-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgraph_generator.py
executable file
·848 lines (693 loc) · 46.6 KB
/
graph_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
#######################################################################
# Name: graph_generator.py
# Generate and update the collision-free graph.
#######################################################################
import sys
if sys.modules['TRAINING']:
from parameter import *
else:
from test_parameter import *
import copy
import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import NearestNeighbors
from node import Node
from graph import Graph, a_star
from time import time
from scipy.spatial import KDTree
from scipy.ndimage import label
class Graph_generator:
def __init__(self, robot_id, map_size, k_size, sensor_range, file_path, plot=False):
self.robot_id = robot_id
self.k_size = k_size
self.graph = Graph()
self.node_coords = None
self.plot = plot
self.x = []
self.y = []
self.map_x = map_size[1]
self.map_y = map_size[0]
self.uniform_points = self.generate_uniform_points()
self.sensor_range = sensor_range
self.route_node = []
self.nodes_list = []
self.node_utility = None
self.guidepost = None
self.file_path = file_path
self.nodes_not_to_merge = None
self.frontier_centers = None
self.global_graph = Graph()
self.global_graph_nodes = []
def edge_clear_all_nodes(self):
""" Re-init graphs """
self.graph = Graph()
self.x = []
self.y = []
def edge_clear(self, coords):
""" Clear specific graph edge """
self.graph.clear_edge(tuple(coords))
def node_clear(self, coords, remove_bidirectional_edges=False):
""" Clear specific graph node """
self.graph.clear_node(tuple(coords), remove_bidirectional_edges=remove_bidirectional_edges)
def generate_graph(self, robot_location, robot_belief, frontiers):
""" Initialize graphs of map belief """
self.edge_clear_all_nodes()
free_area = self.free_area(robot_belief)
free_area_to_check = free_area[:, 0] + free_area[:, 1] * 1j
uniform_points_to_check = self.uniform_points[:, 0] + self.uniform_points[:, 1] * 1j
_, _, candidate_indices = np.intersect1d(free_area_to_check, uniform_points_to_check, return_indices=True)
node_coords = self.uniform_points[candidate_indices]
node_coords = np.concatenate((robot_location.reshape(1, 2), node_coords))
self.node_coords = node_coords
self.find_k_neighbor_all_nodes(robot_belief, update_dense=True)
self.node_utility = []
for coords in self.node_coords:
node = Node(coords, frontiers, robot_belief)
self.nodes_list.append(node)
utility = node.utility
self.node_utility.append(utility)
self.node_utility = np.array(self.node_utility)
self.guidepost = np.zeros((self.node_coords.shape[0], 1))
x = self.node_coords[:,0] + self.node_coords[:,1]*1j
for node in self.route_node:
index = self.find_closest_index_from_coords(self.node_coords, node)
self.guidepost[index] += 1 # = 1
return self.node_coords, self.graph.edges, self.node_utility, self.guidepost
def update_graph(self, robot_belief, frontiers, old_frontiers, robot_location_belief, robot_global_graph_belief, robot_old_global_graph_belief_len, extend_global_graph_towards_fronters=False, eps=None, step=None):
""" Update graphs of map belief """
# Update route_hist and route_offshoots based on newest nodes ONLY
new_route_hist, new_route_offshoot = [], []
for i in range(len(robot_global_graph_belief)):
route_hist = robot_global_graph_belief[i][0]
old_route_hist_len = robot_old_global_graph_belief_len[i][0]
if route_hist is not None:
if old_route_hist_len > 0 and len(route_hist)-old_route_hist_len > 0:
for node in route_hist[old_route_hist_len:]:
if node is not None:
new_route_hist.append(node)
elif old_route_hist_len == 0:
new_route_hist += route_hist
route_offshoot = robot_global_graph_belief[i][1]
old_route_offshoot_len = robot_old_global_graph_belief_len[i][1]
if route_offshoot is not None:
if old_route_offshoot_len > 0 and len(route_offshoot)-old_route_offshoot_len > 0:
for node in route_offshoot[old_route_offshoot_len:]:
if node is not None:
new_route_offshoot.append(node)
elif old_route_offshoot_len == 0:
new_route_offshoot += route_offshoot
