Using the codes from this PR k2-fsa#1125.
Number of model parameters: 65549011, i.e., 65.5 M
The WERs are
dev | test | comment | |
---|---|---|---|
greedy search | 6.74 | 6.16 | --epoch 50, --avg 22, --max-duration 500 |
beam search (beam size 4) | 6.56 | 5.95 | --epoch 50, --avg 22, --max-duration 500 |
modified beam search (beam size 4) | 6.54 | 6.00 | --epoch 50, --avg 22, --max-duration 500 |
fast beam search (set as default) | 6.91 | 6.28 | --epoch 50, --avg 22, --max-duration 500 |
The training command for reproducing is given below:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./zipformer/train.py \
--use-fp16 true \
--world-size 4 \
--num-epochs 50 \
--start-epoch 0 \
--exp-dir zipformer/exp \
--max-duration 1000
The tensorboard training log can be found at https://tensorboard.dev/experiment/AKXbJha0S9aXyfmuvG4h5A/#scalars
The decoding command is:
epoch=50
avg=22
## greedy search
./zipformer/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir zipformer/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 500
## beam search
./zipformer/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir zipformer/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 500 \
--decoding-method beam_search \
--beam-size 4
## modified beam search
./zipformer/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir zipformer/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 500 \
--decoding-method modified_beam_search \
--beam-size 4
## fast beam search
./zipformer/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./zipformer/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 1500 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
A pre-trained model and decoding logs can be found at https://huggingface.co/desh2608/icefall-asr-tedlium3-zipformer
./zipformer/train.py \
--use-fp16 true \
--world-size 4 \
--num-epochs 50 \
--start-epoch 0 \
--exp-dir zipformer/exp \
--max-duration 1000 \
--rnnt-type modified
The tensorboard training log can be found at https://tensorboard.dev/experiment/3d4bYmbJTGiWQQaW88CVEQ/#scalars
dev | test | comment | |
---|---|---|---|
greedy search | 6.32 | 5.83 | --epoch 50, --avg 22, --max-duration 500 |
modified beam search (beam size 4) | 6.16 | 5.79 | --epoch 50, --avg 22, --max-duration 500 |
fast beam search (set as default) | 6.30 | 5.89 | --epoch 50, --avg 22, --max-duration 500 |
A pre-trained model and decoding logs can be found at https://huggingface.co/desh2608/icefall-asr-tedlium3-zipformer.
See k2-fsa#696 for more details.
The tensorboard log can be found at https://tensorboard.dev/experiment/5NQQiqOqSqazfn4w2yeWEQ/
You can find a pretrained model and decoding results at: https://huggingface.co/videodanchik/icefall-asr-tedlium3-conformer-ctc2
Number of model parameters: 101141699, i.e., 101.14 M
The WERs are
dev | test | comment | |
---|---|---|---|
ctc decoding | 6.45 | 5.96 | --epoch 38 --avg 26 |
1best | 5.92 | 5.51 | --epoch 38 --avg 26 |
whole lattice rescoring | 5.96 | 5.47 | --epoch 38 --avg 26 |
attention decoder | 5.60 | 5.33 | --epoch 38 --avg 26 |
The training command for reproducing is given below:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./conformer_ctc2/train.py \
--world-size 4 \
--num-epochs 40 \
--exp-dir conformer_ctc2/exp \
--max-duration 350 \
--use-fp16 true
The decoding command is:
epoch=38
avg=26
## ctc decoding
./conformer_ctc2/decode.py \
--method ctc-decoding \
--exp-dir conformer_ctc2/exp \
--lang-dir data/lang_bpe_500 \
--result-dir conformer_ctc2/exp \
--max-duration 500 \
--epoch $epoch \
--avg $avg
## 1best
./conformer_ctc2/decode.py \
--method 1best \
--exp-dir conformer_ctc2/exp \
--lang-dir data/lang_bpe_500 \
--result-dir conformer_ctc2/exp \
--max-duration 500 \
--epoch $epoch \
--avg $avg
## whole lattice rescoring
./conformer_ctc2/decode.py \
--method whole-lattice-rescoring \
--exp-dir conformer_ctc2/exp \
--lm-path data/lm/G_4_gram_big.pt \
--lang-dir data/lang_bpe_500 \
--result-dir conformer_ctc2/exp \
--max-duration 500 \
--epoch $epoch \
--avg $avg
## attention decoder
./conformer_ctc2/decode.py \
--method attention-decoder \
--exp-dir conformer_ctc2/exp \
--lang-dir data/lang_bpe_500 \
--result-dir conformer_ctc2/exp \
--max-duration 500 \
--epoch $epoch \
--avg $avg
Using the codes from this PR k2-fsa#261.
The WERs are
dev | test | comment | |
---|---|---|---|
greedy search | 7.27 | 6.69 | --epoch 29, --avg 13, --max-duration 100 |
beam search (beam size 4) | 6.70 | 6.04 | --epoch 29, --avg 13, --max-duration 100 |
modified beam search (beam size 4) | 6.77 | 6.14 | --epoch 29, --avg 13, --max-duration 100 |
fast beam search (set as default) | 7.14 | 6.50 | --epoch 29, --avg 13, --max-duration 1500 |
The training command for reproducing is given below:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./pruned_transducer_stateless/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 0 \
--exp-dir pruned_transducer_stateless/exp \
--max-duration 300
The tensorboard training log can be found at https://tensorboard.dev/experiment/VpA8b7SZQ7CEjZs9WZ5HNA/#scalars
The decoding command is:
epoch=29
avg=13
## greedy search
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir pruned_transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100
## beam search
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir pruned_transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
## modified beam search
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir pruned_transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
## fast beam search
./pruned_transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir ./pruned_transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 1500 \
--decoding-method fast_beam_search \
--beam 4 \
--max-contexts 4 \
--max-states 8
A pre-trained model and decoding logs can be found at https://huggingface.co/luomingshuang/icefall_asr_tedlium3_pruned_transducer_stateless
Using the codes from this PR k2-fsa#233 And the SpecAugment codes from this PR lhotse-speech/lhotse#604
Conformer encoder + non-current decoder. The decoder contains only an embedding layer and a Conv1d (with kernel size 2).
The WERs are
dev | test | comment | |
---|---|---|---|
greedy search | 7.19 | 6.70 | --epoch 29, --avg 11, --max-duration 100 |
beam search (beam size 4) | 7.02 | 6.36 | --epoch 29, --avg 11, --max-duration 100 |
modified beam search (beam size 4) | 6.91 | 6.33 | --epoch 29, --avg 11, --max-duration 100 |
The training command for reproducing is given below:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
./transducer_stateless/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 0 \
--exp-dir transducer_stateless/exp \
--max-duration 300
The tensorboard training log can be found at https://tensorboard.dev/experiment/4ks15jYHR4uMyvpW7Nz76Q/#scalars
The decoding command is:
epoch=29
avg=11
## greedy search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100
## beam search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--decoding-method beam_search \
--beam-size 4
## modified beam search
./transducer_stateless/decode.py \
--epoch $epoch \
--avg $avg \
--exp-dir transducer_stateless/exp \
--bpe-model ./data/lang_bpe_500/bpe.model \
--max-duration 100 \
--decoding-method modified_beam_search \
--beam-size 4
A pre-trained model and decoding logs can be found at https://huggingface.co/luomingshuang/icefall_asr_tedlium3_transducer_stateless