-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy patheval_surv.py
executable file
·441 lines (390 loc) · 21.5 KB
/
eval_surv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
from __future__ import print_function
import argparse
import pdb
import os
import math
import sys
# internal imports
from utils.file_utils import save_pkl, load_pkl
from utils.utils import *
from utils.core_utils import train, eval_model
from datasets.dataset_generic import Generic_WSI_Classification_Dataset, Generic_MIL_Dataset
from datasets.dataset_survival import Generic_WSI_Survival_Dataset, Generic_MIL_Survival_Dataset
# pytorch imports
import torch
from torch.utils.data import DataLoader, sampler
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
from timeit import default_timer as timer
def main(args):
# create results directory if necessary
if not os.path.isdir(args.results_dir):
os.mkdir(args.results_dir)
if args.k_start == -1:
start = 0
else:
start = args.k_start
if args.k_end == -1:
end = args.k
else:
end = args.k_end
val_cindex = []
folds = np.arange(start, end)
for i in folds:
start = timer()
seed_torch(args.seed)
train_dataset, val_dataset = dataset.return_splits(from_id=False, csv_path='{}/splits_{}.csv'.format(args.split_dir, i))
print('training: {}, validation: {}'.format(len(train_dataset), len(val_dataset)))
datasets = (train_dataset, val_dataset)
if 'omic' in args.mode:
args.omic_input_dim = train_dataset.genomic_features.shape[1]
print("Genomic Dimension", args.omic_input_dim)
val_latest, cindex_latest = eval_model(datasets, i, args)
val_cindex.append(cindex_latest)
#write results to pkl
save_pkl(os.path.join(args.results_dir, 'split_val_{}_results.pkl'.format(i)), val_latest)
end = timer()
print('Fold %d Time: %f seconds' % (i, end - start))
if len(folds) != args.k: save_name = 'summary_partial_{}_{}.csv'.format(start, end)
else: save_name = 'summary.csv'
results_df = pd.DataFrame({'folds': folds, 'val_cindex': val_cindex})
results_df.to_csv(os.path.join(args.results_dir, 'summary.csv'))
# Training settings
parser = argparse.ArgumentParser(description='Configurations for MMF Training')
parser.add_argument('--data_root_dir', type=str, default='/media/ssd1/pan-cancer', help='data directory')
parser.add_argument('--which_splits', type=str, default='5foldcv', help='Path to splits directory.')
parser.add_argument('--split_dir', type=str, help='Set of splits to use for each cancer type.')
parser.add_argument('--mode', type=str, default='omic')
parser.add_argument('--model_type', type=str, default='clam', help='type of model (attention_mil | max_net | mm_attention_mil)')
parser.add_argument('--max_epochs', type=int, default=20, help='maximum number of epochs to train (default: 20)')
parser.add_argument('--lr', type=float, default=2e-4, help='learning rate (default: 0.0001)')
parser.add_argument('--label_frac', type=float, default=1.0, help='fraction of training labels (default: 1.0)')
parser.add_argument('--bag_weight', type=float, default=0.7, help='clam: weight coefficient for bag-level loss (default: 0.7)')
parser.add_argument('--reg', type=float, default=1e-5, help='weight decay (default: 1e-5)')
parser.add_argument('--seed', type=int, default=1, help='random seed for reproducible experiment (default: 1)')
parser.add_argument('--k', type=int, default=5, help='number of folds (default: 10)')
parser.add_argument('--k_start', type=int, default=-1, help='start fold (default: -1, last fold)')
parser.add_argument('--k_end', type=int, default=-1, help='end fold (default: -1, first fold)')
parser.add_argument('--results_dir', default='./results', help='results directory (default: ./results)')
parser.add_argument('--log_data', action='store_true', default=True, help='log data using tensorboard')
parser.add_argument('--testing', action='store_true', default=False, help='debugging tool')
parser.add_argument('--early_stopping', action='store_true', default=False, help='enable early stopping')
parser.add_argument('--opt', type=str, choices = ['adam', 'sgd'], default='adam')
parser.add_argument('--drop_out', action='store_true', default=True, help='enabel dropout (p=0.25)')
parser.add_argument('--inst_loss', type=str, choices=['svm', 'ce', None], default=None, help='instance-level clustering loss function (default: None)')
parser.add_argument('--bag_loss', type=str, choices=['svm', 'ce', 'ce_surv', 'nll_surv', 'cox_surv'], default='nll_surv', help='slide-level classification loss function (default: ce)')
parser.add_argument('--alpha_surv', type=float, default=0.0, help='How much to weigh uncensored patients')
parser.add_argument('--reg_type', type=str, choices=['None', 'omic', 'pathomic'], default='None', help='Reg Type (default: None)')
parser.add_argument('--lambda_reg', type=float, default=1e-4, help='Regularization Strength')
parser.add_argument('--weighted_sample', action='store_true', default=True, help='enable weighted sampling')
parser.add_argument('--model_size_wsi', type=str, default='small', help='Size of AMIL model.')
