forked from developmentseed/lonboard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_traits.py
424 lines (328 loc) · 14.4 KB
/
test_traits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import ipywidgets
import numpy as np
import pandas as pd
import pyarrow as pa
import pytest
import traitlets
from traitlets import TraitError
from lonboard._base import BaseExtension
from lonboard._layer import BaseArrowLayer, BaseLayer
from lonboard.layer_extension import DataFilterExtension
from lonboard.traits import (
ColorAccessor,
FloatAccessor,
NormalAccessor,
PyarrowTableTrait,
)
class ColorAccessorWidget(BaseLayer):
_rows_per_chunk = 2
# Any tests that are intended to pass validation checks must also have 3 rows, since
# there's another length check in the serialization code.
table = pa.table({"data": [1, 2, 3]})
color = ColorAccessor()
def test_color_accessor_validation_list_length():
# tuple or list must have 3 or 4 elements
with pytest.raises(TraitError):
ColorAccessorWidget(color=())
with pytest.raises(
TraitError, match="expected 3 or 4 values if passed a tuple or list"
):
ColorAccessorWidget(color=(1, 2))
with pytest.raises(
TraitError, match="expected 3 or 4 values if passed a tuple or list"
):
ColorAccessorWidget(color=(1, 2, 3, 4, 5))
ColorAccessorWidget(color=(1, 2, 3))
ColorAccessorWidget(color=(1, 2, 3, 255))
def test_color_accessor_validation_list_type():
# tuple or list must have int values
with pytest.raises(TraitError):
ColorAccessorWidget(color=(1.0, 2.0, 4.0))
def test_color_accessor_validation_list_range():
# tuple or list must have values between 0-255
with pytest.raises(TraitError):
ColorAccessorWidget(color=(-1, 2, 4))
with pytest.raises(TraitError):
ColorAccessorWidget(color=(1, 2, 300))
def test_color_accessor_validation_dim_shape_np_arr():
# must be two dimensions
with pytest.raises(TraitError):
ColorAccessorWidget(color=np.array([1, 2, 3], dtype=np.uint8).reshape(-1, 3, 1))
# Second dim must be 3 or 4
with pytest.raises(TraitError):
ColorAccessorWidget(color=np.array([1, 2, 3], dtype=np.uint8).reshape(-1, 1))
with pytest.raises(TraitError):
ColorAccessorWidget(color=np.array([1, 2, 3, 4], dtype=np.uint8).reshape(-1, 2))
with pytest.raises(TraitError):
ColorAccessorWidget(
color=np.array([1, 2, 3, 4, 5], dtype=np.uint8).reshape(-1, 5)
)
ColorAccessorWidget(
color=np.array([1, 2, 3], dtype=np.uint8).reshape(-1, 3).repeat(3, axis=0)
)
ColorAccessorWidget(
color=np.array([1, 2, 3, 255], dtype=np.uint8).reshape(-1, 4).repeat(3, axis=0)
)
def test_color_accessor_validation_np_dtype():
# must be np.uint8
with pytest.raises(TraitError):
ColorAccessorWidget(color=np.array([1, 2, 3]).reshape(-1, 3))
ColorAccessorWidget(
color=np.array([1, 2, 3], dtype=np.uint8).reshape(-1, 3).repeat(3, axis=0)
)
def test_color_accessor_validation_pyarrow_array_type():
# array type must be FixedSizeList
with pytest.raises(TraitError):
ColorAccessorWidget(color=pa.array(np.array([1, 2, 3], dtype=np.float64)))
np_arr = np.array([1, 2, 3], dtype=np.uint8).repeat(3, axis=0)
ColorAccessorWidget(color=pa.FixedSizeListArray.from_arrays(np_arr, 3))
np_arr = np.array([1, 2, 3, 255], dtype=np.uint8).repeat(3, axis=0)
ColorAccessorWidget(color=pa.FixedSizeListArray.from_arrays(np_arr, 4))
# array type must have uint8 child
np_arr = np.array([1, 2, 3, 255], dtype=np.uint64)
with pytest.raises(TraitError):
ColorAccessorWidget(color=pa.FixedSizeListArray.from_arrays(np_arr, 4))
def test_color_accessor_validation_string():
# Shortened RGB
ColorAccessorWidget(color="#fff")
# Shortened RGBA
ColorAccessorWidget(color="#fff0")
# Full RGB
ColorAccessorWidget(color="#ffffff")
c = ColorAccessorWidget(color="#ffffffa0")
assert c.color[3] == 0xA0, "Expected alpha to be parsed correctly"
# HTML Aliases
ColorAccessorWidget(color="red")
ColorAccessorWidget(color="blue")
with pytest.raises(TraitError):
ColorAccessorWidget(color="#ff")
class FloatAccessorWidget(BaseLayer):
