-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathenv.py
executable file
·791 lines (622 loc) · 45.4 KB
/
env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
#######################################################################
# Name: env.py
# Autonomous exploration environment.
#######################################################################
import sys
if sys.modules['TRAINING']:
from parameter import *
else:
from test_parameter import *
import copy
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import os
from time import time
from skimage import io
from skimage.measure import block_reduce
from sensor import *
from graph_generator import *
from node import *
from ss_realistic_model import SS_realistic_model
class Env():
def __init__(self, map_index, n_agent, k_size=20, plot=False, test=False):
self.n_agent = n_agent
self.test = not sys.modules['TRAINING']
if self.test:
self.map_dir = TEST_SET_DIR
else:
self.map_dir = TRAIN_SET_DIR
self.map_list = os.listdir(self.map_dir)
self.map_list.sort(reverse=True)
self.map_index = map_index % np.size(self.map_list)
self.file_path = self.map_list[self.map_index]
self.ground_truth, self.start_position = self.import_ground_truth(
self.map_dir + '/' + self.map_list[self.map_index])
self.ground_truth_size = np.shape(self.ground_truth)
self.resolution = 4
self.sensor_range = SENSOR_RANGE
self.connectivity_rate = 0
self.agents_connected_percentage = 0
self.explored_rate = 0
self.all_explored_rate = [0.0 for _ in range(self.n_agent)]
self.all_rendezvous_utility_inputs = [None for _ in range(self.n_agent)]
# Decentralized Map Merging
self.agents_merged_belief = None
self.downsampled_agents_merged_belief = None
self.agents_merged_belief_frontiers = None
self.all_robot_positions_belief = [[ self.start_position for _ in range(self.n_agent)] for _ in range(self.n_agent)] # (N,N,2)
self.all_robot_positions_step_updated = [[ 0 for _ in range(self.n_agent)] for _ in range(self.n_agent)] # (N,N,1)
self.all_robot_global_graph_belief = [[ [ [],[] ] for _ in range(self.n_agent)] for _ in range(self.n_agent)] # (N,N,(H,O)) --> NxN belief of (Pose Hist, Pose Offshoot)
self.all_robot_global_graph_step_updated = [[ 0 for _ in range(self.n_agent)] for _ in range(self.n_agent)] # (N,N,1)
self.all_robot_old_global_graph_belief_len = [[ [ 0,0 ] for _ in range(self.n_agent)] for _ in range(self.n_agent)] # (N,N,(H,O)) --> NxN belief of (Pose Hist, Pose Offshoot)
self.all_robot_positions_gt = None
self.group_ids_list = None
self.all_robot_map_belief_area_diff = [None for _ in range(self.n_agent)]
self.all_robot_positions_missing_counts = [[ 0 for _ in range(self.n_agent)] for _ in range(self.n_agent)] # (N,N,1)
self.agents_comms_broken = []
self.all_robot_belief, self.all_old_robot_belief, self.all_downsampled_belief = [], [], []
self.all_robot_belief_step_updated = [[ 0 for _ in range(self.n_agent)] for _ in range(self.n_agent)] # (N,N,1)
for _ in range(self.n_agent):
robot_belief = np.ones(self.ground_truth_size) * 127 # unexplored 127
self.all_robot_belief.append( [ robot_belief for _ in range(self.n_agent)] ) # (N,N,belief) - 2D
self.all_old_robot_belief.append(copy.deepcopy(robot_belief)) # (N,belief) - 1D
self.all_downsampled_belief.append(None)
self.all_graph_generator, self.all_node_coords, self.all_graph, self.all_node_utility, self.all_guidepost, self.all_frontiers = [], [], [], [], [], []
for id in range(self.n_agent):
self.all_graph_generator.append(Graph_generator(robot_id=id, map_size=self.ground_truth_size, sensor_range=self.sensor_range, k_size=k_size, file_path=self.file_path, plot=plot))
self.all_graph_generator[id].route_node.append(self.start_position)
self.all_node_coords.append(None)
self.all_graph.append(None)
self.all_node_utility.append(None)
self.all_guidepost.append(None)
self.all_frontiers.append(None)
self.all_curr_vertices = [None for id in range(self.n_agent)]
self.max_flock_size = -1
self.plot = plot
self.all_frame_files = [[] for _ in range(self.n_agent)]
self.merged_frame_files = []
# Signal Strength Comms Model
if USE_SIGNAL_STRENGTH_NOT_PROXIMITY:
self.ss_realistic_model = SS_realistic_model(P_T=SS_P_T, threshold_ss=SS_THRESH, gamma=SS_GAMMA, gamma_obst=SS_GAMMA_OBST, \
dist_o=SS_DIST_O, PL_o=SS_PL_O, X_g_min=SS_XG_MIN, X_g_max=SS_XG_MAX, K_min=SS_K_MIN, K_max=SS_K_MAX)
else:
# Proximity Comms Model
self.max_comms_proximity = np.random.randint(PROXIMITY_COMMS_RANGE_MIN, PROXIMITY_COMMS_RANGE_MAX, 1)[0]
self.begin()
def find_index_from_coords(self, position, agent_id):
index = np.argmin(np.linalg.norm(self.all_node_coords[agent_id] - position, axis=1))
return index
def begin(self):
""" Initialize key variables """
for id in range(self.n_agent):
self.all_robot_belief[id][id] = self.update_robot_belief(self.start_position, self.sensor_range, self.all_robot_belief[id][id], self.ground_truth)
