forked from bertjiazheng/Structured3D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualize_mesh.py
262 lines (197 loc) · 9.26 KB
/
visualize_mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import json
import argparse
import cv2
import open3d
import numpy as np
from panda3d.core import Triangulator
from misc.panorama import xyz_2_coorxy
from visualize_3d import convert_lines_to_vertices
def E2P(image, corner_i, corner_j, wall_height, camera, resolution=512, is_wall=True):
"""convert panorama to persepctive image
"""
corner_i = corner_i - camera
corner_j = corner_j - camera
if is_wall:
xs = np.linspace(corner_i[0], corner_j[0], resolution)[None].repeat(resolution, 0)
ys = np.linspace(corner_i[1], corner_j[1], resolution)[None].repeat(resolution, 0)
zs = np.linspace(-camera[-1], wall_height - camera[-1], resolution)[:, None].repeat(resolution, 1)
else:
xs = np.linspace(corner_i[0], corner_j[0], resolution)[None].repeat(resolution, 0)
ys = np.linspace(corner_i[1], corner_j[1], resolution)[:, None].repeat(resolution, 1)
zs = np.zeros_like(xs) + wall_height - camera[-1]
coorx, coory = xyz_2_coorxy(xs, ys, zs)
persp = cv2.remap(image, coorx.astype(np.float32), coory.astype(np.float32),
cv2.INTER_CUBIC, borderMode=cv2.BORDER_WRAP)
return persp
def create_plane_mesh(vertices, vertices_floor, textures, texture_floor, texture_ceiling,
delta_height, ignore_ceiling=False):
# create mesh for 3D floorplan visualization
triangles = []
triangle_uvs = []
# the number of vertical walls
num_walls = len(vertices)
# 1. vertical wall (always rectangle)
num_vertices = 0
for i in range(len(vertices)):
# hardcode triangles for each vertical wall
triangle = np.array([[0, 2, 1], [2, 0, 3]])
triangles.append(triangle + num_vertices)
num_vertices += 4
triangle_uv = np.array(
[
[i / (num_walls + 2), 0],
[i / (num_walls + 2), 1],
[(i+1) / (num_walls + 2), 1],
[(i+1) / (num_walls + 2), 0]
],
dtype=np.float32
)
triangle_uvs.append(triangle_uv)
# 2. floor and ceiling
# Since the floor and ceiling may not be a rectangle, triangulate the polygon first.
tri = Triangulator()
for i in range(len(vertices_floor)):
tri.add_vertex(vertices_floor[i, 0], vertices_floor[i, 1])
for i in range(len(vertices_floor)):
tri.add_polygon_vertex(i)
tri.triangulate()
# polygon triangulation
triangle = []
for i in range(tri.getNumTriangles()):
triangle.append([tri.get_triangle_v0(i), tri.get_triangle_v1(i), tri.get_triangle_v2(i)])
triangle = np.array(triangle)
# add triangles for floor and ceiling
triangles.append(triangle + num_vertices)
num_vertices += len(np.unique(triangle))
if not ignore_ceiling:
triangles.append(triangle + num_vertices)
# texture for floor and ceiling
vertices_floor_min = np.min(vertices_floor[:, :2], axis=0)
vertices_floor_max = np.max(vertices_floor[:, :2], axis=0)
# normalize to [0, 1]
triangle_uv = (vertices_floor[:, :2] - vertices_floor_min) / (vertices_floor_max - vertices_floor_min)
triangle_uv[:, 0] = (triangle_uv[:, 0] + num_walls) / (num_walls + 2)
triangle_uvs.append(triangle_uv)
# normalize to [0, 1]
triangle_uv = (vertices_floor[:, :2] - vertices_floor_min) / (vertices_floor_max - vertices_floor_min)
triangle_uv[:, 0] = (triangle_uv[:, 0] + num_walls + 1) / (num_walls + 2)
triangle_uvs.append(triangle_uv)
# 3. Merge wall, floor, and ceiling
vertices.append(vertices_floor)
vertices.append(vertices_floor + delta_height)
vertices = np.concatenate(vertices, axis=0)
triangles = np.concatenate(triangles, axis=0)
textures.append(texture_floor)
textures.append(texture_ceiling)
textures = np.concatenate(textures, axis=1)
triangle_uvs = np.concatenate(triangle_uvs, axis=0)
mesh = open3d.geometry.TriangleMesh(
vertices=open3d.utility.Vector3dVector(vertices),
triangles=open3d.utility.Vector3iVector(triangles)
)
mesh.compute_vertex_normals()
mesh.texture = open3d.geometry.Image(textures)
mesh.triangle_uvs = np.array(triangle_uvs[triangles.reshape(-1), :], dtype=np.float64)
return mesh
def verify_normal(corner_i, corner_j, delta_height, plane_normal):
edge_a = corner_j + delta_height - corner_i
edge_b = delta_height
normal = np.cross(edge_a, edge_b)
normal /= np.linalg.norm(normal, ord=2)
