-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_bio.py
421 lines (358 loc) · 13.4 KB
/
preprocess_bio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import enum
import sys
sys.path += ['./']
import os
import torch
import gzip
import pickle
import subprocess
import csv
import multiprocessing
import numpy as np
from os import listdir
from os.path import isfile, join
import argparse
import json
from tqdm import tqdm
from star_tokenizer import RobertaTokenizer
import logging
import ast
def init_logging():
handlers = [logging.StreamHandler()]
handlers.append(logging.FileHandler("edit.log", mode="w"))
logging.basicConfig(handlers=handlers, format="[%(asctime)s] %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
#logging.info("COMMAND: %s" % " ".join(sys.argv))
def pad_input_ids(input_ids, max_length,
pad_on_left=False,
pad_token=0):
padding_length = max_length - len(input_ids)
padding_id = [pad_token] * padding_length
if padding_length <= 0:
input_ids = input_ids[:max_length]
else:
if pad_on_left:
input_ids = padding_id + input_ids
else:
input_ids = input_ids + padding_id
return input_ids
def tokenize_to_file(args, in_path, output_dir, line_fn, max_length, begin_idx, end_idx):
tokenizer = RobertaTokenizer.from_pretrained(
args.model_name_or_path, do_lower_case = True, cache_dir=None)
os.makedirs(output_dir, exist_ok=True)
data_cnt = end_idx - begin_idx
ids_array = np.memmap(
os.path.join(output_dir, "ids.memmap"),
shape=(data_cnt, ), mode='w+', dtype=np.int32)
token_ids_array = np.memmap(
os.path.join(output_dir, "token_ids.memmap"),
shape=(data_cnt, max_length), mode='w+', dtype=np.int32)
token_length_array = np.memmap(
os.path.join(output_dir, "lengths.memmap"),
shape=(data_cnt, ), mode='w+', dtype=np.int32)
pbar = tqdm(total=end_idx-begin_idx, desc=f"Tokenizing")
for idx, line in enumerate(open(in_path, 'r')):
if idx < begin_idx:
continue
if idx >= end_idx:
break
qid_or_pid, token_ids, length = line_fn(args, line, tokenizer)
if length == 0:
continue
write_idx = idx - begin_idx
ids_array[write_idx] = qid_or_pid
token_ids_array[write_idx, :] = token_ids
token_length_array[write_idx] = length
pbar.update(1)
pbar.close()
logging.info("write_idx:"+str(write_idx) )
logging.info("data_cnt:"+str(data_cnt) )
#assert write_idx == data_cnt - 1
def multi_file_process(args, num_process, in_path, out_path, line_fn, max_length, token_fn):
output_linecnt = subprocess.check_output(["wc", "-l", in_path]).decode("utf-8")
print("line cnt", output_linecnt)
all_linecnt = int(output_linecnt.split()[0])
run_arguments = []
for i in range(num_process):
begin_idx = round(all_linecnt * i / num_process)
end_idx = round(all_linecnt * (i+1) / num_process)
output_dir = f"{out_path}_split_{i}"
run_arguments.append((
args, in_path, output_dir, line_fn,
max_length, begin_idx, end_idx
))
pool = multiprocessing.Pool(processes=num_process)
pool.starmap(tokenize_to_file, run_arguments)
pool.close()
pool.join()
splits_dir = [a[2] for a in run_arguments]
return splits_dir, all_linecnt
def write_query_rel(args, pid2offset, qid2offset_file, query_file, positive_id_file, out_query_file, standard_qrel_file):
tokenizer = RobertaTokenizer.from_pretrained(
args.model_name_or_path, do_lower_case = True, cache_dir=None)
print( "Writing query files " + str(out_query_file) +
" and " + str(standard_qrel_file))
query_collection_path = os.path.join(args.data_dir,query_file)
out_query_path = os.path.join(args.out_data_dir,out_query_file,)
qid2offset = {}
token_length_array = []
with open(query_file, "r") as reader:
input_data = json.load(reader)["questions"]
valid_query_num = len(input_data)
token_ids_array = np.memmap(
out_query_path+".memmap",
