Skip to content

Commit 6e64136

Browse files
authored
Renamed references to optim/optimization to sparse (neuralmagic#68)
1 parent 5d1b5f8 commit 6e64136

30 files changed

+785
-786
lines changed

README.md

+6-6
Original file line numberDiff line numberDiff line change
@@ -53,9 +53,9 @@ limitations under the License.
5353
## Overview
5454

5555
SparseZoo is a constantly-growing repository of highly sparse and sparse-quantized models with matching sparsification recipes for neural networks.
56-
It simplifies and accelerates your time-to-value in building performant deep learning models with a collection of inference-optimized models and recipes to prototype from.
56+
It simplifies and accelerates your time-to-value in building performant deep learning models with a collection of inference-sparsified models and recipes to prototype from.
5757

58-
Available via API and hosted in the cloud, the SparseZoo contains both baseline and models optimized to different degrees of inference performance vs. baseline loss recovery.
58+
Available via API and hosted in the cloud, the SparseZoo contains both baseline and models sparsified to different degrees of inference performance vs. baseline loss recovery.
5959
Recipe-driven approaches built around sparsification algorithms allow you to take the models as given, transfer-learn from the models onto private datasets, or transfer the recipes to your architectures.
6060

6161
This repository contains the Python API code to handle the connection and authentication to the cloud.
@@ -148,9 +148,9 @@ from sparsezoo import Zoo
148148
from sparsezoo.models.classification import resnet_50
149149

150150
search_model = resnet_50()
151-
optimized_models = Zoo.search_optimized_models(search_model)
151+
sparse_models = Zoo.search_sparse_models(search_model)
152152

153-
print(optimized_models)
153+
print(sparse_models)
154154
```
155155

156156
### Console Scripts
@@ -200,7 +200,7 @@ sparsezoo download -h
200200
sparsezoo download --domain cv --sub-domain classification \
201201
--architecture resnet_v1 --sub-architecture 50 \
202202
--framework pytorch --repo sparseml --dataset imagenet \
203-
--optim-name base --optim-category none
203+
--sparse-name base --sparse-category none
204204
```
205205

206206
<br>Download pruned and quantized ResNet-50 Model
@@ -210,7 +210,7 @@ sparsezoo download --domain cv --sub-domain classification \
210210
--architecture resnet_v1 --sub-architecture 50 \
211211
--framework pytorch --repo sparseml \
212212
--dataset imagenet --training-scheme augmented \
213-
--optim-name pruned_quant --optim-category aggressive
213+
--sparse-name pruned_quant --sparse-category aggressive
214214
```
215215

216216
For a more in-depth read, check out [SparseZoo documentation](https://docs.neuralmagic.com/sparsezoo/).

docs/conf.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -177,7 +177,7 @@
177177
"sparsezoo",
178178
(
179179
"Neural network model repository for highly sparse "
180-
"models and optimization recipes"
180+
"models and recipes"
181181
),
182182
"Miscellaneous",
183183
),

docs/source/quicktour.md

+5-5
Original file line numberDiff line numberDiff line change
@@ -75,16 +75,16 @@ model.download()
7575
print(model.onnx_file.downloaded_path())
7676
```
7777

78-
#### Searching Optimized Versions
78+
#### Searching Sparse Versions
7979

8080
```python
8181
from sparsezoo import Zoo
8282
from sparsezoo.models.classification import resnet_50
8383

8484
search_model = resnet_50()
85-
optimized_models = Zoo.search_optimized_models(search_model)
85+
sparse_models = Zoo.search_sparse_models(search_model)
8686

87-
print(optimized_models)
87+
print(sparse_models)
8888
```
8989

