forked from popgenomics/popPhylABC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpriorgen.py
executable file
·265 lines (258 loc) · 14.9 KB
/
priorgen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/python
# -*- coding: utf-8 -*-
help="\n\t\033[32mExternal required library: numpy \033[1;m(sudo apt-get install python-numpy)\n\t\
priorgen.py generates prior distributions for multiple multilocus simulations under 14 different models of speciation. The output can be used from the stdout by ms (Hudson 2002), msnsam (Ross-Ibarra 2008) and msms (Ewing and Hermisson 2010) using the 'tbs' feature.\n\t\
It requires one input file containing six lines: \n\t\t\
L1=description line, non read by priorgen.py\n\t\t\
L2=a vector with the lengths (L) for each of the surveyed locus\n\t\t\
L3=a vector with the number of sampled individuals (nspA) for each locus, for the first population\n\t\t\
L4=a vector with the number of sampled individuals (nspB) for each locus, for the second population\n\t\t\
L5=a vector with the populational mutation rates theta(i)=4.N.µ.L(i) for each locus 'i'\n\t\t\
L6=a vector with the populational recombination rates rho(i)=4.N.r.L(i) for each locus 'i'\n\n\t\
Values print in the stdout are used by ms-like coalescent simulators, values written in a file are the multilocus parameters useful for an ABC analysis\n\n\t\t\
parameters: name of the output file name. Ex \033[1;35mparameters=listOfParameters.txt\033[1;m\n\t\t\
n1: prior for N1 (the effective population size of the first population). Ex \033[1;35mn1=0 n1=10\033[1;m\n\t\t\
n2: prior for N2 (the effective population size of the second population). Ex\033[1;35m n2=0 n2=10\033[1;m\n\t\t\
nA: prior for NA (the effective population size of the ancetral population). Ex\033[1;35m nA=0 nA=10\033[1;m\n\t\t\
tau: prior for Tsplit (the time of speciation). Ex\033[1;35m tau=0 tau=3\033[1;m\n\t\t\
M1 (M2): prior for migration rate 4.N1.m1 (4.N2.m2) into the first (second) population. Ex\033[1;35m M1=0 M1=4 M2=0 M2=4\033[1;m\n\t\t\
shape1: prior for the first shape parameter of the Beta distribution. Ex\033[1;35m shape1=0 shape1=10\033[1;m\n\t\t\
shape2: prior for the second shape parameter of the Beta distribution. Ex\033[1;35m shape2=0 shape2=50\033[1;m\n\t\t\
model: \033[1;35m=SI\033[1;m (Strict Isolation), \033[1;35m=IM\033[1;m (Isolation with Migration), \033[1;35m=AM\033[1;m (Ancient Migration) or \033[1;35m=SC\033[1;m (Secondary Contact)\n\t\t\
