forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepare.sh
executable file
·427 lines (360 loc) · 13.5 KB
/
prepare.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
nj=15
stage=0
stop_stage=100
# Split L subset to this number of pieces
# This is to avoid OOM during feature extraction.
num_splits=1000
# We assume dl_dir (download dir) contains the following
# directories and files. If not, they will be downloaded
# by this script automatically.
#
# - $dl_dir/WenetSpeech
# You can find audio, WenetSpeech.json inside it.
# You can apply for the download credentials by following
# https://github.com/wenet-e2e/WenetSpeech#download
#
# - $dl_dir/musan
# This directory contains the following directories downloaded from
# http://www.openslr.org/17/
#
# - music
# - noise
# - speech
dl_dir=$PWD/download
lang_char_dir=data/lang_char
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
[ ! -e $dl_dir/WenetSpeech ] && mkdir -p $dl_dir/WenetSpeech
# If you have pre-downloaded it to /path/to/WenetSpeech,
# you can create a symlink
#
# ln -sfv /path/to/WenetSpeech $dl_dir/WenetSpeech
#
if [ ! -d $dl_dir/WenetSpeech/wenet_speech ] && [ ! -f $dl_dir/WenetSpeech/metadata/v1.list ]; then
log "Stage 0: You should download WenetSpeech first"
exit 1;
fi
# If you have pre-downloaded it to /path/to/musan,
# you can create a symlink
#
#ln -sfv /path/to/musan $dl_dir/musan
if [ ! -d $dl_dir/musan ]; then
lhotse download musan $dl_dir
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare WenetSpeech manifest"
# We assume that you have downloaded the WenetSpeech corpus
# to $dl_dir/WenetSpeech
mkdir -p data/manifests
lhotse prepare wenet-speech $dl_dir/WenetSpeech data/manifests -j $nj
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Prepare musan manifest"
# We assume that you have downloaded the musan corpus
# to data/musan
mkdir -p data/manifests
lhotse prepare musan $dl_dir/musan data/manifests
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Preprocess WenetSpeech manifest"
if [ ! -f data/fbank/.preprocess_complete ]; then
python3 ./local/preprocess_wenetspeech.py --perturb-speed True
touch data/fbank/.preprocess_complete
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Compute features for DEV and TEST subsets of WenetSpeech (may take 2 minutes)"
python3 ./local/compute_fbank_wenetspeech_dev_test.py
fi
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Split S subset into ${num_splits} pieces"
split_dir=data/fbank/S_split_${num_splits}
if [ ! -f $split_dir/.split_completed ]; then
lhotse split $num_splits ./data/fbank/cuts_S_raw.jsonl.gz $split_dir
touch $split_dir/.split_completed
fi
fi
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
log "Stage 6: Split M subset into ${num_splits} piece"
split_dir=data/fbank/M_split_${num_splits}
if [ ! -f $split_dir/.split_completed ]; then
lhotse split $num_splits ./data/fbank/cuts_M_raw.jsonl.gz $split_dir
touch $split_dir/.split_completed
fi
fi
if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then
log "Stage 7: Split L subset into ${num_splits} pieces"
split_dir=data/fbank/L_split_${num_splits}
if [ ! -f $split_dir/.split_completed ]; then
lhotse split $num_splits ./data/fbank/cuts_L_raw.jsonl.gz $split_dir
touch $split_dir/.split_completed
fi
fi
if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then
log "Stage 8: Compute features for S"
python3 ./local/compute_fbank_wenetspeech_splits.py \
--training-subset S \
--num-workers 20 \
--batch-duration 600 \
--start 0 \
--num-splits $num_splits
fi
if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then
log "Stage 9: Compute features for M"
python3 ./local/compute_fbank_wenetspeech_splits.py \
--training-subset M \
--num-workers 20 \
--batch-duration 600 \
--start 0 \
--num-splits $num_splits
fi
if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then
log "Stage 10: Compute features for L"
python3 ./local/compute_fbank_wenetspeech_splits.py \