self.all_downsampled_belief[id] = block_reduce(self.all_robot_belief[id][id].copy(), block_size=(self.resolution, self.resolution), func=np.min)
self.all_frontiers[id] = self.find_frontier(self.all_downsampled_belief[id])
self.all_old_robot_belief[id] = copy.deepcopy(self.all_robot_belief[id][id])
self.agents_merged_belief = self.merge_beliefs( [self.agents_merged_belief, self.all_robot_belief[id][id]] )
node_coords, graph, node_utility, guidepost = self.all_graph_generator[id].generate_graph(self.start_position, self.all_robot_belief[id][id], self.all_frontiers[id])
self.all_node_coords[id] = node_coords
self.all_graph[id] = graph
self.all_node_utility[id] = node_utility
self.all_guidepost[id] = guidepost
self.downsampled_agents_merged_belief = block_reduce(self.agents_merged_belief.copy(), block_size=(self.resolution, self.resolution), func=np.min)
self.agents_merged_belief_frontiers = self.find_frontier(self.downsampled_agents_merged_belief)
def single_robot_step(self, robot_id, all_robot_positions_gt, curr_eps, sim_step, dist_travelled):
""" Execute policy in environment """
all_curr_frontiers = [[] for _ in range(self.n_agent)]
all_num_new_frontiers = [[] for _ in range(self.n_agent)]
self.all_robot_positions_gt = all_robot_positions_gt
robot_position = all_robot_positions_gt[robot_id]
self.all_graph_generator[robot_id].route_node.append(robot_position)
self.all_robot_global_graph_step_updated[robot_id][robot_id] = sim_step
self.all_robot_global_graph_belief[robot_id][robot_id][0].append(copy.deepcopy(robot_position)) # MOVED INTO UPDATE_GRAPH
### Update each agent's map belief ###
next_node_index = self.find_index_from_coords(robot_position, agent_id=robot_id)
self.all_graph_generator[robot_id].nodes_list[next_node_index].set_visited()
self.all_robot_belief[robot_id][robot_id] = self.update_robot_belief(robot_position, self.sensor_range, self.all_robot_belief[robot_id][robot_id], self.ground_truth)
self.all_downsampled_belief[robot_id] = block_reduce(self.all_robot_belief[robot_id][robot_id].copy(), block_size=(self.resolution, self.resolution), func=np.min)
### Update global merged belief ###
self.agents_merged_belief = self.merge_beliefs( [self.agents_merged_belief, self.all_robot_belief[robot_id][robot_id]] )
self.downsampled_agents_merged_belief = block_reduce(self.agents_merged_belief.copy(), block_size=(self.resolution, self.resolution), func=np.min)
curr_agents_merged_belief_frontiers = self.find_frontier(self.downsampled_agents_merged_belief)
all_num_new_frontiers[robot_id] = self.calculate_num_observed_frontiers(self.agents_merged_belief_frontiers, curr_agents_merged_belief_frontiers)
self.agents_merged_belief_frontiers = curr_agents_merged_belief_frontiers
### Compute agent's reward ###
all_curr_frontiers[robot_id] = self.find_frontier(self.all_downsampled_belief[robot_id])
new_pose_explore_util = self.all_node_utility[robot_id][next_node_index]
new_pose_rendezvous_util = self.all_rendezvous_utility_inputs[robot_id][next_node_index].item()
new_pose_guidepost_penalty = self.all_guidepost[robot_id][next_node_index].item()
# NOTE: new_pose_rendezvous_util already normalized
individual_reward = (all_num_new_frontiers[robot_id] / 25) + (new_pose_explore_util / 50) + (new_pose_rendezvous_util) - (dist_travelled / 512) #- (new_pose_guidepost_penalty / 10) #
### Update each agent's graphs & utility ###
success = self.update_graph(robot_id, all_curr_frontiers[robot_id], extend_global_graph_towards_fronters=True, eps=curr_eps, step=sim_step)
if not success:
return success, None, None
################################################
# Connectivity Graph
################################################
# Check if all agents are connected
self.graph_dict = {}
self.visited_dict = {}
# Add graph vertices (bidirectional)
closest_agent_proximity_list = [0.0 for _ in range(self.n_agent)]
for i, _ in enumerate(all_robot_positions_gt):
closest_agent_proximity = float('inf')
for j, _ in enumerate(all_robot_positions_gt):
if i != j:
vertex1 = (all_robot_positions_gt[i][0], all_robot_positions_gt[i][1])
vertex2 = (all_robot_positions_gt[j][0], all_robot_positions_gt[j][1])
if vertex1 not in self.graph_dict:
self.graph_dict[vertex1] = []
self.visited_dict[vertex1] = False
if vertex2 not in self.graph_dict:
self.graph_dict[vertex2] = []
self.visited_dict[vertex2] = False
dist = np.linalg.norm(all_robot_positions_gt[i] - all_robot_positions_gt[j])
# Proximity / Signal-Strength Based (NOTE: Assume connected = bidirectional communication)
if (USE_SIGNAL_STRENGTH_NOT_PROXIMITY and self.ss_realistic_model.is_within_signal_strength(self.ground_truth, all_robot_positions_gt[i], all_robot_positions_gt[j])) \
or (not USE_SIGNAL_STRENGTH_NOT_PROXIMITY and dist < self.max_comms_proximity):