Nvariation: \033[1;35m=homo\033[1;m (shared values of Ne throughout genome for N1, N2 and Nanc) or \033[1;35m=hetero\033[1;m (variation of Ne throughout genome for N1, N2 and Nanc)\n\t\t\
Mvariation: \033[1;35m=homo\033[1;m (shared values of M throughout genome) or \033[1;35m=hetero\033[1;m (variation of M throughout genome)\n\t\t\
nreps: number of multilocus simulations. Ex \033[1;35mnreps=1000\033[1;m\n\t\t\
symMig: \033[1;35m=sym\033[1;m (M1=M2) or \033[1;35m=asym\033[1;m (M1 and M2 are independently chosen)\n\n\t\
Ex:\n\t\
\033[1;32m./priorgen.py bpfile=bpfile_test.txt n1=0 n1=1 n2=1 n2=2 nA=2 nA=3 tau=3 tau=4 M1=4 M1=5 M2=5 M2=6 shape1=0 shape1=10 shape2=0 shape2=100 model=IM nreps=2 Nvariation=homo Mvariation=hetero symMig=asym parameters=output.txt\033[1;m\n\n\t\
More details about the models in \033[33mhttp://onlinelibrary.wiley.com/doi/10.1111/jeb.12425/abstract\033[1;m and \033[33mhttp://mbe.oxfordjournals.org/content/30/7/1574\033[1;m\n\n\t\
msnsam tbs 20000 -t tbs -r tbs tbs -I 2 tbs tbs 0 -m 1 2 tbs -m 2 1 tbs -n 1 tbs -n 2 tbs -ej tbs 2 1 -eN tbs tbs\t#for 'SI'\n\t\
msnsam tbs 20000 -t tbs -r tbs tbs -I 2 tbs tbs 0 -m 1 2 tbs -m 2 1 tbs -n 1 tbs -n 2 tbs -ej tbs 2 1 -eN tbs tbs\t#for 'IM'\n\t\
msnsam tbs 20000 -t tbs -r tbs tbs -I 2 tbs tbs 0 -m 1 2 tbs -m 2 1 tbs -n 1 tbs -n 2 tbs -ema tbs 2 0 tbs tbs 0 -ej tbs 2 1 -eN tbs tbs\t#for 'AM'\n\t\
msnsam tbs 20000 -t tbs -r tbs tbs -I 2 tbs tbs 0 -m 1 2 tbs -m 2 1 tbs -n 1 tbs -n 2 tbs -eM tbs 0 -ej tbs 2 1 -eN tbs tbs\t#for 'SC'\n\n\t\
[email protected]\n\t\
10/10/2014\n"
try:
from numpy.random import uniform
from numpy.random import beta
from numpy.random import binomial
from random import shuffle
except ImportError:
print(help)
sys.exit(0)
#
import sys
#
n1, n2, nA, tau, M1, M2, shape1, shape2 = [], [], [], [], [], [], [], []
for i in sys.argv:
if("help" in i):
print(help)
sys.exit(0)
if len(sys.argv)<=1:
print(help)
sys.exit(0)
for i in sys.argv:
if "=" in i:
i=i.split("=")
if(i[0]=="bpfile"):
bpfile=i[1]
if(i[0]=="parameters"):
outputParameters=i[1]
if(i[0]=="n1"):
n1.append(float(i[1]))
if(i[0]=="n2"):
n2.append(float(i[1]))
if(i[0]=="nA"):
nA.append(float(i[1]))
if(i[0]=="tau"):
tau.append(float(i[1]))
if(i[0]=="M1"):
M1.append(float(i[1]))
if(i[0]=="M2"):
M2.append(float(i[1]))
if(i[0]=="shape1"):
shape1.append(float(i[1]))
if(i[0]=="shape2"):
shape2.append(float(i[1]))
if(i[0]=="model"):
model=i[1]
if(i[0]=="nreps"):
nreps=int(i[1])
if(i[0]=="Nvariation"):
Nvariation=i[1]
if(i[0]=="Mvariation"):
Mvariation=i[1]
