forked from mikemccllstr/mikemccllstr-python-minecraft
-
Notifications
You must be signed in to change notification settings - Fork 2
/
danielbates_setblockdemo.py
executable file
·442 lines (365 loc) · 13.2 KB
/
danielbates_setblockdemo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
#!/usr/bin/env python
#
import mcpi.minecraft as mc
import mcpi.block as block
from math import sin, cos, radians
#import danielbates_minecraft_basic as mc
#import pygame.image # comment this out if not using images - it's slow to import. If you uncomment, uncomment the image reference below.
import random
import server
# TODO: use numpy matrices/vectors instead of my own ones.
class coordinate3d:
"""Class used to represent a point in 3D space."""
def __init__(self,x,y,z):
self.x = x
self.y = y
self.z = z
def __add__(self, other):
return coordinate3d(self.x+other.x, self.y+other.y, self.z+other.z)
class transformation:
"""Representation of homogeneous matrices used to apply transformations to
coordinates - using a 4x4 matrix allows shifts as well as scales/rotations.
Transformations can be combined by multiplying them together."""
def __init__(self, matrix):
self.matrix = matrix
def __mul__(self, other):
if isinstance(other, transformation):
return self.compose(other)
elif isinstance(other, coordinate3d):
return self.apply(other)
else:
print "Can't multiply transformation by {0}".format(type(other))
def compose(self, other):
"""Compose this transformation with another, returning a new transformation."""
newmatrix = [[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]
for i in range(4):
for j in range(4):
for k in range(4):
newmatrix[i][k] += self.matrix[i][j]*other.matrix[j][k]
return transformation(newmatrix)
def apply(self, point):
"""Apply this transformation to a coordinate, returning a new coordinate."""
return coordinate3d(
self.matrix[0][0]*point.x + self.matrix[0][1]*point.y + self.matrix[0][2]*point.z + self.matrix[0][3],
self.matrix[1][0]*point.x + self.matrix[1][1]*point.y + self.matrix[1][2]*point.z + self.matrix[1][3],
self.matrix[2][0]*point.x + self.matrix[2][1]*point.y + self.matrix[2][2]*point.z + self.matrix[2][3])
## Shape functions
def cuboid(dx,dy,dz):
for x in range(dx):
for y in range(dy):
for z in range(dz):
yield coordinate3d(x,y,z)
def floor(dx,dz):
return cuboid(dx,1,dz)
def hollowcuboid(dx,dy,dz):
# Iterating through the six faces would be more efficient, but I'm lazy.
for x in range(dx):
for y in range(dy):
for z in range(dz):
if x==0 or x==(dx-1) or y==0 or y==(dy-1) or z==0 or z==(dz-1):
yield coordinate3d(x,y,z)
def sphere(r):
for x in range(-r,r):
for y in range(-r,r):
for z in range(-r,r):
if x**2 + y**2 + z**2 < r**2:
yield coordinate3d(x,y,z)
def pyramid(h):
for level in range(h):
for point in floor(2*(h-level),2*(h-level)):
yield point + coordinate3d(level,level,level)
def cylinder(r,h):
for x in range(-int(r),int(r)):
for z in range(-int(r),int(r)):
if x**2 + z**2 < r**2:
for y in range(h):
yield coordinate3d(x,y,z)
def cone(r,h):
for level in range(h):
for point in cylinder((float(h-level)/h)*r,1):
yield point + coordinate3d(0,level,0)
def line(x0,y0,z0,x1,y1,z1):
"""Draw a line using a 3D adaptation of Bressenham's algorithm.
http://www.cobrabytes.com/index.php?topic=1150.0"""
# Check for steep xy line
swap_xy = abs(y1-y0) > abs(x1-x0)
if swap_xy:
x0,y0 = y0,x0
x1,y1 = y1,x1
# Check for steep xz line
swap_xz = abs(z1-z0) > abs(x1-x0)
if swap_xz:
x0,z0 = z0,x0
x1,z1 = z1,x1
# Lengths in each direction
delta_x = abs(x1-x0)
delta_y = abs(y1-y0)
delta_z = abs(z1-z0)
# Drift tells us when to take a step in a direction
drift_xy = delta_x/2
drift_xz = delta_x/2
# Direction of line
step_x = 1
if x0 > x1: step_x = -1
step_y = 1
if y0 > y1: step_y = -1
step_z = 1
if z0 > z1: step_z = -1
# Starting point
y = y0
z = z0
for x in range(x0,x1,step_x):
cx,cy,cz = x,y,z
# Perform any necessary unswaps
if swap_xz: cx,cz = cz,cx
if swap_xy: cx,cy = cy,cx
# Place a block
yield coordinate3d(cx,cy,cz)
# Update progress
drift_xy -= delta_y
drift_xz -= delta_z
# Step in y direction
if drift_xy < 0:
y += step_y
drift_xy += delta_x
# Step in z direction
if drift_xz < 0:
z += step_z
drift_xz += delta_x
# Final block
yield coordinate3d(x1,y1,z1)
def text(data):
# Not implemented yet - create an image from the text, and search for coloured
# pixels.
pass
def mengersponge(depth):
"""3D cube-based fractal."""