_rows_per_chunk = 2
# Any tests that are intended to pass validation checks must also have 3 rows, since
# there's another length check in the serialization code.
table = pa.table({"data": [1, 2, 3]})
value = FloatAccessor()
def test_float_accessor_validation_type():
# must be int or float scalar
with pytest.raises(TraitError):
FloatAccessorWidget(value=())
with pytest.raises(TraitError):
FloatAccessorWidget(value="2")
FloatAccessorWidget(value=2)
FloatAccessorWidget(value=2.0)
FloatAccessorWidget(value=np.array([2, 3, 4]))
FloatAccessorWidget(value=np.array([2, 3, 4], dtype=np.float32))
FloatAccessorWidget(value=np.array([2, 3, 4], dtype=np.float64))
FloatAccessorWidget(value=pd.Series([2, 3, 4]))
FloatAccessorWidget(value=pd.Series([2, 3, 4], dtype=np.float32))
FloatAccessorWidget(value=pd.Series([2, 3, 4], dtype=np.float64))
# Must be floating-point array type
with pytest.raises(TraitError):
FloatAccessorWidget(value=pa.array(np.array([2, 3, 4])))
FloatAccessorWidget(value=pa.array(np.array([2, 3, 4], dtype=np.float32)))
FloatAccessorWidget(value=pa.array(np.array([2, 3, 4], dtype=np.float64)))
class GetFilterValueAccessorWidget(BaseArrowLayer):
# This needs a data filter extension in the extensions array to validate filter_size
extensions = traitlets.List(trait=traitlets.Instance(BaseExtension)).tag(
sync=True, **ipywidgets.widget_serialization
)
table = PyarrowTableTrait()
def __init__(self, *args, **kwargs):
# Any tests that are intended to pass validation checks must also have 3 rows,
# since there's another length check in the serialization code.
table = pa.table({"data": [1, 2, 3]})
super().__init__(*args, table=table, _rows_per_chunk=3, **kwargs)
def test_filter_value_validation_filter_size_1():
extensions = [DataFilterExtension(filter_size=1)]
# Must pass a value
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(extensions=extensions, get_filter_value=())
# Strings not allowed
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(extensions=extensions, get_filter_value="2")
# Lists and tuples must match filter_size
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(extensions=extensions, get_filter_value=[1, 2])
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(extensions=extensions, get_filter_value=(1, 2))
GetFilterValueAccessorWidget(extensions=extensions, get_filter_value=[1])
GetFilterValueAccessorWidget(extensions=extensions, get_filter_value=(1,))
# Allow floats and ints
GetFilterValueAccessorWidget(extensions=extensions, get_filter_value=2)
GetFilterValueAccessorWidget(extensions=extensions, get_filter_value=2.0)
# Numpy arrays
GetFilterValueAccessorWidget(
extensions=extensions, get_filter_value=np.array([2, 3, 4])
)
GetFilterValueAccessorWidget(
extensions=extensions, get_filter_value=np.array([2, 3, 4], dtype=np.float32)
)
GetFilterValueAccessorWidget(
extensions=extensions, get_filter_value=np.array([2, 3, 4], dtype=np.float64)
)
GetFilterValueAccessorWidget(
extensions=extensions, get_filter_value=pd.Series([2, 3, 4])
)
GetFilterValueAccessorWidget(
extensions=extensions, get_filter_value=pd.Series([2, 3, 4], dtype=np.float32)
)
GetFilterValueAccessorWidget(
extensions=extensions, get_filter_value=pd.Series([2, 3, 4], dtype=np.float64)
)
# Raises for non-numeric numpy array
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(
extensions=extensions, get_filter_value=np.array(["2", "3", "4"])
)
# Accept 2D numpy arrays where the second dimension is 1
GetFilterValueAccessorWidget(
extensions=extensions,
get_filter_value=np.array([2, 3, 4], dtype=np.float32).reshape(-1, 1),
)
# Raises for 2D numpy array with second dim >1
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(
extensions=extensions,
get_filter_value=np.array([2, 3, 4, 6, 7, 8], dtype=np.float32).reshape(
-1, 2
),
)
# Must be floating-point pyarrow array type
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(
extensions=extensions,
get_filter_value=pa.array(np.array([2, 3, 4], dtype=np.int64)),
)
# Accept floating point pyarrow arrays
GetFilterValueAccessorWidget(
extensions=extensions,
get_filter_value=pa.array(np.array([2, 3, 4], dtype=np.float32)),
)
GetFilterValueAccessorWidget(
extensions=extensions,
get_filter_value=pa.array(np.array([2, 3, 4], dtype=np.float64)),
)
def test_filter_value_validation_filter_size_3():
extensions = [DataFilterExtension(filter_size=3)]
# Must pass a value
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(extensions=extensions, get_filter_value=())
# Strings not allowed
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(extensions=extensions, get_filter_value="2")