self.graph_dict[vertex1].append(vertex2)
self.graph_dict[vertex2].append(vertex1)
if dist < closest_agent_proximity:
closest_agent_proximity = dist
closest_agent_proximity_list[i] = closest_agent_proximity
# Derive sizes of all subconnected graphs
unique_groups_list = self.unique_groups_list_from_connectivity_graph(self.graph_dict)
# # If multiple largest flock - consider all broken (no majority)
# # Else, consider everyone not in largest flock as broken (not majority)
group_size_list = [len(group) for group in unique_groups_list]
cur_max_flock_size = max(group_size_list)
max_counts = group_size_list.count(cur_max_flock_size)
self.agents_comms_broken = []
if max_counts > 1:
self.agents_comms_broken = list(self.graph_dict.keys())
else:
argmax_group_idx = group_size_list.index(cur_max_flock_size)
for idx, group in enumerate(unique_groups_list):
if idx != argmax_group_idx:
self.agents_comms_broken += group # concat
# Redefine unique_groups in terms of robot_ids
self.group_ids_list = []
for unique_group in unique_groups_list:
group_ids = [id for id, pose in enumerate(all_robot_positions_gt) \
if (pose[0], pose[1]) in unique_group ]
self.group_ids_list.append(group_ids)
################################################
# Belief Propogation (hopping through graph)
################################################
### Map & Pose Belief Merger ###
for group_ids in self.group_ids_list:
if robot_id in group_ids:
### [Local Update] Merging map beliefs for agents that are connected ###
merged_belief = self.merge_beliefs( [self.all_robot_belief[id][id] for id in group_ids] )
for own_id in group_ids:
self.all_robot_belief[own_id][own_id] = merged_belief
self.all_robot_belief_step_updated[own_id][own_id] = sim_step
self.all_downsampled_belief[own_id] = block_reduce(self.all_robot_belief[own_id][own_id].copy(), block_size=(self.resolution, self.resolution), func=np.min)
for other_id_in_group in group_ids:
if own_id != other_id_in_group:
self.all_robot_belief[own_id][other_id_in_group] = merged_belief
self.all_robot_belief_step_updated[own_id][other_id_in_group] = sim_step
### [Global Update] Merging map beliefs of other agents' beliefs of other agents ###
for other_id_out_group in range(self.n_agent):
if other_id_out_group not in group_ids:
own_step_updated = self.all_robot_belief_step_updated[own_id][other_id_out_group]
other_step_updated = self.all_robot_belief_step_updated[other_id_in_group][other_id_out_group]
# # Cond 1: Own belief is None, but other's belief is not None
# # Cond 2: Own belief is more outdated and other's belief not None
if own_step_updated < other_step_updated and \
self.all_robot_belief[other_id_in_group][other_id_out_group] is not None:
self.all_robot_belief[own_id][other_id_out_group] = \
self.all_robot_belief[other_id_in_group][other_id_out_group]
self.all_robot_belief_step_updated[own_id][other_id_out_group] = \
self.all_robot_belief_step_updated[other_id_in_group][other_id_out_group]
### Merging position beliefs for agents that are connected, and agents' belief of other agents (if not as outdated) ###
for own_id in group_ids:
for other_id_in_group in group_ids:
# [Local Update] Updating positions belief with agents in direct connectivity
if own_id != other_id_in_group:
self.all_robot_positions_belief[own_id][other_id_in_group] = all_robot_positions_gt[other_id_in_group]
self.all_robot_positions_step_updated[own_id][other_id_in_group] = sim_step
# [Global Update] Merging in belief of other agents' belief of other agents
for other_id_out_group in range(self.n_agent):
if other_id_out_group not in group_ids:
own_step_updated = self.all_robot_positions_step_updated[own_id][other_id_out_group]
other_step_updated = self.all_robot_positions_step_updated[other_id_in_group][other_id_out_group]
# # Cond 1: Own belief is None, but other's belief is not None
# # Cond 2: Own belief is more outdated and other's belief not None
if own_step_updated < other_step_updated and \
self.all_robot_positions_belief[other_id_in_group][other_id_out_group] is not None:
self.all_robot_positions_belief[own_id][other_id_out_group] = \
self.all_robot_positions_belief[other_id_in_group][other_id_out_group]
self.all_robot_positions_step_updated[own_id][other_id_out_group] = \
self.all_robot_positions_step_updated[other_id_in_group][other_id_out_group]
### Merge route history belief of all agents
for own_id in group_ids:
for other_id_in_group in group_ids:
# [Local Update] Updating positions belief with agents in direct connectivity
if own_id != other_id_in_group:
self.all_robot_global_graph_belief[own_id][other_id_in_group] = copy.deepcopy(self.all_robot_global_graph_belief[other_id_in_group][other_id_in_group])
self.all_robot_global_graph_step_updated[own_id][other_id_in_group] = copy.deepcopy(sim_step)
