-
Notifications
You must be signed in to change notification settings - Fork 0
/
MNIST_visual_multihead_attention.py
121 lines (97 loc) · 4.42 KB
/
MNIST_visual_multihead_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import tensorflow as tf
from tensorflow.keras.layers import Dense, Dropout, Conv2D, Input, Lambda, Flatten, TimeDistributed
from tensorflow.keras.layers import Add, Reshape, MaxPooling2D, Concatenate, Embedding, RepeatVector, BatchNormalization
from tensorflow.keras.models import Model
from tensorflow.keras import backend as K
import numpy as np
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
#from tensorflow.keras.layers.core import Dense, Dropout, Activation
from keras.utils import np_utils
from keras.engine.topology import Layer
from tensorflow.keras.callbacks import TensorBoard
def MultiHeadsAttModel(l=8*8, d=512, dv=64, dout=512, nv = 8 ):
v1 = Input(shape = (l, d))
q1 = Input(shape = (l, d))
k1 = Input(shape = (l, d))
v2 = Dense(dv*nv, activation = "relu")(v1)
q2 = Dense(dv*nv, activation = "relu")(q1)
k2 = Dense(dv*nv, activation = "relu")(k1)
v = Reshape([l, nv, dv])(v2)
q = Reshape([l, nv, dv])(q2)
k = Reshape([l, nv, dv])(k2)
att = tf.einsum('baik,baij->bakj',q, k)/np.sqrt(dv)
#att = Lambda(lambda x: K.batch_dot(x[0],x[1] ,axes=[-1,-1]) / np.sqrt(dv),output_shape=(l, nv, nv))([q,k])# l, nv, nv
#att = tf.einsum('', q, k)
att = Lambda(lambda x: K.softmax(x) , output_shape=(l, nv, nv))(att)
out = tf.einsum('bajk,baik->baji',att, v)
#out = Lambda(lambda x: K.batch_dot(x[0], x[1],axes=[2,2]), output_shape=(l, nv, dv))([att, v])
out = Reshape([l, d])(out)
out = Add()([out, q1])
out = Dense(dout, activation = "relu")(out)
return Model(inputs=[q1,k1,v1], outputs=out)
class NormL(Layer):
def __init__(self, **kwargs):
super(NormL, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.a = self.add_weight(name='kernel',
shape=(1,input_shape[-1]),
initializer='ones',
trainable=True)
self.b = self.add_weight(name='kernel',
shape=(1,input_shape[-1]),
initializer='zeros',
trainable=True)
super(NormL, self).build(input_shape) # Be sure to call this somewhere!
def call(self, x):
eps = 0.000001
mu = K.mean(x, keepdims=True, axis=-1)
sigma = K.std(x, keepdims=True, axis=-1)
ln_out = (x - mu) / (sigma + eps)
return ln_out*self.a + self.b
def compute_output_shape(self, input_shape):
return input_shape
if __name__ == '__main__':
nb_classes = 10
# the data, shuffled and split between tran and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
print("X_train original shape", X_train.shape)
print("y_train original shape", y_train.shape)
X_train = X_train.reshape(60000, 28,28,1)
X_test = X_test.reshape(10000, 28,28,1)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print("Training matrix shape", X_train.shape)
print("Testing matrix shape", X_test.shape)
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
inp = Input(shape = (28,28,1))
x = Conv2D(32,(2,2),activation='relu', padding='same')(inp)
x = MaxPooling2D(pool_size=(2, 2))(x)
x = Conv2D(64,(2,2),activation='relu')(x)
x = MaxPooling2D(pool_size=(2, 2), padding='same')(x)
x = Conv2D(64*3,(2,2),activation='relu')(x)
if True:
x = Reshape([6*6,64*3])(x)
att = MultiHeadsAttModel(l=6*6, d=64*3 , dv=8*3, dout=32, nv = 8 )
x = att([x,x,x])
x = Reshape([6,6,32])(x)
#x = NormL()(x)
x = BatchNormalization()(x)
x = Flatten()(x)
x = Dense(256, activation='relu')(x)
x = Dense(10, activation='softmax')(x)
model = Model(inputs=inp, outputs=x)
print(model.summary())
model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy'])
tbCallBack = TensorBoard(log_dir='./Graph/mhatt1', histogram_freq=0, write_graph=True, write_images=True)
model.fit(X_train, Y_train,
batch_size=128,
epochs=100,
verbose=1,
validation_data=(X_test, Y_test),
callbacks=[tbCallBack]
)