9090
### Console Scripts
@@ -134,7 +134,7 @@ sparsezoo download -h
134134
sparsezoo download --domain cv --sub-domain classification \
135135
--architecture resnet_v1 --sub-architecture 50 \
136136
--framework pytorch --repo sparseml --dataset imagenet \
137-
--optim-name base --optim-category none
137+
--sparse-name base --sparse-category none
138138
```
139139

140140
<br>Download pruned and quantized ResNet-50 Model
@@ -144,5 +144,5 @@ sparsezoo download --domain cv --sub-domain classification \
144144
--architecture resnet_v1 --sub-architecture 50 \
145145
--framework pytorch --repo sparseml \
146146
--dataset imagenet --training-scheme augmented \
147-
--optim-name pruned_quant --optim-category aggressive
147+
--sparse-name pruned_quant --sparse-category aggressive
148148
```

notebooks/model_download.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@
2323
"- 15 minutes\n",
2424
"\n",
2525
"# Background\n",
26-
"Neural networks can take a long time to train. Model optimization techniques such as model pruning may be necessary to achieve both performance and optimization goals. However, these model optimizations can involve many trials and errors due to a large number of hyperparameters. Fortunately, in the computer vision and natural language space, pruned (sparsified) neural networks transfer learn.\n",
26+
"Neural networks can take a long time to train. Model sparsification techniques such as model pruning may be necessary to achieve both performance and sparsification goals. However, the sparsification of models can involve many trials and errors due to a large number of hyperparameters. Fortunately, in the computer vision and natural language space, pruned (sparsified) neural networks transfer learn.\n",
2727
"\n",
2828
"To make it easier to use pruned models, Neural Magic is actively:\n",
2929
"- Creating pruned versions of popular models and datasets\n",

scripts/sparsezoo_script.py

+19-19
Original file line numberDiff line numberDiff line change
@@ -36,9 +36,9 @@
3636
[--framework FRAMEWORK] [--repo REPO]
3737
[--dataset DATASET]
3838
[--training-scheme TRAINING_SCHEME]
39-
[--optim-name OPTIM_NAME]
40-
[--optim-category OPTIM_CATEGORY]
41-
[--optim-target OPTIM_TARGET]
39+
[--sparse-name OPTIM_NAME]
40+
[--sparse-category OPTIM_CATEGORY]
41+
[--sparse-target OPTIM_TARGET]
4242
[--release-version RELEASE_VERSION]
4343
[--page PAGE] [--page-length PAGE_LENGTH]
4444
@@ -67,16 +67,16 @@
6767
--training-scheme TRAINING_SCHEME
6868
The training scheme used on the model the object
6969
belongs to if any; e.g. augmented
70-
--optim-name OPTIM_NAME
71-
The name describing the optimization of the model the
70+
--sparse-name OPTIM_NAME
71+
The name describing the sparsification of the model the
7272
object belongs to, e.g. base, pruned, pruned_quant
73-
--optim-category OPTIM_CATEGORY
74-
The degree of optimization of the model the object
73+
--sparse-category OPTIM_CATEGORY
74+
The degree of sparsification of the model the object
7575
belongs to; e.g. none, conservative (~100 baseline
7676
metric), moderate (>=99 baseline metric), aggressive
7777
(<99 baseline metric)
78-
--optim-target OPTIM_TARGET
79-
The deployment target of optimization of the model the
78+
--sparse-target OPTIM_TARGET
79+
The deployment target of sparsification of the model the
8080
object belongs to; e.g. edge, deepsparse,
8181
deepsparse_throughput, gpu
8282
--release-version RELEASE_VERSION
@@ -93,8 +93,8 @@
9393
[--sub-architecture SUB_ARCHITECTURE]
9494
--framework FRAMEWORK --repo REPO --dataset
9595
DATASET [--training-scheme TRAINING_SCHEME]
96-
--optim-name OPTIM_NAME --optim-category
97-
OPTIM_CATEGORY [--optim-target OPTIM_TARGET]
96+
--sparse-name OPTIM_NAME --sparse-category
97+
OPTIM_CATEGORY [--sparse-target OPTIM_TARGET]
9898
[--release-version RELEASE_VERSION]
9999
[--save-dir SAVE_DIR]
100100
@@ -123,16 +123,16 @@
123123
--training-scheme TRAINING_SCHEME
124124
The training scheme used on the model the object
125125
belongs to if any; e.g. augmented
126-
--optim-name OPTIM_NAME
127-
The name describing the optimization of the model the
126+
--sparse-name OPTIM_NAME
127+
The name describing the sparsification of the model the
128128
object belongs to, e.g. base, pruned, pruned_quant
129-
--optim-category OPTIM_CATEGORY
130-
The degree of optimization of the model the object
129+
--sparse-category OPTIM_CATEGORY
130+
The degree of sparsification of the model the object
131131
belongs to; e.g. none, conservative (~100 baseline
132132
metric), moderate (>=99 baseline metric), aggressive
133133
(<99 baseline metric)
134-
--optim-target OPTIM_TARGET
135-
The deployment target of optimization of the model the
134+
--sparse-target OPTIM_TARGET
135+
The deployment target of sparsification of the model the
136136
object belongs to; e.g. edge, deepsparse,
137137
deepsparse_throughput, gpu
138138
--release-version RELEASE_VERSION
@@ -157,13 +157,13 @@
157157
Example download MobileNetV1:
158158
sparsezoo download --domain cv --sub-domain classification --architecture mobilenet_v1 \
159159
--sub-architecture 1.0 --framework pytorch --repo torchvision --dataset imagenet \
160-
--optim-name base --optim-category none
160+
--sparse-name base --sparse-category none
161161
162162
#########
163163
Example download MobileNetV1 with maximum release version:
164164
sparsezoo download --domain cv --sub-domain classification --architecture mobilenet_v1 \
165165
--sub-architecture 1.0 --framework pytorch --repo torchvision --dataset imagenet \
166-
--optim-name base --optim-category none --release-version 0.1.0
166+
--sparse-name base --sparse-category none --release-version 0.1.0
167167
168168
169169
"""