shape=(valid_query_num, args.max_query_length), mode='w+', dtype=np.int32)
qids = []
qid_cur = 1000
query_list = []
qrel_docs = {}
idx = 0
print('start query file processing')
for entry in input_data:
qids.append(qid_cur)
query_list.append(entry["body"])
passage = tokenizer.encode(
entry["body"].rstrip(),
add_special_tokens=True,
max_length=args.max_query_length,
truncation=True)
passage_len = min(len(passage), args.max_query_length)
input_id_b = pad_input_ids(passage, args.max_query_length)
#logging.info("idx, token" + str(idx) + str(input_id_b))
token_ids_array[idx, :] = input_id_b
#token_ids_array.append(input_id_b)
token_length_array.append(passage_len)
#logging.info(passage_len)
idx += 1
for doc in entry["documents"]:
qrel_docs[qid_cur] = doc[35:] #remove pmed url and left pid
assert len(token_length_array) == len(token_ids_array) == idx
np.save(out_query_path+"_length.npy", np.array(token_length_array))
print("Total lines written: " + str(idx))
meta = {'type': 'int32', 'total_number': idx,
'embedding_size': args.max_query_length}
with open(out_query_path + "_meta", 'w') as f:
json.dump(meta, f)
if positive_id_file is None:
print("No qrels file provided")
return
print("Writing qrels")
with open(os.path.join(args.out_data_dir, standard_qrel_file), "w", encoding='utf-8') as qrel_output:
out_line_count = 0
rel = 1
for qid in qrel_docs:
qrel_output.write(str(qid) +
"\t0\t" + str(qrel_docs[qid]) +
"\t" + rel + "\n")
out_line_count += 1
print("Total lines written: " + str(out_line_count))
def build_bioqrel(sss):
return 0
def preprocess(args):
pid2offset = {}
if args.data_type == 0:
in_passage_path = os.path.join(
args.data_dir,
"allMeSH_limitjournals.json",
)
else:
in_passage_path = os.path.join(
args.data_dir,
"collection.tsv",
)
out_passage_path = os.path.join(
args.out_data_dir,
"bio-passages",
)
if os.path.exists(out_passage_path):
print("preprocessed data already exist, exit preprocessing")
return
print('start passage file split processing')
splits_dir_lst, all_linecnt = multi_file_process(
args, args.threads, in_passage_path,
out_passage_path, PassagePreprocessingFn,
args.max_seq_length, tokenize_to_file
)
token_ids_array = np.memmap(
out_passage_path+".memmap",
shape=(all_linecnt, args.max_seq_length), mode='w+', dtype=np.int32)
token_length_array = []
idx = 0
out_line_count = 0
print('start merging splits')
for split_dir in splits_dir_lst:
ids_array = np.memmap(
os.path.join(split_dir, "ids.memmap"), mode='r', dtype=np.int32)
split_token_ids_array = np.memmap(
os.path.join(split_dir, "token_ids.memmap"), mode='r', dtype=np.int32)
split_token_ids_array = split_token_ids_array.reshape(len(ids_array), -1)
split_token_length_array = np.memmap(
os.path.join(split_dir, "lengths.memmap"), mode='r', dtype=np.int32)
for p_id, token_ids, length in zip(ids_array, split_token_ids_array, split_token_length_array):
token_ids_array[idx, :] = token_ids
token_length_array.append(length)
pid2offset[p_id] = idx
idx += 1
if idx < 3:
print(str(idx) + " " + str(p_id))
out_line_count += 1
assert len(token_length_array) == len(token_ids_array) == idx
np.save(out_passage_path+"_length.npy", np.array(token_length_array))
print("Total lines written: " + str(out_line_count))
meta = {
'type': 'int32',
'total_number': out_line_count,
'embedding_size': args.max_seq_length}
with open(out_passage_path + "_meta", 'w') as f:
json.dump(meta, f)
# objects = []
# with open("data/doc/preprocess/pid2offset.pickle", "rb") as f:
# objects = pickle.load(f)
# logging.info(objects)
pid2offset_path = os.path.join(
args.out_data_dir,
"pid2offset.pickle",
)
with open(pid2offset_path, 'wb') as handle:
pickle.dump(pid2offset, handle, protocol=4)