new_global_graph_nodes = copy.deepcopy(new_route_hist) + copy.deepcopy(new_route_offshoot)
self.global_graph_nodes += new_global_graph_nodes
if len(self.global_graph_nodes) > 0:
self.global_graph_nodes = list(self.unique_coords(np.array(self.global_graph_nodes)).reshape(-1, 2))
# # Reconstruct new global_graph
if len(new_global_graph_nodes) > 0:
global_graph_nodes_np = np.array(self.global_graph_nodes)
new_node_idx_to_update = []
for coords in new_global_graph_nodes:
neighbor_indices = self.find_k_neighbor_custom(global_graph_nodes_np, np.array(coords), robot_belief, self.global_graph, global_graph_knn_dist_min=0.0, max_edge_len=GLOBAL_GRAPH_KNN_RAD)
new_node_idx_to_update += neighbor_indices
new_node_idx_to_update = set(new_node_idx_to_update)
for index in new_node_idx_to_update:
coords = global_graph_nodes_np[index]
self.global_graph.clear_edge(tuple(coords))
self.find_k_neighbor_custom(global_graph_nodes_np, np.array(coords), robot_belief, self.global_graph, global_graph_knn_dist_min=0.0, max_edge_len=GLOBAL_GRAPH_KNN_RAD)
# Ensure bi-directional edges
for node in self.global_graph.nodes:
for edge in self.global_graph.edges[tuple(node)].values():
self.global_graph.add_edge(edge.to_node, node, edge.length)
##################################################################################################################################
# GRAPH SPARSIFICATION
##################################################################################################################################
# Generate frontier centers if used
frontier_centers = np.array([])
if len(self.global_graph.nodes) > 0 and \
(PRUNE_GLOBAL_GRAPH):
frontier_centers = self.extract_frontier_centers_new(robot_belief, robot_location_belief)
self.frontier_centers = frontier_centers
# Graph Merger
if MERGE_GLOBAL_GRAPH and len(self.global_graph.nodes) > 0 and step > 0 and \
(step % MERGE_GLOBAL_GRAPH_EVERY == 0 or len(self.global_graph.nodes) > GLOBAL_GRAPH_NODE_COORDS_THRESH): # 0
self.merge_global_graph(robot_belief, frontiers, robot_location_belief, global_graph_unique_radius=GLOBAL_GRAPH_UNIQUE_RAD)
# GLOBAL GRAPH PRUNING
if PRUNE_GLOBAL_GRAPH and len(self.global_graph.nodes) > 0 and len(frontier_centers) > 0 and step > 0 and \
(step % PRUNE_GLOBAL_GRAPH_EVERY == 0 or len(self.global_graph.nodes) > GLOBAL_GRAPH_NODE_COORDS_THRESH): # 0
success = self.prune_global_graph(robot_belief, robot_location_belief, frontier_centers, eps=eps)
if not success:
return success, None, None, None, None
##################################################################################################################################
# LOCAL DENSE GRAPH FORMULATION
##################################################################################################################################
## Add node coords around own robot position (CUR_AGENT_KNN_RAD) and other robot positions (OTHER_AGENT_KNN_RAD)
uniform_points_to_check = self.uniform_points[:, 0] + self.uniform_points[:, 1] * 1j
robots_local_nodes = [set() for _ in range(len(robot_location_belief))]
for id, position in enumerate(robot_location_belief):
if position is not None:
knn_rad = CUR_AGENT_KNN_RAD if id == self.robot_id else OTHER_AGENT_KNN_RAD
height, width = robot_belief.shape
x0, x1 = max(0, position[0] - knn_rad), min(width, position[0] + knn_rad)
y0, y1 = max(0, position[1] - knn_rad), min(height, position[1] + knn_rad)
filtered_belief = np.zeros_like(robot_belief)
filtered_belief[y0:y1, x0:x1] = robot_belief[y0:y1, x0:x1]
new_filtered_area = self.free_area(filtered_belief)
filtered_area_to_check = new_filtered_area[:, 0] + new_filtered_area[:, 1] * 1j
_, _, candidate_indices = np.intersect1d(filtered_area_to_check, uniform_points_to_check, return_indices=True)
candidate_node_coords = self.uniform_points[candidate_indices]
# Retrieve all connected components in map to robot's position
padded_labeled_map = np.full_like(robot_belief, -99) # Impossble for -99 to interfere with ndimage labelling
labeled_map, _ = label(robot_belief[y0:y1, x0:x1] == 255) # Obstacles = 1, free = 255
padded_labeled_map[y0:y1, x0:x1] = labeled_map
local_occupancy_map = padded_labeled_map[candidate_node_coords[:,1], candidate_node_coords[:,0]]
