-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOperators.py
491 lines (393 loc) · 15.7 KB
/
Operators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
# The source code is a part of PyCrystalField package by Allen Scheie.
# Here is the link to the original code: https://github.com/asche1/PyCrystalField/tree/master
# The original code is licensed under the GPL-3.0 license
import numpy as np
class Ket():
def __init__(self, array):
"""give an array which defines the angular momentum eigenket in terms
of the available states. IE, write |1> + |2> as [0,0,0,1,1]"""
self.ket = np.array(array)
self.j = len(array)/2.0 - 0.5
self.m = np.arange(-self.j,self.j+1,1)
def Jz(self):
return Ket( self.ket * self.m )
def Jplus(self):
newvals = np.sqrt((self.j-self.m)*(self.j+self.m+1)) * self.ket
return Ket( np.roll(newvals,1) )
def Jminus(self):
newvals = np.sqrt((self.j+self.m)*(self.j-self.m+1)) * self.ket
return Ket( np.roll(newvals,-1) )
def Jx(self):
return Ket(0.5*(self.Jplus().ket + self.Jminus().ket) )
def Jy(self):
return Ket(-1j*0.5*(self.Jplus().ket - self.Jminus().ket) )
def R(self, alpha, beta, gamma): # Rotation about general Euler Angles
return self._Rz(alpha)._Ry(beta)._Rz(gamma)
def _Rz(self,theta): # Rotation about z axis
newvals = np.zeros(len(self.ket), dtype=complex)
for i in range(len(self.ket)):
newvals[i] = self.ket[i]* np.exp(-1j*self.m[i] * theta)
return Ket(newvals)
def _Ry(self,beta): # Rotation about y axis
newvals = np.zeros(len(self.ket), dtype=complex)
for i in range(len(self.ket)):
mm = self.m[i]
for j in range(len(self.ket)):
mmp = self.m[j]
newvals[j] += self.ket[i]* self._WignersFormula(mm,mmp,beta)
return Ket(newvals)
def _WignersFormula(self,m,mp,beta):
"""See Sakurai/Napolitano eq. 3.9.33.
This function was cross-checked with Mathematica's WignerD function."""
# determine the limit of the sum over k
kmin = np.maximum(0, m-mp)
kmax = np.minimum(self.j+m, self.j-mp)
d = 0
for k in np.arange(kmin,kmax+1):
d += (-1)**(k-m+mp) * np.sqrt(np.math.factorial(int(self.j+m)) * np.math.factorial(int(self.j-m)) *\
np.math.factorial(int(self.j+mp)) * np.math.factorial(int(self.j-mp)))/\
(np.math.factorial(int(self.j+m-k)) * np.math.factorial(int(k)) * np.math.factorial(int(self.j-k-mp))*\
np.math.factorial(int(k-m+mp)))*\
np.cos(beta/2)**(2*self.j -2*k+m-mp) * np.sin(beta/2)**(2*k-m+mp)
return d
def __mul__(self,other):
if isinstance(other, Ket):
# Compute inner product
return np.dot(np.conjugate(self.ket), other.ket)
else:
return Ket( np.dot(self.ket, other))
def __add__(self,other):
if isinstance(other, Ket):
return Ket(self.ket + other.ket)
else:
print("other is not a ket")