if(i[0]=="symMig"):
sym=i[1]
def binomBeta(nlocus, shape1, shape2, scalar):
neutre=[0]
hetero=[1]
nNeutre=int(uniform(0, nlocus))
nHetero=nlocus-nNeutre
status=nNeutre*neutre+nHetero*hetero
shuffle(status)
values=[]
for i in status:
if i==0:
values.append(scalar)
if i==1:
values.append(scalar*beta(shape1, shape2))
res={}
res["values"]=values
res["nNeutre"]=nNeutre
return(res)
infile=open(bpfile, "r")
tmp=infile.readline() #skip the header
L=infile.readline().strip().replace(" ", "\t")
L=L.split("\t")
nspA=infile.readline().strip().replace(" ", "\t")
nspA=nspA.split("\t")
nspB=infile.readline().strip().replace(" ", "\t")
nspB=nspB.split("\t")
theta=infile.readline().strip().replace(" ", "\t")
theta=theta.split("\t")
rho=infile.readline().strip().replace(" ", "\t")
rho=rho.split("\t")
nlocus=int(len(L))
if(model=="SI"):
if(Nvariation=="homo"):
res="N1\tN2\tNa\tTsplit\n"
if(Nvariation=="hetero"):
res="N1\tN2\tNa\tTsplit\tshape1Ne\tshape2Ne\tpropNtrlNe1\tpropNtrlNe2\n"
if(model=="IM"):
if(Nvariation=="homo"):
if(Mvariation=="homo"):
res="N1\tN2\tNa\tTsplit\tM1\tM2\n"
if(Mvariation=="hetero"):
res="N1\tN2\tNa\tTsplit\tM1\tM2\tshape1M1\tshape2M1\tshape1M2\tshape2M2\tpropNtrlM1\tpropNtrlM2\n"
if(Nvariation=="hetero"):
if(Mvariation=="homo"):
res="N1\tN2\tNa\tTsplit\tshape1Ne\tshape2Ne\tpropNtrlNe1\tpropNtrlNe2\tM1\tM2\n"
if(Mvariation=="hetero"):
res="N1\tN2\tNa\tTsplit\tshape1Ne\tshape2Ne\tpropNtrlNe1\tpropNtrlNe2\tM1\tM2\tshape1M1\tshape2M1\tshape1M2\tshape2M2\tpropNtrlM1\tpropNtrlM2\n"
if(model=="AM"):
if(Nvariation=="homo"):
if(Mvariation=="homo"):
res="N1\tN2\tNa\tTsplit\tTam\tM1\tM2\n"
if(Mvariation=="hetero"):
res="N1\tN2\tNa\tTsplit\tTam\tM1\tM2\tshape1M1\tshape2M1\tshape1M2\tshape2M2\tpropNtrlM1\tpropNtrlM2\n"
if(Nvariation=="hetero"):
if(Mvariation=="homo"):
res="N1\tN2\tNa\tTsplit\tTam\tshape1Ne\tshape2Ne\tpropNtrlNe1\tpropNtrlNe2\tM1\tM2\n"
if(Mvariation=="hetero"):
res="N1\tN2\tNa\tTsplit\tTam\tshape1Ne\tshape2Ne\tpropNtrlNe1\tpropNtrlNe2\tM1\tM2\tshape1M1\tshape2M1\tshape1M2\tshape2M2\tpropNtrlM1\tpropNtrlM2\n"
if(model=="SC"):
if(Nvariation=="homo"):
if(Mvariation=="homo"):
res="N1\tN2\tNa\tTsplit\tTsc\tM1\tM2\n"
if(Mvariation=="hetero"):
res="N1\tN2\tNa\tTsplit\tTsc\tM1\tM2\tshape1M1\tshape2M1\tshape1M2\tshape2M2\tpropNtrlM1\tpropNtrlM2\n"
if(Nvariation=="hetero"):
if(Mvariation=="homo"):
res="N1\tN2\tNa\tTsplit\tTsc\tshape1Ne\tshape2Ne\tpropNtrlNe1\tpropNtrlNe2\tM1\tM2\n"
if(Mvariation=="hetero"):