if depth == 0:
yield coordinate3d(0,0,0)
else:
scale = 3**(depth-1) # size of each sub-cube
for x in range(3):
for y in range(3):
for z in range(3):
if not(x==1 and y==1 or x==1 and z==1 or y==1 and z==1):
for block in mengersponge(depth-1):
yield block + coordinate3d(x*scale,y*scale,z*scale)
def building(width, height, depth):
"""All dimensions are specified in the number of windows."""
for point in hollowcuboid(width*5-1, height*5+1, depth*5-1):
# Shift the building down by 1 so the floor is the right height.
yield point + coordinate3d(0,-1,0)
def revolvingdoor():
# A couple of shifts we need to get the doors to cross.
# This does work, but it was a bit too jerky to show off in the video.
xshift = shift(-2,0,0)
zshift = shift(0,0,-2)
for point in cuboid(1,3,5):
yield zshift*point
for point in cuboid(5,3,1):
yield xshift*point
def maze(width, depth):
"""Credit to autophil! http://jsfiddle.net/q7DSY/4/"""
# Ensure width and depth are odd so we get outer walls
if width%2==0: width += 1
if depth%2==0: depth += 1
maze.location = (1,1)
history = []
# Initialise 2d grid: 0 = wall; 1 = passageway.
grid = [depth*[0] for x in range(width)]
grid[maze.location[0]][maze.location[1]] = 1
history.append(maze.location)
def randomiseDirections():
directions = [(0,1),(1,0),(0,-1),(-1,0)]
random.shuffle(directions)
return directions
# Work out where to go next - don't want to leave the maze or go somewhere
# we've already been.
def nextDirection():
for direction in randomiseDirections():
x = maze.location[0] + 2*direction[0]
z = maze.location[1] + 2*direction[1]
if 0<x<width and 0<z<depth and grid[x][z]==0:
return direction
# Dig two squares or backtrack
def dig():
direction = nextDirection()
if direction:
for i in range(2):
maze.location = (maze.location[0] + direction[0], maze.location[1] + direction[1])
grid[maze.location[0]][maze.location[1]] = 1
history.append(maze.location)
return True
elif history:
maze.location = history.pop()
return maze.location
else:
return None
# Keep digging out the maze until we can't dig any more.
while dig():
pass
# Finally, start returning the blocks to draw.
for x in range(width):
for z in range(depth):
if grid[x][z] == 0:
yield coordinate3d(x,0,z)
yield coordinate3d(x,1,z)
yield coordinate3d(x,2,z)
arrow = [coordinate3d(0,0,0), coordinate3d(0,1,0), coordinate3d(0,2,0),
coordinate3d(0,3,0), coordinate3d(0,4,0), coordinate3d(-2,2,0),
coordinate3d(-1,3,0), coordinate3d(1,3,0), coordinate3d(2,2,0)]
## Fill functions
def solid(material):
"""All one material."""
def f(point):
return material
return f
def randomfill(materials):
"""Choose a random material from those listed. A material may be repeated to
increase its chance of being chosen."""
def f(point):
return random.choice(materials)
return f
def chequers(material1, material2):
"""Alternate between materials (in all directions)."""
def f(point):
if (point.x+point.y+point.z) % 2 == 0:
return material1
else:
return material2
return f
def officeblock(wallmaterial):
"""Create a repeating pattern of 2x2 windows."""
def f(point):
goodx = (point.x%5 == 1) or (point.x%5 == 2)
goody = (point.y%5 == 1) or (point.y%5 == 2)
goodz = (point.z%5 == 1) or (point.z%5 == 2)
if (goodx and goody) or (goodz and goody):
return mc.GLASS
else:
return wallmaterial
return f
def image(path, w, h):
"""Scale the image to the given size."""
img = pygame.image.load(path)
width = img.get_width()
height = img.get_height()
scale_x = width/w
scale_y = height/h
def f(point):
x = int(scale_x/2) + scale_x*point.x
y = height - int(scale_y/2) - scale_y*point.y
material = None
# Anti-aliasing means that some pixels are a mix of colours.
# Keep trying until we get one we can deal with.
while material == None:
r,g,b,a = img.get_at((x,y))
material = tomaterial(r,g,b)
x += 1
return material
return f
def tomaterial(r,g,b):
# Just a quick hack for now - could of course add more colours
# and a way of finding the nearest supported colour.
if (r,g,b) == (255,255,255): # white
return mc.AIR
elif (r,g,b) == (0,0,0): # black
return mc.OBSIDIAN
elif (r,g,b) == (188,17,66): # pink
return mc.REDSTONE_ORE
elif (r,g,b) == (117,169,40): # green
return mc.MELON
else:
return None
## Transformation functions
def identity():
return transformation([[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,0,0,1]])
def shift(x,y,z):
"""Move by a given offset."""