# def __rmul__(self,other): #Doesn't work. not sure why.
# if isinstance(other, Ket):
# return np.vdot(other.ket, self.ket)
# else: # if not ket, try matrix multiplication.
# #print "reverse multiply"
# return np.dot(other, self.ket)
# spec = [
# ('O', float32[:,:]), # a simple scalar field
# #('j', float32),
# ('m', float32[:]), # an array field
# ]
# @jitclass(spec) # Doesn't work
class Operator():
def __init__(self, J):
self.O = np.zeros((int(2*J+1), int(2*J+1)))
self.m = np.arange(-J,J+1,1)
self.j = J
@staticmethod
def Jz(J):
obj = Operator(J)
for i in range(len(obj.O)):
for k in range(len(obj.O)):
if i == k:
obj.O[i,k] = (obj.m[k])
return obj
@staticmethod
def Jplus(J):
obj = Operator(J)
for i in range(len(obj.O)):
for k in range(len(obj.O)):
if k+1 == i:
obj.O[i,k] = np.sqrt((obj.j-obj.m[k])*(obj.j+obj.m[k]+1))
return obj
@staticmethod
def Jminus(J):
obj = Operator(J)
for i in range(len(obj.O)):
for k in range(len(obj.O)):
if k-1 == i:
obj.O[i,k] = np.sqrt((obj.j+obj.m[k])*(obj.j-obj.m[k]+1))
return obj
@staticmethod
def Jx(J):
objp = Operator.Jplus(J)
objm = Operator.Jminus(J)
return 0.5*objp + 0.5*objm
@staticmethod
def Jy(J):
objp = Operator.Jplus(J)
objm = Operator.Jminus(J)
return -0.5j*objp + 0.5j*objm
def __add__(self,other):
newobj = Operator(self.j)
if isinstance(other, Operator):
newobj.O = self.O + other.O
else:
newobj.O = self.O + other*np.identity(int(2*self.j+1))
return newobj
def __radd__(self,other):
newobj = Operator(self.j)
if isinstance(other, Operator):
newobj.O = self.O + other.O
else:
newobj.O = self.O + other*np.identity(int(2*self.j+1))
return newobj
def __sub__(self,other):
newobj = Operator(self.j)
if isinstance(other, Operator):
newobj.O = self.O - other.O
else:
newobj.O = self.O - other*np.identity(int(2*self.j+1))
return newobj
def __mul__(self,other):
newobj = Operator(self.j)
if (isinstance(other, int) or isinstance(other, float) or isinstance(other, complex)):
newobj.O = other * self.O
else:
newobj.O = np.dot(self.O, other.O)
return newobj
def __rmul__(self,other):
newobj = Operator(self.j)
if (isinstance(other, int) or isinstance(other, float) or isinstance(other, complex)):
newobj.O = other * self.O
else:
newobj.O = np.dot(other.O, self.O)
return newobj
def __pow__(self, power):
newobj = Operator(self.j)
newobj.O = self.O
for i in range(power-1):
newobj.O = np.dot(newobj.O,self.O)
return newobj
def __neg__(self):
newobj = Operator(self.j)
newobj.O = -self.O
return newobj
def __repr__(self):
return repr(self.O)
####################################3
##
## ## #######
## ## #############
## ## ### ###
## ## ###
## ## ####
## ## #####
## ## #####
## ## ####
## ## ###
## ## ### ###
## ########### #### ####
## ########### #######
##
######################################
class LSOperator():
'''This is for a full treatment in the intermediate coupling scheme'''
def __init__(self, L, S):
self.O = np.zeros((int((2*L+1)*(2*S+1)), int((2*L+1)*(2*S+1)) ))
self.L = L
self.S = S
lm = np.arange(-L,L+1,1)
sm = np.arange(-S,S+1,1)
self.Lm = np.repeat(lm, len(sm))
self.Sm = np.tile(sm, len(lm))
@staticmethod
def Lz(L, S):
obj = LSOperator(L, S)
for i in range(len(obj.O)):
for k in range(len(obj.O)):
if i == k:
obj.O[i,k] = (obj.Lm[k])
return obj
@staticmethod
def Lplus(L, S):
obj = LSOperator(L, S)
for i, lm1 in enumerate(obj.Lm):
for k, lm2 in enumerate(obj.Lm):
if (lm1 - lm2 == 1) and (obj.Sm[i] == obj.Sm[k] ):