res="N1\tN2\tNa\tTsplit\tTsc\tshape1Ne\tshape2Ne\tpropNtrlNe1\tpropNtrlNe2\tM1\tM2\tshape1M1\tshape2M1\tshape1M2\tshape2M2\tpropNtrlM1\tpropNtrlM2\n"
for i in range(nreps):
n1prior=uniform(n1[0], n1[1])
n2prior=uniform(n2[0], n2[1])
nAprior=uniform(nA[0], nA[1])
Tsplit=uniform(tau[0], tau[1])
Tsmall=uniform(min(tau), Tsplit)
M1prior=uniform(M1[0], M1[1])
M2prior=uniform(M2[0], M2[1])
shape1mig1=uniform(shape1[0], shape1[1])
shape2mig1=uniform(shape2[0], shape2[1])
shape1mig2=uniform(shape1[0], shape1[1])
shape2mig2=uniform(shape2[0], shape2[1])
shape1Ne=uniform(shape1[0], shape1[1])
shape2Ne=uniform(shape2[0], shape2[1])
TsplitGenomic=[Tsplit]*nlocus
TsmallGenomic=[Tsmall]*nlocus
if(Nvariation=="hetero"):
n1priorGenomic=binomBeta(nlocus=nlocus, shape1=shape1Ne, shape2=shape2Ne, scalar=n1prior)
n2priorGenomic=binomBeta(nlocus=nlocus, shape1=shape1Ne, shape2=shape2Ne, scalar=n2prior)
nApriorGenomic=binomBeta(nlocus=nlocus, shape1=shape1Ne, shape2=shape2Ne, scalar=nAprior)
if(Nvariation=="homo"):
n1priorGenomic={}
n2priorGenomic={}
nApriorGenomic={}
n1priorGenomic["values"]=[n1prior]*nlocus
n2priorGenomic["values"]=[n2prior]*nlocus
nApriorGenomic["values"]=[nAprior]*nlocus
if(Mvariation=="hetero"):
M1priorGenomic=binomBeta(nlocus=nlocus, shape1=shape1mig1, shape2=shape2mig1, scalar=M1prior)
if(sym=="sym"):
M2priorGenomic={}
# M2priorGenomic=M1priorGenomic["values"]
M2priorGenomic=M1priorGenomic.copy() # Sophie Galina
M2prior=M1prior
if(sym=="asym"):
M2priorGenomic=binomBeta(nlocus=nlocus, shape1=shape1mig2, shape2=shape2mig2, scalar=M2prior)
if(Mvariation=="homo"):
M1priorGenomic={}
M1priorGenomic["values"]=[M1prior]*nlocus
if(sym=="sym"):
M2priorGenomic={}
# M2priorGenomic["values"]=M1priorGenomic["values"]
M2priorGenomic=M1priorGenomic.copy() # Sophie Galina
M2prior=M1prior
if(sym=="asym"):
M2priorGenomic={}
M2priorGenomic["values"]=[M2prior]*nlocus
res+="{0:.5f}\t{1:.5f}\t{2:.5f}\t{3:.5f}".format(n1prior, n2prior, nAprior, Tsplit)
if(model=="SI"):
if(Nvariation=="homo"):
res+=" \n"
if(Nvariation=="hetero"):
res+=" \t{0:.5f}\t{1:.5f}\t{2}\t{3}\n".format(shape1Ne, shape2Ne, n1priorGenomic["nNeutre"], n2priorGenomic["nNeutre"])
if(model=="IM"):
if(Nvariation=="homo"):
if(Mvariation=="homo"):
res+=" \t{0:.5f}\t{1:.5f}\n".format(M1prior, M2prior)
if(Mvariation=="hetero"):
res+=" \t{0:.5f}\t{1:.5f}\t{2:.5f}\t{3:.5f}\t{4:.5f}\t{5:.5f}\t{6}\t{7}\n".format(M1prior, M2prior, shape1mig1, shape2mig1, shape1mig2, shape2mig2, M1priorGenomic["nNeutre"], M2priorGenomic["nNeutre"])
if(Nvariation=="hetero"):