src/sparsezoo/main.py

+34-34
Original file line numberDiff line numberDiff line change
@@ -36,9 +36,9 @@
3636
[--framework FRAMEWORK] [--repo REPO]
3737
[--dataset DATASET]
3838
[--training-scheme TRAINING_SCHEME]
39-
[--optim-name OPTIM_NAME]
40-
[--optim-category OPTIM_CATEGORY]
41-
[--optim-target OPTIM_TARGET]
39+
[--sparse-name OPTIM_NAME]
40+
[--sparse-category OPTIM_CATEGORY]
41+
[--sparse-target OPTIM_TARGET]
4242
[--release-version RELEASE_VERSION]
4343
[--page PAGE] [--page-length PAGE_LENGTH]
4444
@@ -67,16 +67,16 @@
6767
--training-scheme TRAINING_SCHEME
6868
The training scheme used on the model the object
6969
belongs to if any; e.g. augmented
70-
--optim-name OPTIM_NAME
71-
The name describing the optimization of the model the
70+
--sparse-name OPTIM_NAME
71+
The name describing the sparsification of the model the
7272
object belongs to, e.g. base, pruned, pruned_quant
73-
--optim-category OPTIM_CATEGORY
74-
The degree of optimization of the model the object
73+
--sparse-category OPTIM_CATEGORY
74+
The degree of sparsification of the model the object
7575
belongs to; e.g. none, conservative (~100 baseline
7676
metric), moderate (>=99 baseline metric), aggressive
7777
(<99 baseline metric)
78-
--optim-target OPTIM_TARGET
79-
The deployment target of optimization of the model the
78+
--sparse-target OPTIM_TARGET
79+
The deployment target of sparsification of the model the
8080
object belongs to; e.g. edge, deepsparse,
8181
deepsparse_throughput, gpu
8282
--release-version RELEASE_VERSION
@@ -93,8 +93,8 @@
9393
[--sub-architecture SUB_ARCHITECTURE]
9494
--framework FRAMEWORK --repo REPO --dataset
9595
DATASET [--training-scheme TRAINING_SCHEME]
96-
--optim-name OPTIM_NAME --optim-category
97-
OPTIM_CATEGORY [--optim-target OPTIM_TARGET]
96+
--sparse-name OPTIM_NAME --sparse-category
97+
OPTIM_CATEGORY [--sparse-target OPTIM_TARGET]
9898
[--release-version RELEASE_VERSION]
9999
[--save-dir SAVE_DIR]
100100
@@ -123,16 +123,16 @@
123123
--training-scheme TRAINING_SCHEME
124124
The training scheme used on the model the object
125125
belongs to if any; e.g. augmented
126-
--optim-name OPTIM_NAME
127-
The name describing the optimization of the model the
126+
--sparse-name OPTIM_NAME
127+
The name describing the sparsification of the model the
128128
object belongs to, e.g. base, pruned, pruned_quant
129-
--optim-category OPTIM_CATEGORY
130-
The degree of optimization of the model the object
129+
--sparse-category OPTIM_CATEGORY
130+
The degree of sparsification of the model the object
131131
belongs to; e.g. none, conservative (~100 baseline
132132
metric), moderate (>=99 baseline metric), aggressive
133133
(<99 baseline metric)
134-
--optim-target OPTIM_TARGET
135-
The deployment target of optimization of the model the
134+
--sparse-target OPTIM_TARGET
135+
The deployment target of sparsification of the model the
136136
object belongs to; e.g. edge, deepsparse,
137137
deepsparse_throughput, gpu
138138
--release-version RELEASE_VERSION
@@ -157,13 +157,13 @@
157157
Example download MobileNetV1:
158158
sparsezoo download --domain cv --sub-domain classification --architecture mobilenet_v1 \
