forked from leondgarse/Keras_insightface
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepare_data.py
executable file
·83 lines (67 loc) · 3.33 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/usr/bin/env python3
import argparse
import sys
import os
def MXnet_record_to_folder(dataset_dir, save_dir=None):
import os
import numpy as np
import mxnet as mx
from tqdm import tqdm
if save_dir == None:
save_dir = (dataset_dir[:-1] if dataset_dir.endswith("/") else dataset_dir) + "_112x112_folders"
idx_path = os.path.join(dataset_dir, "train.idx")
bin_path = os.path.join(dataset_dir, "train.rec")
print("save_dir = %s, idx_path = %s, bin_path = %s" % (save_dir, idx_path, bin_path))
if os.path.exists(save_dir):
print("%s already exists." % save_dir)
return
imgrec = mx.recordio.MXIndexedRecordIO(idx_path, bin_path, "r")
rec_header, _ = mx.recordio.unpack(imgrec.read_idx(0))
for ii in tqdm(range(1, int(rec_header.label[0]))):
img_info = imgrec.read_idx(ii)
header, img = mx.recordio.unpack(img_info)
# img_idx = str(int(np.sum(header.label)))
img_idx = str(int(header.label if isinstance(header.label, float) else header.label[0]))
img_save_dir = os.path.join(save_dir, img_idx)
if not os.path.exists(img_save_dir):
os.makedirs(img_save_dir)
with open(os.path.join(img_save_dir, str(ii) + ".jpg"), "wb") as ff:
ff.write(img)
def MXnet_bin_files_to_tf(test_bins, limit=0):
import io
import pickle
import tensorflow as tf
from skimage.io import imread
print("test_bins =", test_bins)
for test_bin_file in test_bins:
with open(test_bin_file, "rb") as ff:
bins, issame_list = pickle.load(ff, encoding="bytes")
bb = [bytes(ii) for ii in bins[: limit * 2] + bins[-limit * 2 :]]
print("Saving to %s" % test_bin_file)
with open(test_bin_file, "wb") as ff:
pickle.dump([bb, issame_list[:limit] + issame_list[-limit:]], ff)
def resize_dataset(dataset_dir, target_shape=224):
from tqdm import tqdm
from glob2 import glob
import cv2
target_dataset_dir = dataset_dir.replace("112", str(target_shape))
aa = glob(os.path.join(dataset_dir, "*/*"))
for ii in tqdm(aa):
target_imm = ii.replace(dataset_dir, target_dataset_dir)
target_dir = os.path.dirname(target_imm)
if not os.path.exists(target_dir):
os.makedirs(target_dir)
imm = cv2.imread(ii)
cv2.imwrite(target_imm, cv2.resize(imm, (target_shape, target_shape), interpolation=cv2.INTER_CUBIC))
""" CUDA_VISIBLE_DEVICES='-1' ./prepare_data.py -D /datasets/faces_emore """
""" CUDA_VISIBLE_DEVICES='-1' ./prepare_data.py -D /datasets/faces_emore -T lfw.bin cfp_fp.bin agedb_30.bin """
if __name__ == "__main__":
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-D", "--dataset_dir", type=str, required=True, help="MXnet record dataset directory")
parser.add_argument("-T", "--test_bins", nargs="*", type=None, help="Test bin files in dataset_dir be converted")
parser.add_argument("-S", "--save_dir", default=None, help="Folder path for saving dataset images")
args = parser.parse_known_args(sys.argv[1:])[0]
if args.test_bins != None and len(args.test_bins) != 0:
args.test_bins = [os.path.join(args.dataset_dir, ii) for ii in args.test_bins]
MXnet_bin_files_to_tf(args.test_bins)
MXnet_record_to_folder(args.dataset_dir, args.save_dir)