parser.add_argument('--model_size_omic', type=str, default='small', help='Size of SNN Model.')
parser.add_argument('--gc', type=int, default=1, help='gradient accumulation step')
parser.add_argument('--batch_size', type=int, default=1, help='Batch Size')
parser.add_argument('--gate_path', action='store_true', default=False, help='Enable feature gating in MMF layer.')
parser.add_argument('--gate_omic', action='store_true', default=False, help='Enable feature gating in MMF layer.')
parser.add_argument('--fusion', type=str, default='tensor', help='Which fusion mechanism to use.')
parser.add_argument('--overwrite', action='store_true', default=False, help='Current experiment results already exists. Redo?')
parser.add_argument('--apply_mad', action='store_true', default=True, help='Use genes with median absolute deviation.')
parser.add_argument('--task', type=str, default='survival', help='Which task.')
args = parser.parse_args()
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
### Creates Custom Experiment Code
exp_code = '_'.join(args.split_dir.split('_')[:2])
dataset_path = 'dataset_csv'
param_code = ''
if args.model_type == 'attention_mil':
param_code += 'WSI'
elif args.model_type == 'max_net':
param_code += 'SNN'
elif args.model_type == 'mm_attention_mil' and args.fusion == 'tensor':
param_code += 'MMF'
else:
raise NotImplementedError
if 'small' in args.model_size_omic:
param_code += 'sm'
param_code += '_%s' % args.bag_loss
if 'mm_' in args.model_type:
param_code += '_g'
if args.gate_path:
param_code += '1'
else:
param_code += '0'
if args.gate_omic:
param_code += '1'
else:
param_code += '0'
param_code += '_a%s' % str(args.alpha_surv)
if args.lr != 2e-4:
param_code += '_lr%s' % format(args.lr, '.0e')
if args.reg_type != 'None':
param_code += '_reg%s' % format(args.lambda_reg, '.0e')
param_code += '_%s' % args.which_splits.split("_")[0]
if args.gc != 1:
param_code += '_gc%s' % str(args.gc)
if args.apply_mad:
param_code += '_mad'
#dataset_path += '_mad'
args.exp_code = exp_code + "_" + param_code
### task
if args.task == 'survival':
args.task = '_'.join(args.split_dir.split('_')[:2]) + '_survival'
print("Experiment Name:", exp_code)
def seed_torch(seed=7):
import random
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if device.type == 'cuda':
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
seed_torch(args.seed)
encoding_size = 1024
settings = {'num_splits': args.k,
'k_start': args.k_start,
'k_end': args.k_end,
'task': args.task,
'max_epochs': args.max_epochs,
'results_dir': args.results_dir,
'lr': args.lr,
'experiment': args.exp_code,
'reg': args.reg,
'label_frac': args.label_frac,
'inst_loss': args.inst_loss,
'bag_loss': args.bag_loss,
'bag_weight': args.bag_weight,
'seed': args.seed,
'model_type': args.model_type,
'model_size_wsi': args.model_size_wsi,
'model_size_omic': args.model_size_omic,
"use_drop_out": args.drop_out,
'weighted_sample': args.weighted_sample,
'gc': args.gc,
'opt': args.opt}
print('\nLoad Dataset')
if args.task == 'tcga_blca_survival':
args.n_classes = 4
proj = '_'.join(args.task.split('_')[:2])
dataset = Generic_MIL_Survival_Dataset(csv_path = './%s/%s_all.csv' % (dataset_path, proj),
mode = args.mode,
data_dir= os.path.join(args.data_root_dir, 'tcga_bladder_20x_features'),
shuffle = False,
seed = args.seed,
print_info = True,
patient_strat= False,
n_bins=4,
label_col = 'survival_months',
ignore=[])
elif args.task == 'tcga_brca_survival':
args.n_classes = 4