if(Mvariation=="homo"):
res+=" \t{0:.5f}\t{1:.5f}\t{2}\t{3}\t{4:.5f}\t{5:.5f}\n".format(shape1Ne, shape2Ne, n1priorGenomic["nNeutre"], n2priorGenomic["nNeutre"], M1prior, M2prior)
if(Mvariation=="hetero"):
res+=" \t{0:.5f}\t{1:.5f}\t{2}\t{3}\t{4:.5f}\t{5:.5f}\t{6:.5f}\t{7:.5f}\t{8:.5f}\t{9:.5f}\t{10}\t{11}\n".format(shape1Ne, shape2Ne, n1priorGenomic["nNeutre"], n2priorGenomic["nNeutre"], M1prior, M2prior, shape1mig1, shape2mig1, shape1mig2, shape2mig2, M1priorGenomic["nNeutre"], M2priorGenomic["nNeutre"])
if(model=="AM"):
if(Nvariation=="homo"):
if(Mvariation=="homo"):
res+=" \t{2:.5f}\t{0:.5f}\t{1:.5f}\n".format(M1prior, M2prior, Tsmall)
if(Mvariation=="hetero"):
res+=" \t{8:.5f}\t{0:.5f}\t{1:.5f}\t{2:.5f}\t{3:.5f}\t{4:.5f}\t{5:.5f}\t{6}\t{7}\n".format(M1prior, M2prior, shape1mig1, shape2mig1, shape1mig2, shape2mig2, M1priorGenomic["nNeutre"], M2priorGenomic["nNeutre"], Tsmall)
if(Nvariation=="hetero"):
if(Mvariation=="homo"):
res+=" \t{6:.5f}\t{0:.5f}\t{1:.5f}\t{2}\t{3}\t{4:.5f}\t{5:.5f}\n".format(shape1Ne, shape2Ne, n1priorGenomic["nNeutre"], n2priorGenomic["nNeutre"], M1prior, M2prior, Tsmall)
if(Mvariation=="hetero"):
res+=" \t{12:.5f}\t{0:.5f}\t{1:.5f}\t{2}\t{3}\t{4:.5f}\t{5:.5f}\t{6:.5f}\t{7:.5f}\t{8:.5f}\t{9:.5f}\t{10}\t{11}\n".format(shape1Ne, shape2Ne, n1priorGenomic["nNeutre"], n2priorGenomic["nNeutre"], M1prior, M2prior, shape1mig1, shape2mig1, shape1mig2, shape2mig2, M1priorGenomic["nNeutre"], M2priorGenomic["nNeutre"], Tsmall)
if(model=="SC"):
if(Nvariation=="homo"):
if(Mvariation=="homo"):
res+=" \t{2:.5f}\t{0:.5f}\t{1:.5f}\n".format(M1prior, M2prior, Tsmall)
if(Mvariation=="hetero"):
res+=" \t{8:.5f}\t{0:.5f}\t{1:.5f}\t{2:.5f}\t{3:.5f}\t{4:.5f}\t{5:.5f}\t{6}\t{7}\n".format(M1prior, M2prior, shape1mig1, shape2mig1, shape1mig2, shape2mig2, M1priorGenomic["nNeutre"], M2priorGenomic["nNeutre"], Tsmall)
if(Nvariation=="hetero"):
if(Mvariation=="homo"):
res+=" \t{6:.5f}\t{0:.5f}\t{1:.5f}\t{2}\t{3}\t{4:.5f}\t{5:.5f}\n".format(shape1Ne, shape2Ne, n1priorGenomic["nNeutre"], n2priorGenomic["nNeutre"], M1prior, M2prior, Tsmall)
if(Mvariation=="hetero"):
res+=" \t{12:.5f}\t{0:.5f}\t{1:.5f}\t{2}\t{3}\t{4:.5f}\t{5:.5f}\t{6:.5f}\t{7:.5f}\t{8:.5f}\t{9:.5f}\t{10}\t{11}\n".format(shape1Ne, shape2Ne, n1priorGenomic["nNeutre"], n2priorGenomic["nNeutre"], M1prior, M2prior, shape1mig1, shape2mig1, shape1mig2, shape2mig2, M1priorGenomic["nNeutre"], M2priorGenomic["nNeutre"], Tsmall)
for loc in range(nlocus):
cout=""
if(model=="SI"):
