-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
59 lines (41 loc) · 1.79 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow import keras
from keras.models import Sequential
from keras.layers import Conv2D, Dense, BatchNormalization, Flatten, Activation, LayerNormalization, Reshape
from keras.optimizers import Adam
df = pd.read_csv('./sudoku.csv')
X = np.array(df.quizzes.map(lambda x: list(map(int, x))).to_list())
Y = np.array(df.solutions.map(lambda x: list(map(int, x))).to_list())
X = X.reshape(-1, 9, 9, 1)
Y = Y.reshape(-1, 9, 9) - 1
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.2)
model = Sequential()
model.add(Conv2D(128, 3, activation='relu', padding='same', input_shape = (9, 9, 1)))
model.add(BatchNormalization())
model.add(Conv2D(128, 3, activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(Conv2D(256, 3, activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(Conv2D(256, 3, activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(Conv2D(512, 3, activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(Conv2D(512, 3, activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(Conv2D(1024, 3, activation='relu', padding='same'))
model.add(BatchNormalization())
model.add(Conv2D(9, 3, activation='relu', padding='same'))
model.add(Flatten())
model.add(Dense(512))
model.add(Dense(81*9))
model.add(LayerNormalization(axis=-1))
model.add(Reshape((9, 9, 9)))
model.add(Activation('softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer=Adam(), metrics=['accuracy'])
model.summary()
model.fit(x_train, y_train, batch_size=64, epochs=10, validation_data=(x_test, y_test))
model.evaluate(x_test, y_test)
model.save('mindlock-model.h5')