-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
315 lines (264 loc) · 13.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# inspired from https://github.com/Project-MONAI/tutorials/blob/main/3d_segmentation/brats_segmentation_3d.ipynb
import json
import torch
from monai.transforms import (Compose,
LoadImaged,
MapTransform,
NormalizeIntensityd,
Activations,
AsDiscrete,
RandFlipd,
RandRotated,
RandZoomd)
import numpy as np
from monai.losses import TverskyLoss
from monai.metrics import DiceMetric
from monai.networks.nets import SegResNet, AttentionUnet
import time
from monai.data import decollate_batch, CacheDataset
from datetime import datetime
from sklearn.model_selection import KFold
original_list = list()
# our custom MONAI transforms
class PreprocessDatad(MapTransform):
def __init__(self, keys, divider, mode):
super().__init__(keys)
self.divider = divider
self.mode = mode
def __call__(self, x):
mode_list = ['train','val']
if not self.mode in mode_list:
raise ValueError(f"mode value should be train or val but got {self.mode} instead")
for key in self.keys:
x[key] = x[key].unsqueeze(0)
remainder = x[key].shape[3] % self.divider
if key == 'image' and self.mode == 'train':
original_list.append(x[key].shape[3])
if remainder != 0:
_,H,W,_ = x[key].shape # 1,H,W,D
x[key] = torch.cat([x[key],torch.zeros(1,H,W,self.divider - remainder)],dim=3)
return x
class ConcatTwoChanneld(MapTransform):
def __init__(self,keys):
super().__init__(keys)
def __call__(self, x):
adc = x['image']
z_adc = x['zmap']
x['image'] = torch.cat([adc,z_adc],dim=0)
return x
class Permuted(MapTransform):
def __init__(self,keys):
super().__init__(keys)
def __call__(self, x):
for key in self.keys:
x[key] = x[key].permute(0,3,1,2) # shape C,D,H,W
return x
class ReciprocalTransformd(MapTransform):
def __init__(self,keys,power):
super().__init__(keys)
self.power = power
def __call__(self, x):
adc = x['image']
z_adc = x['zmap']
D = adc.shape[3]
for d in range(D):
min_data = torch.min(z_adc[:,:,:,d]).item()
x['image'][:,:,:,d] = adc[:,:,:,d] / (1 + abs(min_data) + z_adc[:,:,:,d])**(self.power)
return x
class ReciprocalTransform_Concatd(MapTransform):
def __init__(self,keys,power):
super().__init__(keys)
self.power = power
def __call__(self, x):
adc = x['image']
D = adc.shape[3]
for d in range(D):
min_data = torch.min(x['zmap'][:,:,:,d]).item()
adc[:,:,:,d] = x['image'][:,:,:,d] / (1 + abs(min_data) + x['zmap'][:,:,:,d])**(self.power)
x['image'] = torch.cat([x['image'],x['zmap'],adc],dim=0)
# x['image'] = torch.cat([x['image'],x['zmap']],dim=0)
# x['image'] = torch.cat([x['zmap'],adc],dim=0)
return x
def RemovePadding(batch_data,original_list,index):
batch_data = batch_data[:,:,:original_list[index],:,:] # (N,C,D,H,W)
return batch_data
now = datetime.now()
filename_time = now.strftime("%d_%m_%Y_%H_%M_%S")
work_dir = './work_dir'
checkpoint_base_path = './best_checkpoints'
with open('./bonbid_dataset_monai/dataset.json','r') as js_file:
json_object = json.load(js_file)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print('device:',device)
resume = False
train_transform = Compose(
[
LoadImaged(keys=["image","zmap","label"], reader = 'ITKReader'),
PreprocessDatad(keys=["image","zmap","label"], divider=8,mode="train"),
# ReciprocalTransformd(keys=["image","zmap"], power=1.5),
ReciprocalTransform_Concatd(keys=["image","zmap"], power=1.5),
# ConcatTwoChanneld(keys=["image","zmap"]),
RandZoomd(keys=["image","zmap", "label"], min_zoom=1, max_zoom=1.25, prob=0.1),
RandFlipd(keys=["image","zmap", "label"], prob=0.1, spatial_axis=0),
RandFlipd(keys=["image","zmap", "label"], prob=0.1, spatial_axis=1),
