Skip to content

Latest commit

 

History

History
232 lines (207 loc) · 18.4 KB

README.md

File metadata and controls

232 lines (207 loc) · 18.4 KB

Keras EfficientNetV2


Table of Contents


Summary

V2 Model Params Top1 Input ImageNet21K Imagenet21k-ft1k Imagenet
EffV2B0 7.1M 78.7 224 v2b0-21k.h5 v2b0-21k-ft1k.h5 v2b0-imagenet.h5
EffV2B1 8.1M 79.8 240 v2b1-21k.h5 v2b1-21k-ft1k.h5 v2b1-imagenet.h5
EffV2B2 10.1M 80.5 260 v2b2-21k.h5 v2b2-21k-ft1k.h5 v2b2-imagenet.h5
EffV2B3 14.4M 82.1 300 v2b3-21k.h5 v2b3-21k-ft1k.h5 v2b3-imagenet.h5
EffV2T 13.6M 82.5 320 v2t-imagenet.h5
EffV2S 21.5M 84.9 384 v2s-21k.h5 v2s-21k-ft1k.h5 v2s-imagenet.h5
EffV2M 54.1M 86.2 480 v2m-21k.h5 v2m-21k-ft1k.h5 v2m-imagenet.h5
EffV2L 119.5M 86.9 480 v2l-21k.h5 v2l-21k-ft1k.h5 v2l-imagenet.h5
EffV2XL 206.8M 87.2 512 v2xl-21k.h5 v2xl-21k-ft1k.h5
V1 Model Params Top1 Input noisy_student Imagenet
EffV1B0 5.3M 78.8 224 v1-b0-noisy_student.h5 v1-b0-imagenet.h5
EffV1B1 7.8M 81.5 240 v1-b1-noisy_student.h5 v1-b1-imagenet.h5
EffV1B2 9.1M 82.4 260 v1-b2-noisy_student.h5 v1-b2-imagenet.h5
EffV1B3 12.2M 84.1 300 v1-b3-noisy_student.h5 v1-b3-imagenet.h5
EffV1B4 19.3M 85.3 380 v1-b4-noisy_student.h5 v1-b4-imagenet.h5
EffV1B5 30.4M 86.1 456 v1-b5-noisy_student.h5 v1-b5-imagenet.h5
EffV1B6 43.0M 86.4 528 v1-b6-noisy_student.h5 v1-b6-imagenet.h5
EffV1B7 66.3M 86.9 600 v1-b7-noisy_student.h5 v1-b7-imagenet.h5
EffV1L2 480.3M 88.4 800 v1-l2-noisy_student.h5
  • Self tested imagenet accuracy
    • rescale_mode torch means (image - [0.485, 0.456, 0.406]) / [[0.229, 0.224, 0.225]], tf means (image - 0.5) / 0.5
    • All resize_method is bicubic.
    • Some testing detail is not clear, so not exactly matching official reported results.
    • Testing Detail is EfficientNetV2 self tested imagenet accuracy.
model input rescale_mode central_crop top 1 top 5 Reported top1
EffV2B0 224 torch 0.875 0.78748 0.94386 0.787
EffV2B1 240 torch 0.95 0.7987 0.94936 0.798
EffV2B2 260 torch 0.95 0.80642 0.95262 0.805
EffV2B3 300 torch 0.95 0.82098 0.95896 0.821
EffV2T 320 torch 0.99 0.82506 0.96228 0.823 (input 288)
EffV2S 384 tf 0.99 0.8386 0.967 0.839
EffV2M 480 tf 0.99 0.8509 0.973 0.852
EffV2L 480 tf 0.99 0.855 0.97324 0.857
EffV2S ft1k 384 tf 0.99 0.84328 0.97254 0.849
EffV2M ft1k 480 tf 0.99 0.85606 0.9775 0.862
EffV2L ft1k 480 tf 0.99 0.86294 0.9799 0.869
EffV2XL ft1k 512 tf 0.99 0.86532 0.97866 0.872

Usage

  • This repo can be installed as a pip package, or just git clone it.
    pip install -U keras-efficientnet-v2
    # Or
    pip install -U git+https://github.com/leondgarse/keras_efficientnet_v2
  • Define model and load pretrained weights Parameter pretrained is added in value [None, "imagenet", "imagenet21k", "imagenet21k-ft1k"], default is imagenet. Model input value should be in range [-1, 1].
    # Will download and load `imagenet` pretrained weights.
    # Model weight is loaded with `by_name=True, skip_mismatch=True`.
    import keras_efficientnet_v2
    model = keras_efficientnet_v2.EfficientNetV2S(pretrained="imagenet")
    
    # Run prediction
    import tensorflow as tf
    from tensorflow import keras
    from skimage.data import chelsea
    imm = tf.image.resize(chelsea(), model.input_shape[1:3]) # Chelsea the cat
    pred = model(tf.expand_dims(imm / 128. - 1., 0)).numpy()
    print(keras.applications.imagenet_utils.decode_predictions(pred)[0])
    # [('n02124075', 'Egyptian_cat', 0.8642886), ('n02123159', 'tiger_cat', 0.030793495), ...]
    Or download h5 model and load directly
    mm = keras.models.load_model('efficientnetv2-b3-21k-ft1k.h5')
    For "imagenet21k" pre-trained model, actual num_classes is 21843.
  • Exclude model top layers by set num_classes=0.
    import keras_efficientnet_v2
    model = keras_efficientnet_v2.EfficientNetV2B0(dropout=1e-6, num_classes=0, pretrained="imagenet21k")
    print(model.output_shape)
    # (None, 7, 7, 1280)
    