inner_product = normal.dot(plane_normal)
if inner_product > 1e-8:
return False
else:
return True
def visualize_mesh(args):
"""visualize as water-tight mesh
"""
image = cv2.imread(os.path.join(args.path, f"scene_{args.scene:05d}", "2D_rendering",
str(args.room), "panorama/full/rgb_rawlight.png"))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# load room annotations
with open(os.path.join(args.path, f"scene_{args.scene:05d}" , "annotation_3d.json")) as f:
annos = json.load(f)
# load camera info
camera_center = np.loadtxt(os.path.join(args.path, f"scene_{args.scene:05d}", "2D_rendering",
str(args.room), "panorama", "camera_xyz.txt"))
# parse corners
junctions = np.array([item['coordinate'] for item in annos['junctions']])
lines_holes = []
for semantic in annos['semantics']:
if semantic['type'] in ['window', 'door']:
for planeID in semantic['planeID']:
lines_holes.extend(np.where(np.array(annos['planeLineMatrix'][planeID]))[0].tolist())
lines_holes = np.unique(lines_holes)
_, vertices_holes = np.where(np.array(annos['lineJunctionMatrix'])[lines_holes])
vertices_holes = np.unique(vertices_holes)
# parse annotations
walls = dict()
walls_normal = dict()
for semantic in annos['semantics']:
if semantic['ID'] != int(args.room):
continue
# find junctions of ceiling and floor
for planeID in semantic['planeID']:
plane_anno = annos['planes'][planeID]
if plane_anno['type'] != 'wall':
lineIDs = np.where(np.array(annos['planeLineMatrix'][planeID]))[0]
lineIDs = np.setdiff1d(lineIDs, lines_holes)
junction_pairs = [np.where(np.array(annos['lineJunctionMatrix'][lineID]))[0].tolist() for lineID in lineIDs]
wall = convert_lines_to_vertices(junction_pairs)
walls[plane_anno['type']] = wall[0]
# save normal of the vertical walls
for planeID in semantic['planeID']:
plane_anno = annos['planes'][planeID]
if plane_anno['type'] == 'wall':
lineIDs = np.where(np.array(annos['planeLineMatrix'][planeID]))[0]
lineIDs = np.setdiff1d(lineIDs, lines_holes)
junction_pairs = [np.where(np.array(annos['lineJunctionMatrix'][lineID]))[0].tolist() for lineID in lineIDs]
wall = convert_lines_to_vertices(junction_pairs)
walls_normal[tuple(np.intersect1d(wall, walls['floor']))] = plane_anno['normal']
# we assume that zs of floor equals 0, then the wall height is from the ceiling
wall_height = np.mean(junctions[walls['ceiling']], axis=0)[-1]
delta_height = np.array([0, 0, wall_height])
# list of corner index
wall_floor = walls['floor']
corners = [] # 3D coordinate for each wall
textures = [] # texture for each wall
# wall
for i, j in zip(wall_floor, np.roll(wall_floor, shift=-1)):
corner_i, corner_j = junctions[i], junctions[j]
flip = verify_normal(corner_i, corner_j, delta_height, walls_normal[tuple(sorted([i, j]))])
if flip:
corner_j, corner_i = corner_i, corner_j
texture = E2P(image, corner_i, corner_j, wall_height, camera_center)
corner = np.array([corner_i, corner_i + delta_height, corner_j + delta_height, corner_j])
corners.append(corner)
textures.append(texture)
# floor and ceiling
# the floor/ceiling texture is cropped by the maximum bounding box
corner_floor = junctions[wall_floor]
corner_min = np.min(corner_floor, axis=0)
corner_max = np.max(corner_floor, axis=0)
texture_floor = E2P(image, corner_min, corner_max, 0, camera_center, is_wall=False)
texture_ceiling = E2P(image, corner_min, corner_max, wall_height, camera_center, is_wall=False)
# create mesh
mesh = create_plane_mesh(corners, corner_floor, textures, texture_floor, texture_ceiling,
delta_height, ignore_ceiling=args.ignore_ceiling)
# visualize mesh
open3d.visualization.draw_geometries([mesh])
def parse_args():
parser = argparse.ArgumentParser(description="Structured3D 2D Layout Visualization")
parser.add_argument("--path", required=True,
help="dataset path", metavar="DIR")
parser.add_argument("--scene", required=True,
help="scene id", type=int)
parser.add_argument("--room", required=True,
help="room id", type=int)
parser.add_argument("--ignore_ceiling", action='store_true',
help="ignore ceiling for better visualization")
return parser.parse_args()
def main():
args = parse_args()
visualize_mesh(args)
if __name__ == "__main__":
main()