--training-subset L \
--num-workers 20 \
--batch-duration 600 \
--start 0 \
--num-splits $num_splits
fi
if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then
log "Stage 11: Combine features for S"
if [ ! -f data/fbank/cuts_S.jsonl.gz ]; then
pieces=$(find data/fbank/S_split_${num_splits} -name "cuts_S.*.jsonl.gz")
lhotse combine $pieces data/fbank/cuts_S.jsonl.gz
fi
fi
if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then
log "Stage 12: Combine features for M"
if [ ! -f data/fbank/cuts_M.jsonl.gz ]; then
pieces=$(find data/fbank/M_split_${num_splits} -name "cuts_M.*.jsonl.gz")
lhotse combine $pieces data/fbank/cuts_M.jsonl.gz
fi
fi
if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then
log "Stage 13: Combine features for L"
if [ ! -f data/fbank/cuts_L.jsonl.gz ]; then
pieces=$(find data/fbank/L_split_${num_splits} -name "cuts_L.*.jsonl.gz")
lhotse combine $pieces data/fbank/cuts_L.jsonl.gz
fi
fi
whisper_mel_bins=80
if [ $stage -le 129 ] && [ $stop_stage -ge 129 ]; then
log "Stage 129: compute whisper fbank for dev and test sets"
python3 ./local/compute_fbank_wenetspeech_dev_test.py --num-mel-bins ${whisper_mel_bins} --whisper-fbank true
fi
if [ $stage -le 130 ] && [ $stop_stage -ge 130 ]; then
log "Stage 130: Comute features for whisper training set"
split_dir=data/fbank/L_split_${num_splits}
if [ ! -f $split_dir/.split_completed ]; then
lhotse split $num_splits ./data/fbank/cuts_L_raw.jsonl.gz $split_dir
touch $split_dir/.split_completed
fi
python3 ./local/compute_fbank_wenetspeech_splits.py \
--training-subset L \
--num-workers 8 \
--batch-duration 1600 \
--start 0 \
--num-mel-bins ${whisper_mel_bins} --whisper-fbank true \
--num-splits $num_splits
if [ ! -f data/fbank/cuts_L.jsonl.gz ]; then
pieces=$(find data/fbank/L_split_${num_splits} -name "cuts_L.*.jsonl.gz")
lhotse combine $pieces data/fbank/cuts_L.jsonl.gz
fi
fi
if [ $stage -le 131 ] && [ $stop_stage -ge 131 ]; then
log "Stage 131: concat feats into train set"
if [ ! -f data/fbank/cuts_L.jsonl.gz ]; then
pieces=$(find data/fbank/L_split_${num_splits} -name "cuts_L.*.jsonl.gz")
lhotse combine $pieces data/fbank/cuts_L.jsonl.gz
fi
fi
if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then
log "Stage 14: Compute fbank for musan"
mkdir -p data/fbank
./local/compute_fbank_musan.py
fi
if [ $stage -le 15 ] && [ $stop_stage -ge 15 ]; then
log "Stage 15: Prepare char based lang"
mkdir -p $lang_char_dir
if ! which jq; then
echo "This script is intended to be used with jq but you have not installed jq
Note: in Linux, you can install jq with the following command:
1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64
2. chmod +x ./jq
3. cp jq /usr/bin" && exit 1
fi
if [ ! -f $lang_char_dir/text ] || [ ! -s $lang_char_dir/text ]; then
log "Prepare text."
gunzip -c data/manifests/wenetspeech_supervisions_L.jsonl.gz \
| jq '.text' | sed 's/"//g' \
| ./local/text2token.py -t "char" > $lang_char_dir/text
fi
# The implementation of chinese word segmentation for text,
# and it will take about 15 minutes.
if [ ! -f $lang_char_dir/text_words_segmentation ]; then
python3 ./local/text2segments.py \
--num-process $nj \
--input-file $lang_char_dir/text \
--output-file $lang_char_dir/text_words_segmentation
fi
cat $lang_char_dir/text_words_segmentation | sed 's/ /\n/g' \
| sort -u | sed '/^$/d' | uniq > $lang_char_dir/words_no_ids.txt
if [ ! -f $lang_char_dir/words.txt ]; then
python3 ./local/prepare_words.py \
--input-file $lang_char_dir/words_no_ids.txt \
--output-file $lang_char_dir/words.txt
fi
fi
if [ $stage -le 16 ] && [ $stop_stage -ge 16 ]; then
log "Stage 16: Prepare char based L_disambig.pt"
if [ ! -f data/lang_char/L_disambig.pt ]; then
python3 ./local/prepare_char.py \
--lang-dir data/lang_char
fi
fi
# If you don't want to use LG for decoding, the following steps are not necessary.
if [ $stage -le 17 ] && [ $stop_stage -ge 17 ]; then
log "Stage 17: Prepare G"