# [Global Update] Merging in belief of other agents' belief of other agents
for other_id_out_group in range(self.n_agent):
if other_id_out_group not in group_ids:
own_step_updated = self.all_robot_global_graph_step_updated[own_id][other_id_out_group]
other_step_updated = self.all_robot_global_graph_step_updated[other_id_in_group][other_id_out_group]
# # Cond 1: Own belief is None, but other's belief is not None
# # Cond 2: Own belief is more outdated and other's belief not None
if own_step_updated < other_step_updated and \
self.all_robot_global_graph_belief[other_id_in_group][other_id_out_group] is not None:
self.all_robot_global_graph_belief[own_id][other_id_out_group] = \
copy.deepcopy(self.all_robot_global_graph_belief[other_id_in_group][other_id_out_group])
self.all_robot_global_graph_step_updated[own_id][other_id_out_group] = \
copy.deepcopy(self.all_robot_global_graph_step_updated[other_id_in_group][other_id_out_group])
### Update of essential params after map update ###
if own_id == robot_id:
all_curr_frontiers[robot_id] = self.find_frontier(self.all_downsampled_belief[robot_id])
success = self.update_graph(robot_id, all_curr_frontiers[robot_id], eps=curr_eps, step=sim_step)
if not success:
return success, None, None
###################################################################
### Removing agents' pose belief if belief within comms range, but cannot comms that agent ###
for other_id in range(len(self.all_robot_positions_belief[robot_id])):
if robot_id != other_id and self.all_robot_positions_belief[robot_id][other_id] is not None:
if USE_SIGNAL_STRENGTH_NOT_PROXIMITY:
belief_in_comms_range = self.ss_realistic_model.is_within_signal_strength(self.ground_truth, self.all_robot_positions_belief[robot_id][robot_id], self.all_robot_positions_belief[robot_id][other_id])
gt_in_comms_range = self.ss_realistic_model.is_within_signal_strength(self.ground_truth, self.all_robot_positions_gt[robot_id], self.all_robot_positions_gt[other_id])
else:
belief_in_comms_range = (np.linalg.norm(self.all_robot_positions_belief[robot_id][other_id] - self.all_robot_positions_belief[robot_id][robot_id]) < self.max_comms_proximity)
gt_in_comms_range = (np.linalg.norm(self.all_robot_positions_gt[other_id] - self.all_robot_positions_gt[robot_id]) < self.max_comms_proximity)
if belief_in_comms_range and not gt_in_comms_range:
self.all_robot_positions_missing_counts[robot_id][other_id] += 1
elif (belief_in_comms_range and gt_in_comms_range) or (not belief_in_comms_range and gt_in_comms_range):
self.all_robot_positions_missing_counts[robot_id][other_id] = 0
if self.all_robot_positions_missing_counts[robot_id][other_id] >= REMOVE_POSE_BELIEF_MISSING_COUNT:
self.all_robot_positions_belief[robot_id][other_id] = None
self.all_robot_belief[robot_id][other_id] = None
self.all_robot_positions_missing_counts[robot_id][other_id] = 0
### Done only if all agents have explored most of the map ###
done = self.check_done()
# ### Store for tensorboard logs ###
self.all_explored_rate[robot_id] = self.evaluate_exploration_rate(agent_id=robot_id)
success = True
return success, individual_reward, done
def update_graph(self, robot_id, curr_frontiers, extend_global_graph_towards_fronters=False, eps=None, step=None):
""" Update graph based on newly explored map """
success, node_coords, graph, node_utility, guidepost = self.all_graph_generator[robot_id].update_graph(self.all_robot_belief[robot_id][robot_id], \
curr_frontiers, self.all_frontiers[robot_id], \
self.all_robot_positions_belief[robot_id], self.all_robot_global_graph_belief[robot_id], \
self.all_robot_old_global_graph_belief_len[robot_id], \
extend_global_graph_towards_fronters=extend_global_graph_towards_fronters, \
eps=eps, step=step)
self.all_node_coords[robot_id] = node_coords
self.all_graph[robot_id] = graph
self.all_node_utility[robot_id] = node_utility
self.all_guidepost[robot_id] = guidepost
self.all_old_robot_belief[robot_id] = copy.deepcopy(self.all_robot_belief[robot_id][robot_id])
self.all_frontiers[robot_id] = curr_frontiers
self.all_robot_old_global_graph_belief_len[robot_id] = \
[[len(inner_list) for inner_list in robot_global_graph_belief] for robot_global_graph_belief in self.all_robot_global_graph_belief[robot_id]]
return success
def update_env_and_get_team_rewards(self):
""" Evaluate team performance and rewards """
self.agents_connected_percentage = 1 - (len(self.agents_comms_broken) / self.n_agent)
self.connectivity_rate = (len(self.agents_comms_broken) == 0)
self.explored_rate = self.evaluate_team_exploration_rate()
team_reward = 0
done = self.check_done()
if done:
team_reward += 40
return team_reward
########################
def merge_beliefs(self, beliefs_to_merge):
""" Merge map beliefs together"""
merged_belief = np.ones_like(self.ground_truth) * 127 # unknown
for belief in beliefs_to_merge:
merged_belief[belief == 1] = 1 # Obstacle
merged_belief[belief == 255] = 255 # Free
return merged_belief
def check_area_discovered_count(self, new_belief, prior_belief):
""" Number of pixels for newly discovered area """
free_area_count = np.count_nonzero( (new_belief - prior_belief) > 0)
return free_area_count
def compute_map_belief_area_diff(self, robot_id):
""" Number of pixels for newly discovered area (all robots) """
map_area_diff = np.zeros((self.n_agent))
for id in range(len(map_area_diff)):
if id != robot_id:
if self.all_robot_belief[robot_id][id] is not None:
map_area_diff[id] = self.check_area_discovered_count(self.all_robot_belief[robot_id][robot_id], self.all_robot_belief[robot_id][id])
else:
map_area_diff[id] = None
return map_area_diff
def unique_groups_list_from_connectivity_graph(self, graph):
""" Recursively group connected subgraphs """
unique_groups = []
for agent_pose in list(graph.keys()):
if not any(agent_pose in group for group in unique_groups):
group_members = []
self.flock_neighbours_recurse_connectivity_graph(agent_pose, group_members)
unique_groups.append(group_members)
return unique_groups
def flock_neighbours_recurse_connectivity_graph(self, node, group):
""" Depth-first search recursion in connectivity graph """
self.visited_dict[node] = True
group.append(node)
if node not in self.graph_dict:
self.graph_dict[node] = []
for child_node in self.graph_dict[node]:
if not self.visited_dict[child_node]:
self.flock_neighbours_recurse_connectivity_graph(child_node, group)
def visualize_flock_recurse_connectivity_graph(self, node, iter=0):
""" Depth-first search recursion in connectivity graph (Visualization) """
self.visited_dict[node] = True
if node not in self.graph_dict:
self.graph_dict[node] = []
for child_node in self.graph_dict[node]:
if not self.visited_dict[child_node]:
plt.plot([node[0], child_node[0]], [node[1], child_node[1]], c='grey', linewidth='2.0', zorder=88)
self.visualize_flock_recurse_connectivity_graph(child_node, iter)
def generate_rendezvous_utility_layer(self, robot_id, eps):
""" Generate map-delta utility layer for robot observation """
rendezvous_utility_inputs = np.zeros((len(self.all_node_coords[robot_id]), 1))
max_map_area = self.ground_truth_size[0] * self.ground_truth_size[1]
min_map_area = max_map_area * MIN_MAP_DELTA_MAP_RATIO
map_delta_unnormalized = self.compute_map_belief_area_diff(robot_id)
current = self.all_robot_positions_belief[robot_id][robot_id]
if self.group_ids_list is not None:
for group_ids in self.group_ids_list:
if robot_id not in group_ids:
for other_id in group_ids:
if map_delta_unnormalized[other_id] < min_map_area: # don't gen path if map_delta is too small ...
continue
destination = self.all_robot_positions_belief[robot_id][other_id]
if destination is not None:
map_delta = (map_delta_unnormalized[other_id] * MAP_DELTA_NORM_FACTOR / max_map_area) # Add constant later
# (1) Find A* path to neighbour
dist, route = self.all_graph_generator[robot_id].find_shortest_path(current, destination, self.all_node_coords[robot_id], self.all_graph_generator[robot_id].graph)
# Attempt to run A* reversed since 1st attempt failed
if route is None:
# # Ensure all graph edges are bidirectional
t0 = time()
temp_graph = copy.deepcopy(self.all_graph_generator[robot_id].graph)
for node in temp_graph.nodes:
for edge in temp_graph.edges[tuple(node)].values():
temp_graph.add_edge(edge.to_node, node, edge.length)
# print(YELLOW, "[Eps {} | Robot {} | Step {}] A* path is none for rendezvous util. Redefining all graph edges to be bi-directional! ({:.2f}s) ".format(eps, robot_id+1, step, time()-t0), NC)
dist, route = self.all_graph_generator[robot_id].find_shortest_path(current, destination, self.all_node_coords[robot_id], temp_graph)
if route is None:
t1 = time()
self.all_graph_generator[robot_id].edge_clear_all_nodes()
self.all_graph_generator[robot_id].find_k_neighbor_all_nodes(self.all_robot_belief[robot_id][robot_id], update_dense=True, \
global_graph=self.all_graph_generator[robot_id].global_graph, global_graph_knn_dist_max=10*SENSOR_RANGE, global_graph_knn_dist_min=0) # Emphasis on global graph edges to prevent broken graph
self.all_graph[robot_id] = copy.deepcopy(self.all_graph_generator[robot_id].graph.edges)
temp_graph = copy.deepcopy(self.all_graph_generator[robot_id].graph)
for node in temp_graph.nodes:
for edge in temp_graph.edges[tuple(node)].values():
temp_graph.add_edge(edge.to_node, node, edge.length)
# print(RED, "[Eps {} | Robot {} | Step {}] A* path is none for rendezvous util. Regen Graph, then redefining all graph edges to be bi-directional! \
# Time taken to regen all graph edges: {:.2f}s".format(eps, robot_id+1, step, time()-t1), NC)
dist, route = self.all_graph_generator[robot_id].find_shortest_path(current, destination, self.all_node_coords[robot_id], temp_graph)