return transformation([[1,0,0,x],
[0,1,0,y],
[0,0,1,z],
[0,0,0,1]])
def rotationx(angle):
"""Rotate about the x axis by the given number of degrees."""
angle = radians(angle)
return transformation([[1, 0, 0, 0],
[0, cos(angle), sin(angle), 0],
[0, -sin(angle), cos(angle), 0],
[0, 0, 0, 1]])
def rotationy(angle):
"""Rotate about the y axis by the given number of degrees."""
angle = radians(angle)
return transformation([[ cos(angle), 0, sin(angle), 0],
[ 0, 1, 0, 0],
[-sin(angle), 0, cos(angle), 0],
[ 0, 0, 0, 1]])
def rotationz(angle):
"""Rotate about the z axis by the given number of degrees."""
angle = radians(angle)
return transformation([[ cos(angle), sin(angle), 0, 0],
[-sin(angle), cos(angle), 0, 0],
[ 0, 0, 1, 0],
[ 0, 0, 0, 1]])
## Other functions
def fillshape(shape, transform=identity(), material=None,fillfunc=None):
"""Build a shape in the Minecraft world.
shape must be iterable: it can be a list, tuple, etc., or a generator function.
transform is of type transformation - multiple transformations can be combined
by multiplying them together.
material or fillfunc specify which material(s) to build the shape out of."""
if fillfunc == None:
fillfunc = solid(material)
for point in shape:
point2 = transform * point
mc.setblock(int(point2.x), int(point2.y), int(point2.z), fillfunc(point))
def clear(shape, transform=identity()):
"""Remove any non-air blocks in the given shape."""
fillshape(shape,transform,mc.AIR)
def main():
"""Function used to build my demo world. Extra clearing may be required for
hilly worlds."""
mc.connect(server.address)
# Create a large empty space with a neat, grassy floor. Takes a long time!
clear(cuboid(100,10,120))
fillshape(floor(100,120), shift(0,-1,0), material=mc.GRASS)
# Introduce basic shapes/transformations/fill functions.
fillshape(arrow, material=mc.STONE)
fillshape(arrow, shift(6,0,0), mc.STONE)
fillshape(arrow, shift(12,0,0)*rotationx(90), mc.STONE)
fillshape(arrow, shift(18,0,0)*rotationx(45), mc.STONE)
fillshape(arrow, shift(24,0,0), fillfunc=chequers(mc.WOOD, mc.STONE))
# Introduce generator functions.
fillshape(cuboid(4,4,4), shift(30,0,0), mc.STONE)
fillshape(cuboid(3,8,2), shift(36,0,0), mc.STONE)
# Show other simple shapes.
fillshape(sphere(5), shift(45,5,0), mc.STONE)
fillshape(pyramid(5), shift(50,0,0), mc.STONE)
fillshape(cylinder(5,4), shift(65,0,0), mc.STONE)
fillshape(cone(5,5), shift(75,0,0), mc.STONE)
# Show some fill functions.
fillshape(cuboid(4,4,4), shift(80,0,5), fillfunc=chequers(mc.GOLD, mc.IRON))
fillshape(pyramid(5), shift(80,0,10), fillfunc=randomfill([mc.SAND, mc.SANDSTONE]))
fillshape(hollowcuboid(4,6,4), shift(80,0,22), mc.WOOD_PLANK)
fillshape(building(2,6,2), shift(80,0,30), fillfunc=officeblock(mc.COBBLESTONE))
# Line drawing.
fillshape(line(80,0,40,85,5,45), material=mc.WOOL)
fillshape(line(80,0,40,80,2,50), material=mc.WOOL)
fillshape(line(80,2,50,85,5,45), material=mc.WOOL)
# Fun lava sphere.
fillshape(sphere(10), shift(80,10,60), mc.GLASS)
fillshape(sphere(9), shift(80,10,60), mc.LAVA)
# Fractals - far easier to code than to build by hand.
fillshape(mengersponge(0), shift(70,0,75), mc.IRON)
fillshape(mengersponge(1), shift(66,0,75), mc.IRON)
fillshape(mengersponge(2), shift(56,0,75), mc.IRON)
fillshape(mengersponge(3), shift(28,0,75), mc.IRON)
# Maze.
fillshape(maze(25,25), shift(0,0,75), mc.STONE)
# Picture - can use the same technique to draw text.
# fillshape(cuboid(24,30,1), shift(0,0,30), fillfunc=image("pi.png",24,30))
if __name__ == "__main__":
main()