    model.save('efficientnetv2-b0-21k-notop.h5')
  • Use dynamic input resolution by set input_shape=(None, None, 3).
    import keras_efficientnet_v2
    model = keras_efficientnet_v2.EfficientNetV2M(input_shape=(None, None, 3), drop_connect_rate=0.2, num_classes=0, pretrained="imagenet21k-ft1k")
    
    print(model(np.ones([1, 224, 224, 3])).shape)
    # (1, 7, 7, 1280)
    print(model(np.ones([1, 512, 512, 3])).shape)
    # (1, 16, 16, 1280)
  • include_preprocessing set True will add pre-processing Rescale + Normalization after Input. Means using input value in range [0, 255]. Default value False means in range [-1, 1]. Works both for EfficientNetV2 and EfficientNetV1.
    import keras_efficientnet_v2
    model = keras_efficientnet_v2.EfficientNetV1B4(pretrained="noisy_student", include_preprocessing=True)
    
    from skimage.data import chelsea
    imm = tf.image.resize(chelsea(), model.input_shape[1:3]) # Chelsea the cat
    pred = model(tf.expand_dims(imm, 0)).numpy()  # value in range [0, 255]
    print(keras.applications.imagenet_utils.decode_predictions(pred)[0])
    # [('n02124075', 'Egyptian_cat', 0.68414235), ('n02123159', 'tiger_cat', 0.04486668), ...]

Training detail from article

  • Training configures, Eval size is used as the default input_shape for each model type.

    Model Train size Eval size Dropout Randaug Mixup
    EffV2B0 192 224 0.2 0 0
    EffV2B1 192 240 0.2 0 0
    EffV2B2 208 260 0.3 0 0
    EffV2B3 240 300 0.3 0 0
    EffV2S 300 384 0.2 10 0
    EffV2M 384 480 0.3 15 0.2
    EffV2L 384 480 0.4 20 0.5
    EffV2XL 384 512 0.4 20 0.5
  • EfficientNetV2-S architecture

    Stage Operator Stride #Channels #Layers
    0 Conv3x3 2 24 1
    1 Fused-MBConv1, k3x3 1 24 2
    2 Fused-MBConv4, k3x3 2 48 4
    3 Fused-MBConv4, k3x3 2 64 4
    4 MBConv4, k3x3, SE0.25 2 128 6
    5 MBConv6, k3x3, SE0.25 1 160 9
    6 MBConv6, k3x3, SE0.25 2 256 15
    7 Conv1x1 & Pooling & FC - 1280 1
  • Progressive training settings for EfficientNetV2

    S min S max M min M max L min M max
    Image Size 128 300 128 380 128 380
    RandAugment 5 15 5 20 5 25
    Mixup alpha 0 0 0 0.2 0 0.4
    Dropout rate 0.1 0.3 0.1 0.4 0.1 0.5
  • Imagenet training detail

    • RMSProp optimizer with decay 0.9 and momentum 0.9
    • batch norm momentum 0.99; weight decay 1e-5
    • Each model is trained for 350 epochs with total batch size 4096
    • Learning rate is first warmed up from 0 to 0.256, and then decayed by 0.97 every 2.4 epochs
    • We use exponential moving average with 0.9999 decay rate
    • RandAugment (Cubuk et al., 2020)
    • Mixup (Zhang et al., 2018)
    • Dropout (Srivastava et al., 2014)
    • and stochastic depth (Huang et al., 2016) with 0.8 survival probability

Detailed conversion procedure

  • convert_effnetv2_model.py is a modified version of the orignal effnetv2_model.py. Check detail by vimdiff convert_effnetv2_model.py ../automl/efficientnetv2/effnetv2_model.py
    • Delete some names, as they may cause confliction in keras.
    • Use .call directly calling se modules and other blocks, so they will not be blocks in model.summary()
    • Just use Add layer instead of utils.drop_connect, as when is_training=False, utils.drop_connect functions like Add.
    • Add a num_classes parameter outside of mconfig.
    • Add __main__ part, which makes this can be run as a script. Refer to it for converting detail.
  • Depends on official repo
    ../
    ├── automl  # Official repo
    ├── keras_efficientnet_v2  # This one
  • Procedure
    # See help info
    CUDA_VISIBLE_DEVICES='-1' python convert_effnetv2_model.py -h
    
    # Convert by specific model_type and dataset type
    CUDA_VISIBLE_DEVICES='-1' python convert_effnetv2_model.py -m b0 -d imagenet21k
    
    # Convert by specific model_type and all its datasets ['imagenet', 'imagenet21k', 'imagenetft']
    CUDA_VISIBLE_DEVICES='-1' python convert_effnetv2_model.py -m s -d all
    
    # Convert all model_types and and all datasets
    CUDA_VISIBLE_DEVICES='-1' python convert_effnetv2_model.py -m all -d all

Progressive train test on cifar10

import keras_efficientnet_v2
from tensorflow import keras
from keras_efficientnet_v2 import progressive_train_test

model = keras_efficientnet_v2.EfficientNetV2S(input_shape=(None, None, 3), num_classes=10, classifier_activation='softmax', dropout=0.1)
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

hhs = progressive_train_test.progressive_with_dropout_randaug(
    model,
    data_name="cifar10",
    lr_scheduler=None,
    total_epochs=36,
    batch_size=64,
    dropout_layer=-2,
    target_shapes=[128, 160, 192, 224], # [128, 185, 242, 300] for final shape (300, 300)
    dropouts=[0.1, 0.2, 0.3, 0.4],
    magnitudes=[5, 8, 12, 15],
)

with open("history_ev2s_imagenet_progressive_224.json", "w") as ff:
    json.dump(hhs, ff)

Related Projects