obj.O[i,k] = np.sqrt((obj.L-obj.Lm[k])*(obj.L+obj.Lm[k]+1))
return obj
@staticmethod
def Lminus(L, S):
obj = LSOperator(L, S)
for i, lm1 in enumerate(obj.Lm):
for k, lm2 in enumerate(obj.Lm):
if (lm2 - lm1 == 1) and (obj.Sm[i] == obj.Sm[k]):
obj.O[i,k] = np.sqrt((obj.L+obj.Lm[k])*(obj.L-obj.Lm[k]+1))
return obj
@staticmethod
def Lx(L, S):
objp = LSOperator.Lplus(L, S)
objm = LSOperator.Lminus(L, S)
return 0.5*objp + 0.5*objm
@staticmethod
def Ly(L, S):
objp = LSOperator.Lplus(L, S)
objm = LSOperator.Lminus(L, S)
return -0.5j*objp + 0.5j*objm
##################################
# Spin operators
@staticmethod
def Sz(L, S):
obj = LSOperator(L, S)
for i in range(len(obj.O)):
for k in range(len(obj.O)):
if i == k:
obj.O[i,k] = (obj.Sm[k])
return obj
@staticmethod
def Splus(L, S):
obj = LSOperator(L, S)
for i, sm1 in enumerate(obj.Sm):
for k, sm2 in enumerate(obj.Sm):
if (sm1 - sm2 == 1) and (obj.Lm[i] == obj.Lm[k]):
obj.O[i,k] = np.sqrt((obj.S-obj.Sm[k])*(obj.S+obj.Sm[k]+1))
return obj
@staticmethod
def Sminus(L, S):
obj = LSOperator(L, S)
for i, sm1 in enumerate(obj.Sm):
for k, sm2 in enumerate(obj.Sm):
if (sm2 - sm1 == 1) and (obj.Lm[i] == obj.Lm[k]):
obj.O[i,k] = np.sqrt((obj.S+obj.Sm[k])*(obj.S-obj.Sm[k]+1))
return obj
@staticmethod
def Sx(L, S):
objp = LSOperator.Splus(L, S)
objm = LSOperator.Sminus(L, S)
return 0.5*objp + 0.5*objm
@staticmethod
def Sy(L, S):
objp = LSOperator.Splus(L, S)
objm = LSOperator.Sminus(L, S)
return -0.5j*objp + 0.5j*objm
def __add__(self,other):
newobj = LSOperator(self.L, self.S)
try:
newobj.O = np.add(self.O, other.O)
except AttributeError:
newobj.O = self.O + other*np.identity(len(self.O))
return newobj
def __radd__(self,other):
newobj = LSOperator(self.L, self.S)
try:
newobj.O = np.add(other.O, self.O)
except AttributeError:
newobj.O = self.O + other*np.identity(len(self.O))
return newobj
def __sub__(self,other):
newobj = LSOperator(self.L, self.S)
try:
newobj.O = self.O - other.O
except AttributeError:
newobj.O = self.O - other*np.identity(len(self.O))
return newobj
def __mul__(self,other):
newobj = LSOperator(self.L, self.S)
try:
newobj.O = np.dot(self.O, other.O)
except AttributeError:
newobj.O = other * self.O
return newobj
def __rmul__(self,other):
newobj = LSOperator(self.L, self.S)
try:
newobj.O = np.dot(other.O, self.O)
except AttributeError:
newobj.O = other * self.O
return newobj
def __pow__(self, power):
newobj = LSOperator(self.L, self.S)
newobj.O = self.O
for i in range(power-1):
newobj.O = np.dot(newobj.O,self.O)
return newobj
def __neg__(self):
newobj = LSOperator(self.L, self.S)
newobj.O = -self.O
return newobj
def __repr__(self):
return repr(self.O)
# Computing magnetization and susceptibility
def magnetization(self, Temp, Field):
'''field should be a 3-component vector. Temps may be an array.'''
if len(Field) != 3:
raise TypeError("Field needs to be 3-component vector")
# A) Define magnetic Hamiltonian
Lx = LSOperator.Lx(self.L, self.S)
Ly = LSOperator.Ly(self.L, self.S)
Lz = LSOperator.Lz(self.L, self.S)
Sx = LSOperator.Sx(self.L, self.S)
Sy = LSOperator.Sy(self.L, self.S)
Sz = LSOperator.Sz(self.L, self.S)
g0 = 2.002319
Jx = Lx + g0*Sx
Jy = Ly + g0*Sy
Jz = Lz + g0*Sz
muB = 5.7883818012e-2 # meV/T
#mu0 = np.pi*4e-7 # T*m/A
JdotB = muB*((Field[0]*Lx + Field[1]*Ly + Field[2]*Lz) +\
(Field[0]*Sx + Field[1]*Sy + Field[2]*Sz))
# B) Diagonalize full Hamiltonian
FieldHam = self.O + JdotB.O
diagonalH = LA.eigh(FieldHam)
minE = np.amin(diagonalH[0])