RandFlipd(keys=["image","zmap", "label"], prob=0.1, spatial_axis=2),
RandRotated(keys=["image","zmap", "label"],range_x=1.5, prob=0.1),
NormalizeIntensityd(keys=["image","zmap"], nonzero=True, channel_wise=True),
Permuted(keys=["image","zmap", "label"]),
]
)
val_transform = Compose(
[LoadImaged(keys=["image","zmap","label"], reader = 'ITKReader'),
PreprocessDatad(keys=["image","zmap","label"], divider=8,mode="val"),
# ReciprocalTransformd(keys=["image","zmap"], power=1.5),
ReciprocalTransform_Concatd(keys=["image","zmap"], power=1.5),
# ConcatTwoChanneld(keys=["image","zmap"]),
NormalizeIntensityd(keys=["image","zmap"], nonzero=True, channel_wise=True),
Permuted(keys=["image","zmap", "label"]),
]
)
post_trans = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
transform_name_list_train = list(transform.__class__.__name__ for transform in train_transform.transforms)
transform_name_list_val = list(transform.__class__.__name__ for transform in val_transform.transforms)
train_dataset = CacheDataset(json_object['training'],transform=train_transform)
val_dataset = CacheDataset(json_object['training'],transform=val_transform)
max_epochs = 1000
# max_epochs = 500
val_interval = 5
verbose_interval = 10
scaler = torch.cuda.amp.GradScaler()
learning_rate = 1e-5
weight_decay = 1e-5
dice_metric = DiceMetric(include_background=True, reduction="mean")
ori_size_path = './original_size'
k = 5
kf = KFold(n_splits=k, shuffle=False)
json_dict = dict()
ori_size_dict = dict()
for fold, (train_idx, val_idx) in enumerate(kf.split(train_dataset)):
total_start = time.time()
model = SegResNet(spatial_dims=3,init_filters=32,in_channels=3,out_channels=1,
dropout_prob=0.2,num_groups=8,norm_name='GROUP',upsample_mode='deconv').to(device)
# model = SegResNet(spatial_dims=3,init_filters=48,in_channels=3,out_channels=1,
# dropout_prob=0.2,num_groups=8,norm_name='GROUP',upsample_mode='deconv').to(device)
# model = AttentionUnet(spatial_dims=3,in_channels=3,out_channels=1,
# channels=(16, 32, 64, 128),strides=(2, 2, 2)).to(device)
loss_function = TverskyLoss(smooth_nr=2e-5, sigmoid=True,smooth_dr=1e-5)
optimizer = torch.optim.Adam(model.parameters(), learning_rate, weight_decay=weight_decay)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=max_epochs)
model_name = str(model.__class__.__name__)
optimizer_name = str(optimizer.__class__.__name__)
lr_scheduler_name = str(lr_scheduler.__class__.__name__)
loss_name = str(loss_function.__class__.__name__)
if resume:
best_checkpoint_path = checkpoint_base_path + '/SegResNet_best_checkpoint_fold_1_15_09_2023_10_53_51.pth'
checkpoint = torch.load(best_checkpoint_path)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler_state_dict'])
with open(work_dir + '/' + filename_time + '_' + model_name + '_score.txt','a') as txt_file:
txt_file.write(f"Weights loaded from: {best_checkpoint_path}\n")
json_dict[f'fold_{fold+1}'] = val_idx.tolist()
with open(work_dir + '/' + filename_time + '_' + model_name + '_val_index.json','w') as val_index_file:
json.dump(json_dict,val_index_file)
if fold == 0:
ori_size_dict['size'] = original_list
with open(ori_size_path + '/' + filename_time + '_' + model_name + '_ori_size.json','w') as ori_size_file:
json.dump(ori_size_dict,ori_size_file)
with open(work_dir + '/' + filename_time + '_' + model_name + '_score.txt','a') as txt_file:
txt_file.write(f"model name: {model_name}\n"
f"learning rate: {learning_rate}\n"
f"weight decay: {weight_decay}\n"
f"optimizer: {optimizer_name}\n"
f"learning rate scheduler: {lr_scheduler_name}\n"
f"loss: {loss_name}\n"
f"train transforms: {transform_name_list_train}\n"