# It will take about 20 minutes.
# We assume you have installed kaldilm, if not, please install
# it using: pip install kaldilm
if [ ! -f $lang_char_dir/3-gram.unpruned.arpa ]; then
python3 ./shared/make_kn_lm.py \
-ngram-order 3 \
-text $lang_char_dir/text_words_segmentation \
-lm $lang_char_dir/3-gram.unpruned.arpa
fi
mkdir -p data/lm
if [ ! -f data/lm/G_3_gram.fst.txt ]; then
# It is used in building LG
python3 -m kaldilm \
--read-symbol-table="$lang_char_dir/words.txt" \
--disambig-symbol='#0' \
--max-order=3 \
$lang_char_dir/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt
fi
fi
if [ $stage -le 18 ] && [ $stop_stage -ge 18 ]; then
log "Stage 18: Compile LG"
python ./local/compile_lg.py --lang-dir $lang_char_dir
fi
# prepare RNNLM data
if [ $stage -le 19 ] && [ $stop_stage -ge 19 ]; then
log "Stage 19: Prepare LM training data"
log "Processing char based data"
text_out_dir=data/lm_char
mkdir -p $text_out_dir
log "Genearating training text data"
if [ ! -f $text_out_dir/lm_data.pt ]; then
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $lang_char_dir/text_words_segmentation \
--lm-archive $text_out_dir/lm_data.pt
fi
log "Generating DEV text data"
# prepare validation text data
if [ ! -f $text_out_dir/valid_text_words_segmentation ]; then
valid_text=${text_out_dir}/
gunzip -c data/manifests/wenetspeech_supervisions_DEV.jsonl.gz \
| jq '.text' | sed 's/"//g' \
| ./local/text2token.py -t "char" > $text_out_dir/valid_text
python3 ./local/text2segments.py \
--num-process $nj \
--input-file $text_out_dir/valid_text \
--output-file $text_out_dir/valid_text_words_segmentation
fi
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $text_out_dir/valid_text_words_segmentation \
--lm-archive $text_out_dir/lm_data_valid.pt
# prepare TEST text data
if [ ! -f $text_out_dir/TEST_text_words_segmentation ]; then
log "Prepare text for test set."
for test_set in TEST_MEETING TEST_NET; do
gunzip -c data/manifests/wenetspeech_supervisions_${test_set}.jsonl.gz \
| jq '.text' | sed 's/"//g' \
| ./local/text2token.py -t "char" > $text_out_dir/${test_set}_text
python3 ./local/text2segments.py \
--num-process $nj \
--input-file $text_out_dir/${test_set}_text \
--output-file $text_out_dir/${test_set}_text_words_segmentation
done
cat $text_out_dir/TEST_*_text_words_segmentation > $text_out_dir/test_text_words_segmentation
fi
./local/prepare_char_lm_training_data.py \
--lang-char data/lang_char \
--lm-data $text_out_dir/test_text_words_segmentation \
--lm-archive $text_out_dir/lm_data_test.pt
fi
# sort RNNLM data
if [ $stage -le 20 ] && [ $stop_stage -ge 20 ]; then
text_out_dir=data/lm_char
log "Sort lm data"
./local/sort_lm_training_data.py \
--in-lm-data $text_out_dir/lm_data.pt \
--out-lm-data $text_out_dir/sorted_lm_data.pt \
--out-statistics $text_out_dir/statistics.txt
./local/sort_lm_training_data.py \
--in-lm-data $text_out_dir/lm_data_valid.pt \
--out-lm-data $text_out_dir/sorted_lm_data-valid.pt \
--out-statistics $text_out_dir/statistics-valid.txt
./local/sort_lm_training_data.py \
--in-lm-data $text_out_dir/lm_data_test.pt \
--out-lm-data $text_out_dir/sorted_lm_data-test.pt \
--out-statistics $text_out_dir/statistics-test.txt
fi
export CUDA_VISIBLE_DEVICES="0,1"
if [ $stage -le 21 ] && [ $stop_stage -ge 21 ]; then
log "Stage 21: Train RNN LM model"
python ../../../icefall/rnn_lm/train.py \
--start-epoch 0 \
--world-size 2 \
--num-epochs 20 \
--use-fp16 0 \
--embedding-dim 2048 \
--hidden-dim 2048 \
--num-layers 2 \
--batch-size 400 \
--exp-dir rnnlm_char/exp \
--lm-data data/lm_char/sorted_lm_data.pt \
--lm-data-valid data/lm_char/sorted_lm_data-valid.pt \
--vocab-size 5537 \
--master-port 12340
fi
if [ $stage -le 22 ] && [ $stop_stage -ge 22 ]; then
log "Stage 22: Prepare pinyin based lang"
for token in full_with_tone partial_with_tone; do
lang_dir=data/lang_${token}
if [ ! -f $lang_dir/tokens.txt ]; then
cp data/lang_char/words.txt $lang_dir/words.txt
python local/prepare_pinyin.py \
--token-type $token \
--lang-dir $lang_dir
fi
python ./local/compile_lg.py --lang-dir $lang_dir
done
fi
if [ $stage -le 23 ] && [ $stop_stage -ge 23 ]; then
log "Stage 23: Modify transcript according to fixed results"
# See https://github.com/wenet-e2e/WenetSpeech/discussions/54
wget -nc https://huggingface.co/datasets/yuekai/wenetspeech_paraformer_fixed_transcript/resolve/main/text.fix -O data/fbank/text.fix
python local/fix_manifest.py \
--fixed-transcript-path data/fbank/text.fix \
--training-subset L
fi