# (2) Backtrack A* path, starting from destination (i.e. agents' position).
# Decay magnitude of map-delta linearly, based on path len. Min magnitude = MAP_DELTA_MIN_CONST.
if route is not None and route != []:
route = [np.array(coord) for coord in route]
# Densify A* route if too sparse
coords_to_insert = {}
for i, node in enumerate(route):
if i+1 < len(route):
dist = np.linalg.norm(route[i] - route[i+1])
num_coords_to_insert = int(dist // RENDEZVOUS_ASTAR_DENSIFY_PATH_RAD)
if num_coords_to_insert >= 1:
for j in range(1, num_coords_to_insert+1):
partial_frac = j / (num_coords_to_insert+1)
x = route[i][0] + partial_frac * (route[i+1][0] - route[i][0])
y = route[i][1] + partial_frac * (route[i+1][1] - route[i][1])
coords_to_insert.setdefault(i+1, []).append(np.array([round(x), round(y)]))
num_inserted = 0
for idx, coords in sorted(coords_to_insert.items()):
route[(idx+num_inserted):(idx+num_inserted)] = coords # Merge additional nodes into route list
num_inserted += len(coords)
# Set neighboring dense node coords with same map-delta values
knn = NearestNeighbors(radius=RENDEZVOUS_ASTAR_MAP_DELTA_INFLATION_RAD)
knn.fit(self.all_node_coords[robot_id])
map_delta_decay_rate = map_delta / len(route)
for i, curr_coord in enumerate(reversed(route)):
_, indices = knn.radius_neighbors(curr_coord.reshape(1,2))
for index in indices[0]:
neighbor_coord = self.all_node_coords[robot_id][index]
if not self.all_graph_generator[robot_id].check_collision(curr_coord, neighbor_coord, self.all_robot_belief[robot_id][robot_id]):
index = self.find_index_from_coords(neighbor_coord, robot_id)
new_map_delta = map_delta - (i*map_delta_decay_rate) + MAP_DELTA_MIN_CONST
if new_map_delta > rendezvous_utility_inputs[index]:
rendezvous_utility_inputs[index] = new_map_delta
elif route is None:
success = False
print(RED, "Astar path is None, for map-delta utility generation! Skipping Episode{}! ".format(eps), NC)
return map_delta_unnormalized, rendezvous_utility_inputs, success
# Set neighboring coords around robot to be 0
knn = NearestNeighbors(radius=RENDEZVOUS_OWN_POSE_NO_UTIL_RAD)
knn.fit(self.all_node_coords[robot_id])
_, indices = knn.radius_neighbors(current.reshape(1,2))
for index in indices[0]:
rendezvous_utility_inputs[index] = 0
success = True
return map_delta_unnormalized, rendezvous_utility_inputs, success
########################
def import_ground_truth(self, map_index):
""" Import map (occupied 1, free 255, unexplored 127) """
try:
ground_truth = (io.imread(map_index, 1)).astype(int)
if np.all(ground_truth == 0):
ground_truth = (io.imread(map_index, 1) * 255).astype(int)
except:
new_map_index = self.map_dir + '/' + self.map_list[0]
ground_truth = (io.imread(new_map_index, 1)).astype(int)
print('could not read the map_path ({}), hence skipping it and using ({}).'.format(map_index, new_map_index))
robot_location = np.nonzero(ground_truth == 208)
robot_location = np.array([np.array(robot_location)[1, 127], np.array(robot_location)[0, 127]])
ground_truth = (ground_truth > 150)
ground_truth = ground_truth * 254 + 1
return ground_truth, robot_location
def update_robot_belief(self, robot_position, sensor_range, robot_belief, ground_truth):
""" Expand map belief based on sensor dynamics """
robot_belief = sensor_work(robot_position, sensor_range, robot_belief, ground_truth)
return robot_belief
def check_done(self):
""" Check if all agents to have explored most of the ground truth map """
done = True
for idx in range(self.n_agent):
if np.sum(self.all_robot_belief[idx][idx] == 255) / np.sum(self.ground_truth == 255) < 0.99:
done = False
return done
def calculate_num_observed_frontiers(self, old_frontiers, frontiers):
""" Number of frontiers observed from previous to current step """
frontiers_to_check = frontiers[:, 0] + frontiers[:, 1] * 1j
pre_frontiers_to_check = old_frontiers[:, 0] + old_frontiers[:, 1] * 1j
frontiers_num = np.intersect1d(frontiers_to_check, pre_frontiers_to_check).shape[0]
pre_frontiers_num = pre_frontiers_to_check.shape[0]
delta_num = pre_frontiers_num - frontiers_num
