-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
213 lines (173 loc) · 7.22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import argparse
import os
import torch
import torch.nn as nn
import gym
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
import cv2
from model import *
from sprites_env.envs import sprites
from torchvision.utils import save_image
import torchvision
from torch.utils.tensorboard import SummaryWriter
import time
from dataset import *
# from ppo import PPO
# from envs import make_vec_envs
import copy
def train_encode(model, batch, optimizer):
avg_loss = 0.0
for obs, agent_x, agent_y, target_x, target_y in zip(batch['obs'], batch['agent_x'], batch['agent_y'], batch['target_x'], batch['target_y']):
optimizer.zero_grad()
reward_targets = torch.stack((agent_x, agent_y, target_x, target_y))
reward_predicted = model(obs)
loss = model.criterion(reward_predicted, reward_targets)
avg_loss += loss
loss.backward(retain_graph=True)
optimizer.step()
# avg_loss.backward(retain_graph=True)
# optimizer.step()
l = len(batch['obs'])
avg_loss = avg_loss / l
return avg_loss.item()
def train_decode(model, batch, decoder_optimizer):
avg_decoded_loss = 0.0
for obs in batch['obs']:
decoder_optimizer.zero_grad()
encoded_img = model.encoder(obs[-1][None, None, :].detach().clone())
decoded_img = model.decoder(encoded_img).squeeze()
decoded_loss = model.criterion(decoded_img, obs[-1])
avg_decoded_loss += decoded_loss
# decoded_loss.backward()
# decoder_optimizer.step()
avg_decoded_loss.backward()
decoder_optimizer.step()
l = len(batch['obs'])
avg_decoded_loss = avg_decoded_loss / l
return decoded_img[None, :], avg_decoded_loss.item()
# argument parser
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--learning_rate', type=float, default=1e-3)
parser.add_argument('--image_resolution', type=int, default=64)
parser.add_argument('--time_steps', type=int, default=5)
parser.add_argument('--tasks', type=int, default=4)
parser.add_argument('--conditioning_frames', type=int, default=2)
parser.add_argument('--num_epochs', type=int, default=70)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--env', type=str, default='Sprites-v0')
parser.add_argument('--reward', type=str, default='follow')
parser.add_argument('--dataset_length', type=int, default=200)
parser.add_argument('--total_timesteps', type=int, default=5_000_000)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--rl_lr', type=float, default=1e-3)
args = parser.parse_args()
return args
def main():
# parse arguments
args = parse_args()
f = args.conditioning_frames
t = args.time_steps
assert t > f
if args.seed:
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
if torch.cuda.is_available():
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
log_dir = 'runs5/num_epochs=' + str(args.num_epochs) + 'env=' + args.env + '_lr=' + str(args.rl_lr) + ' ||' + time.strftime("%d-%m-%Y_%H-%M-%S")
if not(os.path.exists(log_dir)):
os.makedirs(log_dir)
writer = SummaryWriter(log_dir=log_dir)
# torch.set_num_threads(1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# initialize the environment
env = gym.make(args.env)
# envs = make_vec_envs(args.env, args.seed, 1,
# 0.99, args.log_dir, device, False)
# load data
dl, traj_images, ground_truth = dataloader(args.image_resolution, t, args.batch_size, f, args.reward, args.dataset_length)
traj_images = traj_images.to(device)
model = Model(t, f+1, args.tasks, args.image_resolution, device).to(device)
# make_dir()
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
decoder_optimizer = torch.optim.Adam(model.decoder.parameters(), lr=args.learning_rate)
train_loss = []
train_decoded_loss = []
# train the encoder and decoder seperately
for epoch in range(args.num_epochs-1):
running_loss = 0.0
num_batch = 0
for batch in dl:
loss = train_encode(model, batch, optimizer)
running_loss += loss
num_batch += 1
# print or store data
running_loss = running_loss / num_batch
print('Epoch: {} \tLoss: {:.6f}'.format(epoch, running_loss))
train_loss.append(running_loss)
writer.add_scalar('Loss/train', running_loss, epoch)
for epoch in range(args.num_epochs-1):
running_decoded_loss = 0.0
num_batch = 0
for batch in dl:
decoded_img, decoded_loss = train_decode(model, batch, decoder_optimizer)
running_decoded_loss += decoded_loss
num_batch += 1
# print or store data
running_decoded_loss = running_decoded_loss / num_batch
# print('Epoch: {} \tLoss: {:.6f}'.format(epoch, running_decoded_loss)) # added
train_decoded_loss.append(running_decoded_loss)
writer.add_scalar('Loss/decoded', running_decoded_loss, epoch)
if epoch % 5 == 0:
decoded_img = (decoded_img + 1.0) * (255./2)
writer.add_image('decoded_epoch{}'.format(
epoch), decoded_img.to(torch.uint8))
# save model
save_dir = './trained_models/'
save_path = os.path.join(save_dir, args.env)
if not(os.path.exists(save_path)):
os.makedirs(save_path)
torch.save(model.encoder.state_dict(), os.path.join(
save_path, 'seed=' + str(args.seed) + ".pt"))
# decode and generate images with respect to reward functions
output = model.test_decode(traj_images)
output = (output + 1.0) * (255./2)
img = make_image_seq_strip([output[None, :, None].repeat(3, axis=2).astype(np.float32)], sep_val=255.0).astype(np.uint8)
writer.add_image('ground_truth', ground_truth)
writer.add_image('test_decoded', img[0])
print("---------Done--------")
# set hyperparameters for PPO
# hyperparameters = {
# 'timesteps_per_batch': 2048,
# 'max_timesteps_per_episode': 200,
# 'gamma': 0.99,
# 'gae_lamda': 0.95,
# 'n_updates_per_iteration': 10,
# 'lr': args.rl_lr,
# 'clip': 0.2,
# 'render': True,
# 'render_every_i': 10
# }
# # Trains the RL model
# # ppo = PPO(MLP_2, env, writer, device, encoder=None, **hyperparameters) # oracle
# ppo = PPO(MLP_2, env, writer, device, trained_encoder, **hyperparameters)
# # cnn = CNN().to(device)
# # ppo = PPO(MLP_2, env, writer, device, cnn, **hyperparameters)
# # ppo = PPO(CNN_MLP, env, writer, device, **hyperparameters)
# # Train the PPO model with a specified total timesteps
# ppo.learn(total_timesteps=args.total_timesteps)
writer.flush()
# create a directory to save the results
def make_dir():
image_dir = 'Decoded_images'
if not os.path.exists(image_dir):
os.makedirs(image_dir)
# save the reconstructed images as generated by the model
def save_decod_img(img, epoch):
img = img.view(-1, 64, 64)
save_image(img, './Decoded_images/epoch{}.png'.format(epoch))
if __name__ == '__main__':
main()