-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
kruskalMST.cpp
139 lines (124 loc) · 3.94 KB
/
kruskalMST.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/**
* Given an undirected weighted connected graph, it is required to find the Really Special SubTree in it.
* The Really Special SubTree is defined as a subgraph consisting of all the nodes in the graph and
* There is only one exclusive path from a node to every other node.
* The subgraph is of minimum overall weight (sum of all edges) among all such subgraphs.
* While creating the Really Special SubTree, start of by picking the edge with smallest weight.
* If there are edges of equal weight available at an instant, then the edge to be chosen first among them is the
* one with minimum value of sum of the following expression :
* u + wt + v , where u and v are the node numbers of the corresponding edge and wt is the weight.
* Even then if there is a collision, choose any one of them.
* While doing the above, ensure that no cycle is formed while picking up edges.
*/
#include <cmath>
#include <cstdio>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
struct Edge {
int x;
int y;
int r;
Edge( int a, int b, int c) : x{ a-1 }, y{ b-1 }, r{ c } { }
};
bool sortComparer( Edge a, Edge b ) {
if ( a.r < b.r ) {
return true;
} else if ( a.r > b.r ) {
return false;
}
return ( a.x + a.y + a.r <= b.x + b.y + b.r);
}
class Graph {
public:
Graph(int N, int M) : V{ N }, E{ M }, edges(E, Edge(0,0,0)) { }
void getEdges();
void sortEdges();
int numberOfVertices() { return V; }
int numberOfEdges() { return E; }
std::vector<Edge> kruskalMST();
private:
int V; //number of vertices
int E; //number of Edges
std::vector<Edge> edges;
};
void Graph::getEdges( ) {
int x, y, r;
for ( int i = 0; i < E; ++i ) {
std::cin >> x >> y >> r;
edges.push_back(Edge(x, y, r));
}
}
void Graph::sortEdges() {
std::sort(edges.begin(), edges.end(), sortComparer);
}
struct subset {
int rank;
int parent;
};
int find( std::vector<subset> & subsets, int i ) {
if ( subsets[i].parent != i ) {
subsets[i].parent = find(subsets, subsets[i].parent);
}
return subsets[i].parent;
}
void union_edges( std::vector<subset> & subsets, int a, int b) {
int aroot = find(subsets, a);
int broot = find(subsets, b);
if ( subsets[aroot].rank < subsets[broot].rank ) {
subsets[aroot].parent = broot;
} else if ( subsets[aroot].rank > subsets[broot].rank ) {
subsets[broot].parent = aroot;
} else {
subsets[broot].parent = aroot;
subsets[broot].rank++;
}
}
std::vector<Edge> Graph::kruskalMST() {
sortEdges();
std::vector<subset> subsets(numberOfEdges());
for ( int i = 0; i < numberOfEdges(); ++i ) {
subsets[i].rank = 0;
subsets[i].parent = i;
}
int e = 0;
int i = 0;
std::vector<Edge> resultMST;
while ( e < numberOfVertices() - 1) {
Edge next_edge = edges[i++];
int a = find( subsets, next_edge.x );
int b = find( subsets, next_edge.y );
if ( a != b ) {
resultMST.push_back(next_edge);
union_edges(subsets, a, b);
++e;
}
}
return resultMST;
}
void printMST(std::vector<Edge> & MST) {
std::cout << std::endl << "Given Graph's MST:\n";
std::cout << "V1\tV2\tWeight\n";
for ( auto e : MST ) {
std::cout << e.x + 1 << "\t" << e.y + 1 << "\t" << e.r << std::endl;
}
std::cout << std::endl;
}
void inputFormat() {
std::cout << "Input Format:\nFirst line has two integers N, denoting the number of nodes in the graph and M,"
"denoting the number of edges in the graph\n"
"The next M lines each consist of three space separated integers x y r,\n"
"where x and y denote the two nodes between which the undirected edge exists,"
"r denotes the weight of edge between the corresponding nodes.\n";
}
int main() {
int N, M;
inputFormat();
std::cin >> N >> M;
Graph G(N, M);
G.getEdges();
std::vector<Edge> MST = G.kruskalMST();
printMST(MST);
return 0;
}