return delta_num
def evaluate_exploration_rate(self, agent_id):
""" Evaluate exploration rate currently """
rate = np.sum(self.all_robot_belief[agent_id][agent_id] == 255) / np.sum(self.ground_truth == 255)
return rate
def evaluate_team_exploration_rate(self):
""" Evaluate averaged team exploration rate """
avg_rate = 0
for agent_id in range(self.n_agent):
self.all_explored_rate[agent_id] = self.evaluate_exploration_rate(agent_id)
avg_rate += self.all_explored_rate[agent_id]
avg_rate /= self.n_agent
return avg_rate
def find_frontier(self, downsampled_belief):
""" Returns frontiers on current map belief """
y_len = downsampled_belief.shape[0]
x_len = downsampled_belief.shape[1]
mapping = downsampled_belief.copy()
belief = downsampled_belief.copy()
# 0-1 unknown area map
mapping = (mapping == 127) * 1
mapping = np.lib.pad(mapping, ((1, 1), (1, 1)), 'constant', constant_values=0)
fro_map = mapping[2:][:, 1:x_len + 1] + mapping[:y_len][:, 1:x_len + 1] + mapping[1:y_len + 1][:, 2:] + \
mapping[1:y_len + 1][:, :x_len] + mapping[:y_len][:, 2:] + mapping[2:][:, :x_len] + mapping[2:][:,
2:] + \
mapping[:y_len][:, :x_len]
ind_free = np.where(belief.ravel(order='F') == 255)[0]
ind_fron_1 = np.where(1 < fro_map.ravel(order='F'))[0]
ind_fron_2 = np.where(fro_map.ravel(order='F') < 8)[0]
ind_fron = np.intersect1d(ind_fron_1, ind_fron_2)
ind_to = np.intersect1d(ind_free, ind_fron)
map_x = x_len
map_y = y_len
x = np.linspace(0, map_x - 1, map_x)
y = np.linspace(0, map_y - 1, map_y)
t1, t2 = np.meshgrid(x, y)
points = np.vstack([t1.T.ravel(), t2.T.ravel()]).T
f = points[ind_to]
f = f.astype(int)
f = f * self.resolution
return f
def plot_env(self, n, path, step, travel_dist, robots_route, robot_id):
""" Plot robot's belief (given communication constraints) """
# plt.rcParams.update({'font.size': 10})
color_list = ["r", "g", "c", "m", "y", "k"]
color_list_text = ["Red", "Green", "Blue", "Purple", "Yellow", "Black"]
plt.switch_backend('agg')
plt.cla()
plt.imshow(self.all_robot_belief[robot_id][robot_id], cmap='gray')
plt.axis((0, self.ground_truth_size[1], self.ground_truth_size[0], 0))
if VIZ_GRAPH_EDGES:
x_coords, y_coords = [], []
for node in self.all_graph_generator[robot_id].graph.nodes:
for edge in self.all_graph_generator[robot_id].graph.edges[tuple(node)].values():
x_coords.extend([node[0], edge.to_node[0], None]) # 'None' to break the line segment
y_coords.extend([node[1], edge.to_node[1], None])
plt.plot(x_coords, y_coords, c='tan', linewidth=1, zorder=1)
plt.scatter(self.all_frontiers[robot_id][:, 0], self.all_frontiers[robot_id][:, 1], c='r', s=2, zorder=3)
# Visualize Utility
# plt.scatter(self.all_node_coords[robot_id][:, 0], self.all_node_coords[robot_id][:, 1], s=2, c=self.all_node_utility[robot_id], zorder=999) # grid pattern
plt.scatter(self.all_node_coords[robot_id][:, 0], self.all_node_coords[robot_id][:, 1], s=2, c=self.all_rendezvous_utility_inputs[robot_id], zorder=999) # grid pattern
# plt.scatter(self.all_node_coords[robot_id][:, 0], self.all_node_coords[robot_id][:, 1], s=2, c=self.all_guidepost[robot_id], zorder=999) # grid pattern
### Visualize other robot's belief position ###
for i, position in enumerate(self.all_robot_positions_belief[robot_id]):
if position is not None: # 'None' when outdated position belief that have been verified to no longer be there
robot_marker_color = color_list[i % len(color_list)]
if robots_route[-1][0][-1] == position[0] and robots_route[-1][1][-1] == position[1]:
plt.plot(position[0], position[1], markersize=8, zorder=9999, marker="D", ls="-", c=robot_marker_color, mec="black")
else:
plt.plot(position[0], position[1], markersize=8, zorder=9999, marker="^", ls="-", c=robot_marker_color, mec="black")
# Visualize global graph nodes
global_nodes = self.all_graph_generator[robot_id].global_graph_nodes
if global_nodes is not None and len(global_nodes) > 0:
global_graph_nodes_set = set(map(tuple, global_nodes))
for i in range(self.n_agent):