159159
--sub-architecture 1.0 --framework pytorch --repo torchvision --dataset imagenet \
160-
--optim-name base --optim-category none
160+
--sparse-name base --sparse-category none
161161
162162
#########
163163
Example download MobileNetV1 with maximum release version:
164164
sparsezoo download --domain cv --sub-domain classification --architecture mobilenet_v1 \
165165
--sub-architecture 1.0 --framework pytorch --repo torchvision --dataset imagenet \
166-
--optim-name base --optim-category none --release-version 0.1.0
166+
--sparse-name base --sparse-category none --release-version 0.1.0
167167
168168
169169
"""
@@ -239,25 +239,25 @@ def add_model_arguments(parser, download_required=False):
239239
"belongs to if any; e.g. augmented",
240240
)
241241
parser.add_argument(
242-
"--optim-name",
242+
"--sparse-name",
243243
type=str,
244244
required=download_required,
245-
help="The name describing the optimization of the model "
245+
help="The name describing the sparsification of the model "
246246
"the object belongs to, e.g. base, pruned, pruned_quant",
247247
)
248248
parser.add_argument(
249-
"--optim-category",
249+
"--sparse-category",
250250
type=str,
251251
required=download_required,
252-
help="The degree of optimization of the model the object "
252+
help="The degree of sparsification of the model the object "
253253
"belongs to; e.g. none, conservative (~100 baseline metric), "
254254
"moderate (>=99 baseline metric), aggressive (<99 baseline metric)",
255255
)
256256
parser.add_argument(
257-
"--optim-target",
257+
"--sparse-target",
258258
type=str,
259259
default=None,
260-
help="The deployment target of optimization of the model "
260+
help="The deployment target of sparsification of the model "
261261
"the object belongs to; e.g. edge, deepsparse, deepsparse_throughput, gpu",
262262
)
263263
parser.add_argument(
@@ -323,9 +323,9 @@ def _get_command_from_model(model: Model):
323323
"repo",
324324
"dataset",
325325
"training_scheme",
326-
"optim_name",
327-
"optim_category",
328-
"optim_target",
326+
"sparse_name",
327+
"sparse_category",
328+
"sparse_target",
329329
]
330330

331331
command_strings = [
@@ -349,9 +349,9 @@ def search(args):
349349
repo=args.repo,
350350
dataset=args.dataset,
351351
training_scheme=args.training_scheme,
352-
optim_name=args.optim_name,
353-
optim_category=args.optim_category,
354-
optim_target=args.optim_target,
352+
sparse_name=args.sparse_name,
353+
sparse_category=args.sparse_category,
354+
sparse_target=args.sparse_target,
355355
release_version=args.release_version,
356356
page=args.page,
357357
page_length=args.page_length,
@@ -398,9 +398,9 @@ def main():
398398
repo=args.repo,
399399
dataset=args.dataset,
400400
training_scheme=args.training_scheme,
401-
optim_name=args.optim_name,
402-
optim_category=args.optim_category,
403-
optim_target=args.optim_target,
401+
sparse_name=args.sparse_name,
402+
sparse_category=args.sparse_category,
403+
sparse_target=args.sparse_target,
404404
release_version=args.release_version,
405405
override_parent_path=args.save_dir,
406406
overwrite=args.overwrite,

0 commit comments

Comments
 (0)