evals = diagonalH[0] - minE
evecs = diagonalH[1].T
# These ARE actual eigenvalues.
# C) Compute expectation value along field
JexpVals = np.zeros((len(evals),3))
for i, ev in enumerate(evecs):
#print np.real(np.dot(ev, np.dot( self.O ,ev))), diagonalH[0][i]
#print np.real(np.dot( FieldHam ,ev)), np.real(diagonalH[0][i]*ev)
JexpVals[i] =[np.real(np.dot(np.conjugate(ev), np.dot( Jx.O ,ev))),
np.real(np.dot(np.conjugate(ev), np.dot( Jy.O ,ev))),
np.real(np.dot(np.conjugate(ev), np.dot( Jz.O ,ev)))]
k_B = 8.6173303e-2 # meV/K
if (isinstance(Temp, int) or isinstance(Temp, float)):
Zz = np.sum(np.exp(-evals/(k_B*Temp)))
JexpVal = np.dot(np.exp(-evals/(k_B*Temp)),JexpVals)/Zz
return np.real(JexpVal)
else:
expvals, temps = np.meshgrid(evals, Temp)
ZZ = np.sum(np.exp(-expvals/temps/k_B), axis=1)
JexpValList = np.repeat(JexpVals.reshape((1,)+JexpVals.shape), len(Temp), axis=0)
JexpValList = np.sum(np.exp(-expvals/temps/k_B)*\
np.transpose(JexpValList, axes=[2,0,1]), axis=2) / ZZ
# if np.isnan(JexpValList).any():
# print -expvals[0]/temps[0]/k_B
# print np.exp(-expvals/temps/k_B)[0]
# raise ValueError('Nan in result!')
return np.nan_to_num(JexpValList.T)
def susceptibility(self, Temps, Field, deltaField):
'''Computes susceptibility numerically with a numerical derivative.
deltaField needs to be a scalar value.'''
if not isinstance(deltaField, float):
raise TypeError("Deltafield needs to be a scalar")
if isinstance(Field, float):
# Assume we are computing a powder average
VecField = Field * np.array([1,0,0])
Delta = deltaField*np.array(VecField)/Field
Mplus1 = self.magnetization(Temps, VecField + Delta)
Mminus1= self.magnetization(Temps, VecField - Delta)
Mplus2 = self.magnetization(Temps, VecField + 2*Delta)
Mminus2= self.magnetization(Temps, VecField - 2*Delta)
dMdH_x = (8*(Mplus1 - Mminus1) - (Mplus2 - Mminus2))/(12*deltaField)
VecField = Field * np.array([0,1,0])
Delta = deltaField*np.array(VecField)/Field
Mplus1 = self.magnetization(Temps, VecField + Delta)
Mminus1= self.magnetization(Temps, VecField - Delta)
Mplus2 = self.magnetization(Temps, VecField + 2*Delta)
Mminus2= self.magnetization(Temps, VecField - 2*Delta)
dMdH_y = (8*(Mplus1 - Mminus1) - (Mplus2 - Mminus2))/(12*deltaField)
VecField = Field * np.array([0,0,1])
Delta = deltaField*np.array(VecField)/Field
Mplus1 = self.magnetization(Temps, VecField + Delta)
Mminus1= self.magnetization(Temps, VecField - Delta)
Mplus2 = self.magnetization(Temps, VecField + 2*Delta)
Mminus2= self.magnetization(Temps, VecField - 2*Delta)
dMdH_z = (8*(Mplus1 - Mminus1) - (Mplus2 - Mminus2))/(12*deltaField)
return (dMdH_x[:,0]+dMdH_y[:,1]+dMdH_z[:,2])/3.
elif len(Field) == 3:
Delta = deltaField*np.array(Field)/np.linalg.norm(Field)
Mplus1 = self.magnetization(Temps, Field + Delta)
Mminus1= self.magnetization(Temps, Field - Delta)
Mplus2 = self.magnetization(Temps, Field + 2*Delta)
Mminus2= self.magnetization(Temps, Field - 2*Delta)
dMdH = (8*(Mplus1 - Mminus1) - (Mplus2 - Mminus2))/(12*deltaField)
#dMdH = (Mplus1 - Mminus1)/(2*deltaField)
return dMdH