print("done saving pid2offset")
if args.data_type == 0:
in_query_path = os.path.join(
args.data_dir,
"BioASQ-trainingDataset5b.json")
write_query_rel(
args,
pid2offset,
"train-qid2offset.pickle",
in_query_path,
None,
"bio-train-query",
"bio-train-qrel.tsv")
def PassagePreprocessingFn(args, line, tokenizer):
if args.data_type == 0:
#logging.info("new line fuc")
#logging.info(line)
line = line.rstrip()
line_arr = {}
#logging.info(line)
if line.endswith(","):
line = line[:-1]
if "abstractText" in line:
if line.count('\'') >= 6:
#line = line.replace("\'", "\"")
line_arr = ast.literal_eval(line)
else:
line_arr = json.loads(line)
else:
return 0,0,0
if line_arr == "":
logging.info("Error line: " + line)
p_id = int(line_arr["pmid"]) # remove "D"
#url = line_arr[1].rstrip()
title = line_arr["title"].rstrip()
p_text = line_arr["abstractText"].rstrip()
# NOTE: This linke is copied from ANCE,
# but I think it's better to use <s> as the separator,
full_text = title + "<sep>" + p_text
#logging.info(full_text)
# keep only first 10000 characters, should be sufficient for any
# experiment that uses less than 500 - 1k tokens
full_text = full_text[:args.max_doc_character]
else:
line = line.strip()
line_arr = line.split('\t')
p_id = int(line_arr[0])
p_text = line_arr[1].rstrip()
# keep only first 10000 characters, should be sufficient for any
# experiment that uses less than 500 - 1k tokens
full_text = p_text[:args.max_doc_character]
#logging.info(full_text)
passage = tokenizer.encode(
full_text,
add_special_tokens=True,
max_length=args.max_seq_length,
truncation=True
)
passage_len = min(len(passage), args.max_seq_length)
input_id_b = pad_input_ids(passage, args.max_seq_length)
return p_id, input_id_b, passage_len
def BioQueryPreprocessingFn(args, input_file, tokenizer):
with open(input_file, "r") as reader:
input_data = json.load(reader)["questions"]
qids = []
qid_cur = 1000
query_list = []
qrel_docs = {}
for entry in input_data:
qids.append(qid_cur)
query_list.append(entry["body"])
passage = tokenizer.encode(
line_arr[1].rstrip(),
add_special_tokens=True,
max_length=args.max_query_length,
truncation=True)
passage_len = min(len(passage), args.max_query_length)
input_id_b = pad_input_ids(passage, args.max_query_length)
for doc in entry["documents"]:
qrel_docs[qid_cur] = doc[35:] #remove pmed url and left pid
logging.info(line)
line_arr = line.split('\t')
q_id = int(line_arr[0])
passage = tokenizer.encode(
line_arr[1].rstrip(),
add_special_tokens=True,
max_length=args.max_query_length,
truncation=True)
passage_len = min(len(passage), args.max_query_length)
input_id_b = pad_input_ids(passage, args.max_query_length)
return q_id, input_id_b, passage_len
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name_or_path",
default="roberta-base",
type=str,
)
parser.add_argument(
"--max_seq_length",
default=512,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
"--max_query_length",
default=64,
type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
"--max_doc_character",
default=10000,
type=int,
help="used before tokenizer to save tokenizer latency",
)
parser.add_argument(
"--data_type",
default=1,
type=int,
help="0 for doc, 1 for passage",
)
parser.add_argument("--threads", type=int, default=32)
args = parser.parse_args()
return args
def main():
args = get_arguments()
if args.data_type == 0:
args.data_dir = "./data/doc/dataset"
args.out_data_dir = "./data/doc/preprocess"
else:
args.data_dir = "./data/passage/dataset"
args.out_data_dir = "./data/passage/preprocess"
if not os.path.exists(args.out_data_dir):
os.makedirs(args.out_data_dir)
init_logging();
logging.info("work");
preprocess(args)
if __name__ == '__main__':
main()