own_global_graph_nodes = self.all_robot_global_graph_belief[i][i][0] + self.all_robot_global_graph_belief[i][i][1] # route_hist + route_offshoots
own_global_graph_nodes = np.array(list(set(map(tuple, own_global_graph_nodes)).intersection(global_graph_nodes_set)))
if len(own_global_graph_nodes) > 0:
robot_marker_color = color_list[i % len(color_list)]
plt.scatter(own_global_graph_nodes[:, 0], own_global_graph_nodes[:, 1], s=20, c=robot_marker_color, zorder=4)
# # Visualize Connectivity Graph
for group_ids in self.group_ids_list:
if robot_id in group_ids:
for id in group_ids:
agent_pose = (self.all_robot_positions_gt[id][0], self.all_robot_positions_gt[id][1])
self.visited_dict = dict.fromkeys(self.visited_dict, False)
self.visualize_flock_recurse_connectivity_graph(agent_pose)
# # Visualize frontier centers
if self.all_graph_generator[robot_id].frontier_centers is not None:
centers = self.all_graph_generator[robot_id].frontier_centers
dummy_vals = np.ones((centers.shape[0]))
plt.scatter(centers[:,0], centers[:,1], c=dummy_vals, s=400, alpha=0.5, zorder=4)
plt.suptitle('Explored: {:.1f}% Distance: {:.1f}\n(Robot{} Belief - {})'.format(self.all_explored_rate[robot_id]*100, travel_dist, robot_id + 1, color_list_text[robot_id]))
plt.tight_layout()
plt.savefig('{}/eps{}_step{}_robot{}.png'.format(path, n, step, robot_id+1, dpi=150))
# plt.show()
frame = '{}/eps{}_step{}_robot{}.png'.format(path, n, step, robot_id+1)
self.all_frame_files[robot_id].append(frame)
plt.close()
def plot_env_ground_truth(self, n, path, step, travel_dist, robots_route):
""" Plot combined belief (given no communication constraints) """
# plt.rcParams.update({'font.size': 14})
# plt.figure(figsize=(12, 10))
color_list_label = ["Robot1", "Robot2", "Robot3", "Robot4", "Robot5", "Robot6"]
color_list = ["r", "g", "c", "m", "y", "k"]
plt.switch_backend('agg')
plt.cla()
plt.imshow(self.agents_merged_belief, cmap='gray')
plt.axis((0, self.ground_truth_size[1], self.ground_truth_size[0], 0))
for robot_id in range(self.n_agent):
if VIZ_GRAPH_EDGES_GROUND_TRUTH:
for i in range(len(self.all_graph_generator[robot_id].x)):
plt.plot(self.all_graph_generator[robot_id].x[i], self.all_graph_generator[robot_id].y[i], 'tan', zorder=1)
plt.scatter(self.agents_merged_belief_frontiers[:, 0], self.agents_merged_belief_frontiers[:, 1], c='r', s=2, zorder=3)
# Visualize Utility
free_coords = self.all_graph_generator[0].generate_coords_from_map(self.agents_merged_belief)
dummy_vals = np.ones((free_coords.shape[0], 1))
plt.scatter(free_coords[:, 0], free_coords[:, 1], s=5.0, c=dummy_vals, zorder=5)
# Visualize Routes
for i, route in enumerate(robots_route):
xPoints = route[0]
yPoints = route[1]
robot_marker_color = color_list[i % len(color_list)]
plt.plot(xPoints, yPoints, c=robot_marker_color, linewidth=3, zorder=6)
plt.plot(xPoints[0], yPoints[0], c=robot_marker_color, marker="o", markersize=8, zorder=6)
### Visualize other robot's belief position ###
for i, position in enumerate(self.all_robot_positions_gt):
robot_marker_color = color_list[i % len(color_list)]
plt.plot(position[0], position[1], markersize=12, zorder=9999, marker="D", ls="-", c=robot_marker_color, mec="black")
# Visualize Connectivity Graph
for agent_pose in list(self.graph_dict.keys()):
self.visited_dict = dict.fromkeys(self.visited_dict, False)
self.visualize_flock_recurse_connectivity_graph(agent_pose)
# # Add legend
# patches = [mpatches.Patch(color=color_list[i], label=color_list_label[i]) for i in range(len(self.all_robot_positions_gt))]
# plt.legend(handles=patches, bbox_to_anchor=(1.2, 0.7), title="Robots", loc="upper right", title_fontsize='large') # fontsize='x-large', title_fontsize='xx-large'
plt.suptitle('Total Explored: {:.1f}% Max Distance: {:.1f}\n(No Communication Constraints)'.format(self.all_explored_rate[robot_id]*100, travel_dist, robot_id + 1))
plt.tight_layout()
plt.savefig('{}/eps{}_step{}_merged.png'.format(path, n, step, dpi=150))
# plt.show()
frame = '{}/eps{}_step{}_merged.png'.format(path, n, step)
self.merged_frame_files.append(frame)
plt.close()