin{cases}
$$(M+m)\ddot{x}_M+ml_a\cos(\theta)\ddot{\theta}=u+ml_a\dot{\theta}^2\sin(\theta)$$ \\
$$ml_a(g\sin(\theta)+l_a\ddot{\theta}+\ddot{x}_M\cos(\theta))$$\\
\end{cases}
$
\\\\\\
Assegno le variabili di stato:\\\\
$\begin{cases}
$$x_1 = x_M$$ \\
$$x_2=\dot{x}_M$$\\
$$x_3=\theta$$\\
$$x_4=\dot{\theta}$$\\
\end{cases}
$\\\\\\\
Dalla \ref{FCarr} si ottiene:
$$
\ddot{x}_M=\displaystyle\frac{u+ml_a\dot{\theta}^2\sin(\theta)-ml_a\cos(\theta)\ddot{\theta}}{M+m}
$$
$$
\ddot{\theta}=\displaystyle\frac{(M+m)I_m\dot{\theta}-g\sin(\theta)ml_a(M+m)-\cos(\theta)ml_au-\cos(\theta)\sin(\theta)\dot{\theta}^2m^2l_a^2+m^2l_a^2\cos^2(\theta)\ddot{\theta}}{ml_a^2(m+M)}
$$
\\
Le derivate prime delle variabili di stato del sistema sono dunque:
\\\\\\
$\begin{cases}
$$\dot{x}_1=\displaystyle\frac{u+ml_a\dot{\theta}^2\sin(\theta)-ml_a\cos(\theta)\ddot{\theta}}{M+m}$$ \\
$$\dot{x}_2=\dot{x}_M$$\\
$$\dot{x}_3=x_4$$\\
$$\dot{x}_4=\displaystyle\frac{(M+m)I_m\dot{\theta}-g\sin(\theta)ml_a(M+m)-\cos(\theta)ml_au-\cos(\theta)\sin(\theta)\dot{\theta}^2m^2l_a^2+m^2l_a^2\cos^2(\theta)\ddot{\theta}}{ml_a^2(m+M)}$$\\
\end{cases}
$
\\\\\\
\textbf{Punti di equilibrio del sistema} \\
Vogliamo ora linearizzare le precedenti equazioni di stato attorno al punto di equilibrio $\underline{x}=\underline{0}$, $u=0$ trovato: \\\\
$\displaystyle\frac{\partial{f_1}}{\partial{\underline{x}}}(\underline x)=
\begin{bmatrix}
0&1&0&0
\end{bmatrix}$\\\\\\
$\displaystyle\frac{\partial{f_2}}{\partial{x_1}}(\underline{x})=0$\quad
$\displaystyle\frac{\partial{f_2}}{\partial{x_2}}(\underline{x})=0$\quad
$\displaystyle\frac{\partial{f_2}}{\partial{x_3}}(\underline{x})=\displaystyle\frac{ml_ax_4^2\cos(x_3)+ml_a\sin(x_3)\dot{x_4}}{M+m}$\\
$\displaystyle\frac{\partial{f_2}}{\partial{x_4}}(\underline{x})=\displaystyle\frac{2ml_ax_4\sin(x_3)-ml_a\cos(x_3)\ddot{x_4}}{M+m}$\\\\\\
$\displaystyle\frac{\partial{f_3}}{\partial{\underline{x}}}(\underline x)=
\begin{bmatrix}
0&0&0&1
\end{bmatrix}$\\\\\\
$\displaystyle\frac{\partial{f_4}}{\partial{x_1}}(\underline{x})=0$\quad
$\displaystyle\frac{\partial{f_4}}{\partial{x_2}}(\underline{x})=0$\\
$\displaystyle\frac{\partial{f_4}}{\partial{x_3}}(\underline{x})=\displaystyle\frac{(ml_a)[-g\cos(x_3)(M+m)+\sin(x_3)u-2\cos(x_3)\sin(x_3)\dot{x_4}ml_a+(\sin^2(x_3)-cos^2(x_3))x^2_4ml_a]}{ml_a^2(M+m)}$\quad
$\displaystyle\frac{\partial{f_4}}{\partial{x_4}}(\underline{x})=\displaystyle\frac{(M+m)I_m-2\cos(x_3)\sin(x_3)x_4m^2l_a^2+m^2l_a^2\cos^2(x_3)\ddot{x_4}}{ml_a(M+m)}$\\\\
$\displaystyle\frac{\partial{f_1}}{\partial{u}}(\underline{x})=0$\quad
$\displaystyle\frac{\partial{f_2}}{\partial{u}}(\underline{x})=\displaystyle\frac{1}{M+m}$\quad
$\displaystyle\frac{\partial{f_3}}{\partial{u}}(\underline{x})=0$\quad
$\displaystyle\frac{\partial{f_4}}{\partial{u}}(\underline{x})=\displaystyle\frac{-\cos(x_3)}{l_a(M+m)}$\\\\
Sostituendo quindi nelle precedenti equazioni il punto di equilibrio si ottiene:\\\\
$\underline{\delta\dot{x}}=
\begin{bmatrix}
0&1&0&0\\
0&0&0&0\\
0&0&0&1\\
0&0&\displaystyle\frac{-g}{l_a}&\displaystyle\frac{I_m}{ml_a^2}
\end{bmatrix}
\underline{\delta x}+
\begin{bmatrix}
0\\
\displaystyle\frac{1}{M+m}\\
0\\
\displaystyle\frac{-1}{l_a(M+m)}\\
\end{bmatrix}
\underline{\delta u}
$\\\\
$\underline{\delta y}=
\begin{bmatrix}
1&0&0&0\\
0&0&1&0
\end{bmatrix}
\underline{\delta x}
$\\\\\\
Calcolando ora la funzione di Trasferimento $T(s)$ tra l'ingresso $u$(Forza esercitata sul carrello,
avanti/indietro) e l'uscita $y_2$(angolo $\theta$ del pendolo rispetto alla verticale) si ottiene:\\\\
$T_{u,y_2}(s)=C(sI-A)^{-1}B=
\begin{bmatrix}
0&0&1&0
\end{bmatrix}
\begin{bmatrix}
*&*&*&*\\
*&*&*&*\\
*&0&*&\displaystyle\frac{1}{s^2-\frac{I_m}{ml_a^2}s+\frac{g}{l_a}}\\
*&*&*&*
\end{bmatrix}
\begin{bmatrix}
0\\
\displaystyle\frac{1}{M+m}\\
0\\
\displaystyle\frac{-1}{l_a(M+m)}\\
\end{bmatrix} = \\
=\displaystyle\frac{-1}{l_a(M+m)(s^2-\frac{I_m}{ml_a^2}s+\frac{g}{l_a})}
$