forked from elizaOS/characterfile
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLlamaService.js
369 lines (328 loc) · 9.56 KB
/
LlamaService.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import fs from "fs";
import https from "https";
import {
getLlama,
LlamaJsonSchemaGrammar
} from "node-llama-cpp";
import path from "path";
import si from "systeminformation";
import { fileURLToPath } from "url";
import os from "os";
const tmpDir = path.join(os.homedir(), 'tmp', '.eliza');
const jsonSchemaGrammar = {
type: "object",
properties: {
user: {
type: "string",
},
content: {
type: "string",
},
},
};
class LlamaService {
static instance = null;
llama;
model;
modelPath;
grammar;
ctx;
sequence;
modelUrl;
messageQueue = [];
isProcessing = false;
modelInitialized = false;
constructor() {
this.llama = undefined;
this.model = undefined;
this.modelUrl =
"https://huggingface.co/NousResearch/Hermes-3-Llama-3.1-8B-GGUF/resolve/main/Hermes-3-Llama-3.1-8B.Q8_0.gguf?download=true";
const modelName = "model.gguf";
console.log("modelName", modelName);
// Store the model in the global .eliza directory
this.modelPath = path.join(tmpDir, modelName);
this.initializeModel();
}
static getInstance() {
if (!LlamaService.instance) {
LlamaService.instance = new LlamaService();
}
return LlamaService.instance;
}
async initializeModel() {
try {
await this.checkModel();
console.log("Loading llama");
const systemInfo = await si.graphics();
const hasCUDA = systemInfo.controllers.some((controller) =>
controller.vendor.toLowerCase().includes("nvidia"),
);
if (hasCUDA) {
console.log("**** CUDA detected");
} else {
console.log("**** No CUDA detected - local response will be slow");
}
this.llama = await getLlama({
gpu: "cuda",
});
console.log("Creating grammar");
const grammar = new LlamaJsonSchemaGrammar(
this.llama,
jsonSchemaGrammar,
);
this.grammar = grammar;
console.log("Loading model");
console.log("this.modelPath", this.modelPath);
this.model = await this.llama.loadModel({ modelPath: this.modelPath });
console.log("Model GPU support", this.llama.getGpuDeviceNames());
console.log("Creating context");
this.ctx = await this.model.createContext({ contextSize: 8192 });
this.sequence = this.ctx.getSequence();
this.modelInitialized = true;
this.processQueue();
} catch (error) {
console.error(
"Model initialization failed. Deleting model and retrying...",
error,
);
await this.deleteModel();
await this.initializeModel();
}
}
async checkModel() {
console.log("Checking model");
// Ensure the global .eliza directory exists
if (!fs.existsSync(tmpDir)) {
fs.mkdirSync(tmpDir, { recursive: true });
}
if (!fs.existsSync(this.modelPath)) {
console.log("this.modelPath", this.modelPath);
console.log("Model not found. Downloading...");
await new Promise((resolve, reject) => {
const file = fs.createWriteStream(this.modelPath);
let downloadedSize = 0;
const downloadModel = (url) => {
https
.get(url, (response) => {
const isRedirect =
response.statusCode >= 300 && response.statusCode < 400;
if (isRedirect) {
const redirectUrl = response.headers.location;
if (redirectUrl) {
console.log("Following redirect to:", redirectUrl);
downloadModel(redirectUrl);
return;
} else {
console.error("Redirect URL not found");
reject(new Error("Redirect URL not found"));
return;
}
}
const totalSize = parseInt(
response.headers["content-length"] ?? "0",
10,
);
response.on("data", (chunk) => {
downloadedSize += chunk.length;
file.write(chunk);
// Log progress
const progress = ((downloadedSize / totalSize) * 100).toFixed(
2,
);
process.stdout.write(`Downloaded ${progress}%\r`);
});
response.on("end", () => {
file.end();
console.log("\nModel downloaded successfully.");
resolve();
});
})
.on("error", (err) => {
fs.unlink(this.modelPath, () => {}); // Delete the file async
console.error("Download failed:", err.message);
reject(err);
});
};
downloadModel(this.modelUrl);
file.on("error", (err) => {