#msnsam tbs 200 -t tbs -r tbs tbs -I 2 tbs tbs 0 -m 1 2 tbs -m 2 1 tbs -n 1 tbs -n 2 tbs -ej tbs 2 1 -eN tbs tbs # for 'SI'
cout+="{0} {1:.5f} {2:.5f} {3} {4} {5} {6} {7} {8:.5f} {9:.5f} {10:.5f} {11:.5f} {12:.5f}".format(int(nspA[loc])+int(nspB[loc]), float(theta[loc]), float(rho[loc]), int(L[loc]), int(nspA[loc]), int(nspB[loc]), 0, 0, float(n1priorGenomic["values"][loc]), float(n2priorGenomic["values"][loc]), float(TsplitGenomic[loc]), float(TsplitGenomic[loc]), float(nApriorGenomic["values"][loc]))
if(model=="IM"):
#msnsam tbs 200 -t tbs -r tbs tbs -I 2 tbs tbs 0 -m 1 2 tbs -m 2 1 tbs -n 1 tbs -n 2 tbs -ej tbs 2 1 -eN tbs tbs # for 'IM'
cout+="{0} {1:.5f} {2:.5f} {3} {4} {5} {6:.5f} {7:.5f} {8:.5f} {9:.5f} {10:.5f} {11:.5f} {12:.5f}".format(int(nspA[loc])+int(nspB[loc]), float(theta[loc]), float(rho[loc]), int(L[loc]), int(nspA[loc]), int(nspB[loc]), float(M1priorGenomic["values"][loc]), float(M2priorGenomic["values"][loc]), float(n1priorGenomic["values"][loc]), float(n2priorGenomic["values"][loc]), float(TsplitGenomic[loc]), float(TsplitGenomic[loc]), float(nApriorGenomic["values"][loc]))
if(model=="AM"):
#msnsam tbs 200 -t tbs -r tbs tbs -I 2 tbs tbs 0 -m 1 2 0 -m 2 1 0 -n 1 tbs -n 2 tbs -ema tbs 2 0 tbs tbs 0 -ej tbs 2 1 -eN tbs tbs # for "AM"
cout+="{0} {1:.5f} {2:.5f} {3} {4} {5} {6:.5f} {7:.5f} {8:.5f} {9:.5f} {13:.5f} {14:.5f} {15:.5f} {10:.5f} {11:.5f} {12:.5f}".format(int(nspA[loc])+int(nspB[loc]), float(theta[loc]), float(rho[loc]), int(L[loc]), int(nspA[loc]), int(nspB[loc]), 0, 0, float(n1priorGenomic["values"][loc]), float(n2priorGenomic["values"][loc]), float(TsplitGenomic[loc]), float(TsplitGenomic[loc]), float(nApriorGenomic["values"][loc]), TsmallGenomic[loc], float(M1priorGenomic["values"][loc]), float(M2priorGenomic["values"][loc]))
if(model=="SC"):
#msnsam tbs 200 -t tbs -r tbs tbs -I 2 tbs tbs 0 -m 1 2 tbs -m 2 1 tbs -n 1 tbs -n 2 tbs -eM tbs 0 -ej tbs 2 1 -eN tbs tbs # for 'SC'
cout+="{0} {1:.5f} {2:.5f} {3} {4} {5} {6:.5f} {7:.5f} {8:.5f} {9:.5f} {13:.5f} {10:.5f} {11:.5f} {12:.5f}".format(int(nspA[loc])+int(nspB[loc]), float(theta[loc]), float(rho[loc]), int(L[loc]), int(nspA[loc]), int(nspB[loc]), float(M1priorGenomic["values"][loc]), float(M2priorGenomic["values"][loc]), float(n1priorGenomic["values"][loc]), float(n2priorGenomic["values"][loc]), float(TsplitGenomic[loc]), float(TsplitGenomic[loc]), float(nApriorGenomic["values"][loc]), float(TsmallGenomic[loc]))
print(cout)
outputfile=open(outputParameters, "w")
outputfile.write(res)
outputfile.close()