# Lists and tuples must match filter_size
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(extensions=extensions, get_filter_value=[1, 2])
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(extensions=extensions, get_filter_value=(1, 2))
GetFilterValueAccessorWidget(extensions=extensions, get_filter_value=[1, 2, 3])
GetFilterValueAccessorWidget(extensions=extensions, get_filter_value=(1, 2, 3))
# Disallow floats and ints
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(extensions=extensions, get_filter_value=2)
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(extensions=extensions, get_filter_value=2.0)
# Numpy arrays
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(
extensions=extensions, get_filter_value=np.array([2, 3, 4])
)
GetFilterValueAccessorWidget(
extensions=extensions,
get_filter_value=np.array(
[1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.float32
).reshape(-1, 3),
)
GetFilterValueAccessorWidget(
extensions=extensions,
get_filter_value=np.array(
[1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.float64
).reshape(-1, 3),
)
# Disallow pandas series
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(
extensions=extensions, get_filter_value=pd.Series([2, 3, 4])
)
# Raises for non-numeric numpy array
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(
extensions=extensions, get_filter_value=np.array(["2", "3", "4"])
)
# Disallow 2D numpy arrays where the second dimension is 1
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(
extensions=extensions,
get_filter_value=np.array([2, 3, 4], dtype=np.float32).reshape(-1, 1),
)
# Must be floating-point pyarrow array type
with pytest.raises(TraitError):
GetFilterValueAccessorWidget(
extensions=extensions,
get_filter_value=pa.FixedSizeListArray.from_arrays(
np.array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.int64), 3
),
)
# Accept floating point pyarrow arrays
GetFilterValueAccessorWidget(
extensions=extensions,
get_filter_value=pa.FixedSizeListArray.from_arrays(
np.array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.float32), 3
),
)
GetFilterValueAccessorWidget(
extensions=extensions,
get_filter_value=pa.FixedSizeListArray.from_arrays(
np.array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.float64), 3
),
)
class NormalAccessorWidget(BaseLayer):
_rows_per_chunk = 2
table = pa.table({"data": [1, 2, 3]})
value = NormalAccessor()
def test_normal_accessor_validation_list_length():
with pytest.raises(TraitError, match="normal scalar to have length 3"):
NormalAccessorWidget(value=(1, 2))
with pytest.raises(TraitError, match="normal scalar to have length 3"):
NormalAccessorWidget(value=(1, 2, 3, 4))
NormalAccessorWidget(value=(1, 2, 3))
def test_normal_accessor_validation_list_type():
# tuple or list must be of scalar type
with pytest.raises(
TraitError, match="all elements of normal scalar to be int or float type"
):
NormalAccessorWidget(value=["1.1", 2.2, 3.3])
def test_normal_accessor_validation_dim_shape_np_arr():
arr_size3 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]).reshape(-1, 3)
arr_size2 = np.array([1, 2, 3, 4, 5, 6]).reshape(-1, 2)
NormalAccessorWidget(value=arr_size3)
with pytest.raises(TraitError, match="normal array to be 2D with shape"):
NormalAccessorWidget(value=arr_size2)
def test_normal_accessor_validation_np_dtype():
arr_size3_int = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]).reshape(-1, 3)
arr_size3_float = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.float64).reshape(
-1, 3
)
NormalAccessorWidget(value=arr_size3_int)
NormalAccessorWidget(value=arr_size3_float)
arr_size3_str = np.array(["1", "2", "3", "4", "5", "6", "7", "8", "9"]).reshape(
-1, 3
)
# acceptable data types within a numpy array are float32
with pytest.raises(TraitError, match="expected normal array to have numeric type"):
NormalAccessorWidget(value=arr_size3_str)
def test_normal_accessor_validation_pyarrow_array_type():
# array type must be FixedSizeList, of length 3, of float32 type
with pytest.raises(
TraitError, match="expected normal pyarrow array to be a FixedSizeList"
):
NormalAccessorWidget(value=pa.array(np.array([1, 2, 3], dtype=np.float64)))
np_arr = np.array([1, 2, 3], dtype=np.float32).repeat(3, axis=0)
NormalAccessorWidget(value=pa.FixedSizeListArray.from_arrays(np_arr, 3))
np_arr = np.array([1, 2, 3], dtype=np.float64).repeat(3, axis=0)
NormalAccessorWidget(value=pa.FixedSizeListArray.from_arrays(np_arr, 3))
np_arr = np.array([1, 2, 3], dtype=np.uint8).repeat(3, axis=0)
with pytest.raises(
TraitError, match="expected pyarrow array to be floating point type"
):
NormalAccessorWidget(value=pa.FixedSizeListArray.from_arrays(np_arr, 3))