f"validation transforms: {transform_name_list_val}\n"
f"model summary: {model}\n")
with open(work_dir + '/' + filename_time + '_' + model_name + '_score.txt','a') as txt_file:
txt_file.write(f"\nFold: {fold + 1}/{k}\n")
best_metric = -1
best_metric_epoch = -1
best_metrics_epochs_and_time = [[], [], []]
epoch_loss_values = []
train_dataset_subset = torch.utils.data.Subset(train_dataset,train_idx)
train_loader = torch.utils.data.DataLoader(train_dataset_subset, batch_size=1,shuffle=False)
val_dataset_subset = torch.utils.data.Subset(val_dataset,val_idx)
val_loader = torch.utils.data.DataLoader(val_dataset_subset, batch_size=1,shuffle=False)
for epoch in range(max_epochs):
epoch_start = time.time()
print("-" * 10)
print(f"epoch {epoch + 1}/{max_epochs}")
with open(work_dir + '/' + filename_time + '_' + model_name + '_losses.txt','a') as txt_file:
txt_file.write(f"epoch {epoch+1}/{max_epochs}\n")
model.train()
epoch_loss = 0
step = 0
for batch_data in train_loader:
step_start = time.time()
step += 1
inputs, labels = (
batch_data["image"].to(device),
batch_data["label"].to(device),
)
optimizer.zero_grad()
with torch.cuda.amp.autocast():
outputs = model(inputs)
loss = loss_function(outputs, labels)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
epoch_loss += loss.item()
if step % verbose_interval == 0:
print(
f"{step}/{len(train_loader) // train_loader.batch_size}"
f", train_loss: {loss.item():.4f}"
f", step time: {(time.time() - step_start):.4f}")
with open(work_dir + '/' + filename_time + '_' + model_name + '_losses.txt','a') as txt_file:
txt_file.write(f"{step}/{len(train_loader) // train_loader.batch_size}"
f", train_loss: {loss.item():.4f}"
f", step time: {(time.time() - step_start):.4f}\n")
lr_scheduler.step()
epoch_loss /= step
epoch_loss_values.append(epoch_loss)
print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")
val_original_size = np.array(original_list)[val_idx]
if (epoch + 1) % val_interval == 0:
model.eval()
with torch.no_grad():
for i,val_data in enumerate(val_loader):
val_inputs, val_labels = (
val_data["image"].to(device),
val_data["label"].to(device),
)
val_outputs = model(val_inputs)
val_labels = RemovePadding(val_labels,val_original_size,i)
val_outputs = RemovePadding(val_outputs,val_original_size,i)
val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)]
dice_metric(y_pred=val_outputs, y=val_labels)
metric = dice_metric.aggregate().item()
if metric > best_metric:
best_metric = metric
best_metric_epoch = epoch + 1
best_metrics_epochs_and_time[0].append(best_metric)
best_metrics_epochs_and_time[1].append(best_metric_epoch)
best_metrics_epochs_and_time[2].append(time.time() - total_start)
torch.save({'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'lr_scheduler_state_dict': lr_scheduler.state_dict()}, checkpoint_base_path + '/' +
model_name + '_best_checkpoint_fold_' + str(fold+1) + '_' + filename_time + '.pth')
print(
f"current learning rate: {lr_scheduler.get_last_lr()[0]:.7f}\n"
f"current epoch: {epoch + 1} current mean dice: {metric:.4f}"
f"\nbest mean dice: {best_metric:.4f}"
f" at epoch: {best_metric_epoch}"
)
with open(work_dir + '/' + filename_time + '_' + model_name + '_score.txt','a') as txt_file:
txt_file.write(
f"current learning rate: {lr_scheduler.get_last_lr()[0]:.7f}\n"
f"current epoch: {epoch + 1} current mean dice: {metric:.4f}\n"
f"best mean dice: {best_metric:.4f}"
f" at epoch: {best_metric_epoch}\n")
print(f"time consuming of epoch {epoch + 1} is: {(time.time() - epoch_start):.4f}")
total_time = time.time() - total_start
print(f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}, total time: {total_time}.")