fs.unlink(this.modelPath, () => {}); // Delete the file async
console.error("File write error:", err.message);
reject(err);
});
});
} else {
console.log("Model already exists in the global .eliza directory.");
}
}
async deleteModel() {
if (fs.existsSync(this.modelPath)) {
fs.unlinkSync(this.modelPath);
console.log("Model deleted from the global .eliza directory.");
}
}
async queueMessageCompletion(
context,
temperature,
stop,
frequency_penalty,
presence_penalty,
max_tokens,
) {
console.log("Queueing message completion");
return new Promise((resolve, reject) => {
this.messageQueue.push({
context,
temperature,
stop,
frequency_penalty,
presence_penalty,
max_tokens,
useGrammar: true,
resolve,
reject,
});
this.processQueue();
});
}
async queueTextCompletion(
context,
temperature,
stop,
frequency_penalty,
presence_penalty,
max_tokens,
) {
console.log("Queueing text completion");
return new Promise((resolve, reject) => {
this.messageQueue.push({
context,
temperature,
stop,
frequency_penalty,
presence_penalty,
max_tokens,
useGrammar: false,
resolve,
reject,
});
this.processQueue();
});
}
async processQueue() {
if (
this.isProcessing ||
this.messageQueue.length === 0 ||
!this.modelInitialized
) {
return;
}
this.isProcessing = true;
while (this.messageQueue.length > 0) {
const message = this.messageQueue.shift();
if (message) {
try {
console.log("Processing message");
const response = await this.getCompletionResponse(
message.context,
message.temperature,
message.stop,
message.frequency_penalty,
message.presence_penalty,
message.max_tokens,
message.useGrammar,
);
message.resolve(response);
} catch (error) {
message.reject(error);
}
}
}
this.isProcessing = false;
}
async getCompletionResponse(
context,
temperature,
stop,
frequency_penalty,
presence_penalty,
max_tokens,
useGrammar,
) {
if (!this.sequence) {
throw new Error("Model not initialized.");
}
const tokens = this.model.tokenize(context);
const repeatPenalty = {
penalty: 1.2,
frequencyPenalty: frequency_penalty,
presencePenalty: presence_penalty,
};
const responseTokens = [];
console.log("Evaluating tokens");
for await (const token of this.sequence.evaluate(tokens, {
temperature: Number(temperature),
repeatPenalty: repeatPenalty,
grammarEvaluationState: useGrammar ? this.grammar : undefined,
yieldEogToken: false,
})) {
const current = this.model.detokenize([...responseTokens, token]);
if ([...stop].some((s) => current.includes(s))) {
console.log("Stop sequence found");
break;
}
responseTokens.push(token);
process.stdout.write(this.model.detokenize([token]));
if (useGrammar) {
if (current.replaceAll("\n", "").includes("}```")) {
console.log("JSON block found");
break;
}
}
if (responseTokens.length > max_tokens) {
console.log("Max tokens reached");
break;
}
}
const response = this.model.detokenize(responseTokens);
if (!response) {
throw new Error("Response is undefined");
}
if (useGrammar) {
// extract everything between ```json and ```
let jsonString = response.match(/```json(.*?)```/s)?.[1].trim();
if (!jsonString) {
// try parsing response as JSON
try {
jsonString = JSON.stringify(JSON.parse(response));
console.log("parsedResponse", jsonString);
} catch {
throw new Error("JSON string not found");
}
}
try {
const parsedResponse = JSON.parse(jsonString);
if (!parsedResponse) {
throw new Error("Parsed response is undefined");
}
console.log("AI: " + parsedResponse.content);
await this.sequence.clearHistory();
return parsedResponse;
} catch (error) {
console.error("Error parsing JSON:", error);
}
} else {
console.log("AI: " + response);
await this.sequence.clearHistory();
return response;
}
}
async getEmbeddingResponse(input) {
if (!this.model) {
throw new Error("Model not initialized. Call initialize() first.");
}
const embeddingContext = await this.model.createEmbeddingContext();
const embedding = await embeddingContext.getEmbeddingFor(input);
return embedding?.vector;
}
}
export default LlamaService;