proj = '_'.join(args.task.split('_')[:2])
dataset = Generic_MIL_Survival_Dataset(csv_path = './%s/%s_all.csv' % (dataset_path, proj),
mode = args.mode,
data_dir= os.path.join(args.data_root_dir, 'tcga_breast_20x_features'),
shuffle = False,
seed = args.seed,
print_info = True,
patient_strat= False,
n_bins=4,
label_col = 'survival_months',
ignore=[])
elif args.task == 'tcga_coadread_survival':
args.n_classes = 4
proj = '_'.join(args.task.split('_')[:2])
dataset = Generic_MIL_Survival_Dataset(csv_path = './%s/%s_all.csv' % (dataset_path, proj),
mode = args.mode,
data_dir= os.path.join(args.data_root_dir, 'tcga_coadread_20x_features'),
shuffle = False,
seed = args.seed,
print_info = True,
patient_strat= False,
n_bins=4,
label_col = 'survival_months',
ignore=[])
elif args.task == 'tcga_gbmlgg_survival':
args.n_classes = 4
dataset = Generic_MIL_Survival_Dataset(csv_path = './%s/tcga_gbmlgg_all.csv' % dataset_path,
mode = args.mode,
data_dir={'ASTR': os.path.join(args.data_root_dir,'tcga_lgg_20x_features'),
'AASTR': os.path.join(args.data_root_dir,'tcga_lgg_20x_features'),
'ODG': os.path.join(args.data_root_dir,'tcga_lgg_20x_features'),
'OAST': os.path.join(args.data_root_dir,'tcga_lgg_20x_features'),
'AOAST': os.path.join(args.data_root_dir,'tcga_lgg_20x_features'),
'GBM': os.path.join(args.data_root_dir,'tcga_gbm_20x_features'),},
shuffle = False,
seed = args.seed,
print_info = True,
patient_strat= False,
n_bins=4,
label_col = 'survival_months',
ignore=[])
elif args.task == 'tcga_hnsc_survival':
args.n_classes = 4
proj = '_'.join(args.task.split('_')[:2])
dataset = Generic_MIL_Survival_Dataset(csv_path = './%s/%s_all.csv' % (dataset_path, proj),
mode = args.mode,
data_dir= os.path.join(args.data_root_dir, 'tcga_hnsc_20x_features'),
shuffle = False,
seed = args.seed,
print_info = True,
patient_strat= False,
n_bins=4,
label_col = 'survival_months',
ignore=[])
elif args.task == 'tcga_kirc_survival':
args.n_classes = 4
proj = '_'.join(args.task.split('_')[:2])
dataset = Generic_MIL_Survival_Dataset(csv_path = './%s/%s_all.csv' % (dataset_path, proj),
mode = args.mode,
data_dir= os.path.join(args.data_root_dir, 'tcga_kidney_20x_features'),
shuffle = False,
seed = args.seed,
print_info = True,
patient_strat= False,
n_bins=4,
label_col = 'survival_months',
ignore=[])
elif args.task == 'tcga_kirp_survival':
args.n_classes = 4
proj = '_'.join(args.task.split('_')[:2])
dataset = Generic_MIL_Survival_Dataset(csv_path = './%s/%s_all.csv' % (dataset_path, proj),
mode = args.mode,
data_dir= os.path.join(args.data_root_dir, 'tcga_kidney_20x_features'),
shuffle = False,
seed = args.seed,
print_info = True,
patient_strat= False,
n_bins=4,
label_col = 'survival_months',
ignore=[])
elif args.task == 'tcga_lihc_survival':
args.n_classes = 4
proj = '_'.join(args.task.split('_')[:2])
dataset = Generic_MIL_Survival_Dataset(csv_path = './%s/%s_all.csv' % (dataset_path, proj),
mode = args.mode,
data_dir= os.path.join(args.data_root_dir, 'tcga_liver_20x_features'),
shuffle = False,
seed = args.seed,
print_info = True,
patient_strat= False,
n_bins=4,
label_col = 'survival_months',
ignore=[])
elif args.task == 'tcga_luad_survival':
args.n_classes = 4
proj = '_'.join(args.task.split('_')[:2])
dataset = Generic_MIL_Survival_Dataset(csv_path = './%s/%s_all.csv' % (dataset_path, proj),
mode = args.mode,
data_dir= os.path.join(args.data_root_dir, 'tcga_lung_20x_features'),
shuffle = False,
seed = args.seed,
print_info = True,
patient_strat= False,
n_bins=4,
label_col = 'survival_months',
ignore=[])
elif args.task == 'tcga_lusc_survival':
args.n_classes = 4
proj = '_'.join(args.task.split('_')[:2])
dataset = Generic_MIL_Survival_Dataset(csv_path = './%s/%s_all.csv' % (dataset_path, proj),
mode = args.mode,
data_dir= os.path.join(args.data_root_dir, 'tcga_lung_20x_features'),
shuffle = False,
seed = args.seed,
print_info = True,
patient_strat= False,
n_bins=4,
label_col = 'survival_months',
ignore=[])
elif args.task == 'tcga_paad_survival':
args.n_classes = 4
proj = '_'.join(args.task.split('_')[:2])
dataset = Generic_MIL_Survival_Dataset(csv_path = './%s/%s_all.csv' % (dataset_path, proj),
mode = args.mode,
data_dir= os.path.join(args.data_root_dir, 'tcga_pancreas_20x_features'),
shuffle = False,
seed = args.seed,
print_info = True,
patient_strat= False,
n_bins=4,
label_col = 'survival_months',
ignore=[])
elif args.task == 'tcga_skcm_survival':
args.n_classes = 4
proj = '_'.join(args.task.split('_')[:2])
dataset = Generic_MIL_Survival_Dataset(csv_path = './%s/%s_all.csv' % (dataset_path, proj),
mode = args.mode,
data_dir= os.path.join(args.data_root_dir, 'tcga_skin_20x_features'),
shuffle = False,
seed = args.seed,
print_info = True,
patient_strat= False,
n_bins=4,
label_col = 'survival_months',
ignore=[])
elif args.task == 'tcga_stad_survival':
args.n_classes = 4
proj = '_'.join(args.task.split('_')[:2])
dataset = Generic_MIL_Survival_Dataset(csv_path = './%s/%s_all.csv' % (dataset_path, proj),
mode = args.mode,
data_dir= os.path.join(args.data_root_dir, 'tcga_stomach_20x_features'),
shuffle = False,
seed = args.seed,
print_info = True,
patient_strat= False,
n_bins=4,
label_col = 'survival_months',
ignore=[])
elif args.task == 'tcga_ucec_survival':
args.n_classes = 4
proj = '_'.join(args.task.split('_')[:2])
dataset = Generic_MIL_Survival_Dataset(csv_path = './%s/%s_all.csv' % (dataset_path, proj),
mode = args.mode,
data_dir= os.path.join(args.data_root_dir, 'tcga_endometrial_20x_features'),
shuffle = False,
seed = args.seed,
print_info = True,
patient_strat= False,
n_bins=4,
label_col = 'survival_months',
ignore=[])
else:
raise NotImplementedError
if isinstance(dataset, Generic_MIL_Survival_Dataset):
args.task_type ='survival'
else:
raise NotImplementedError
if not os.path.isdir(args.results_dir):
os.mkdir(args.results_dir)
### GET RID OF WHICH_SPLITS IF U WANT TO MAKE THE RESULTS FOLDER LESS CLUTTERRED
args.results_dir = os.path.join(args.results_dir, args.which_splits, param_code, str(args.exp_code) + '_s{}'.format(args.seed))
if not os.path.isdir(args.results_dir):
os.makedirs(args.results_dir)
if ('summary.csv' in os.listdir(args.results_dir)) and (not args.overwrite):
print("Exp Code <%s> already exists! Exiting script." % args.exp_code)
sys.exit()
if args.split_dir is None:
args.split_dir = os.path.join('./splits', args.task+'_{}'.format(int(args.label_frac*100)))
else:
args.split_dir = os.path.join('./splits', args.which_splits, args.split_dir)
print("split_dir", args.split_dir)
assert os.path.isdir(args.split_dir)
settings.update({'split_dir': args.split_dir})
with open(args.results_dir + '/experiment_{}.txt'.format(args.exp_code), 'w') as f:
print(settings, file=f)
f.close()
print("################# Settings ###################")
for key, val in settings.items():
print("{}: {}".format(key, val))
if __name__ == "__main__":
start = timer()
results = main(args)
end = timer()
print("finished!")
print("end script")
print('Script Time: %f seconds' % (end - start))