robot_location = self.node_coords[self.find_index_from_coords(self.node_coords, position)]
pose_idx = self.find_index_from_coords(candidate_node_coords, robot_location) # robot_location guaranteed to be in local_occupancy_map
connected_coords = np.argwhere(local_occupancy_map == local_occupancy_map[pose_idx])
connected_coords = candidate_node_coords[connected_coords[:,0]]
robots_local_nodes[id].update([tuple(coord) for coord in connected_coords])
# # Combine all pose filtered node idx
robots_local_nodes_combined = [node for robot_local_nodes in robots_local_nodes for node in robot_local_nodes]
robots_local_nodes_combined = np.array(list(set(robots_local_nodes_combined)))
robot_locations = [position for position in robot_location_belief if position is not None]
old_node_coords = copy.deepcopy(self.node_coords)
if len(self.global_graph_nodes) > 0:
self.node_coords = np.concatenate((self.global_graph_nodes, robot_locations, robots_local_nodes_combined))
else:
self.node_coords = np.concatenate((robot_locations, robots_local_nodes_combined))
self.node_coords = self.unique_coords(self.node_coords).reshape(-1, 2)
##################################################################################################################################
# GRAPH COMBINATION
##################################################################################################################################
# Add in new nodes
coords_old_not_in_new = set(map(tuple, old_node_coords)) - set(map(tuple, self.node_coords))
coords_new_not_in_old = set(map(tuple, self.node_coords)) - set(map(tuple, old_node_coords))
coords_old_not_in_new_tuples = [tuple(coords) for coords in coords_old_not_in_new]
self.node_coords = [coord for coord in old_node_coords if tuple(coord) not in coords_old_not_in_new_tuples]
self.node_coords += list(coords_new_not_in_old)
self.node_coords = np.array(self.node_coords)
self.nodes_list = [node for node in self.nodes_list if tuple(node.coords) not in coords_old_not_in_new_tuples]
# Update node utility in self.nodes_list
old_frontiers_to_check = old_frontiers[:, 0] + old_frontiers[:, 1] * 1j
new_frontiers_to_check = frontiers[:, 0] + frontiers[:, 1] * 1j
observed_frontiers_index = np.where(
np.isin(old_frontiers_to_check, new_frontiers_to_check, assume_unique=True) == False)
new_frontiers_index = np.where(
np.isin(new_frontiers_to_check, old_frontiers_to_check, assume_unique=True) == False)
observed_frontiers = old_frontiers[observed_frontiers_index]
new_frontiers = frontiers[new_frontiers_index]
observed_frontiers_set = set(map(tuple, observed_frontiers))
for node in self.nodes_list:
dist_new_frontiers = np.linalg.norm((new_frontiers - np.array(node.coords)), axis=1)
close_new_frontiers = new_frontiers[dist_new_frontiers < UTILITY_CALC_RANGE]
dist_old_frontiers = np.linalg.norm((old_frontiers - np.array(node.coords)), axis=1)
close_old_frontiers = old_frontiers[dist_old_frontiers < UTILITY_CALC_RANGE]
no_changed_frontiers = (len(close_new_frontiers) == 0 and len(close_old_frontiers) == 0)
if node.zero_utility_node is True or no_changed_frontiers:
pass
else:
node.update_observable_frontiers(observed_frontiers_set, new_frontiers, robot_belief)
# Add new nodes to self.nodes_list
self.nodes_list += [Node(coord, frontiers, robot_belief) for coord in coords_new_not_in_old]
# Consolidate new nodes added to graph
final_nodes_added = list(coords_new_not_in_old)
##################################################################################################################################
# GRAPH RECONSTRUCTION
##################################################################################################################################
# Redefine graph edges based on new set of node coords
graph_coords_old_not_in_new = set(map(tuple, self.graph.nodes)) - set(map(tuple, self.node_coords))
graph_coords_new_not_in_old = set(map(tuple, self.node_coords)) - set(map(tuple, self.graph.nodes))
# Redefine graph edges for node coords to be REMOVED
graph_coords_old_not_in_new = np.array(list(graph_coords_old_not_in_new))
old_nodes_to_update = []
if len(graph_coords_old_not_in_new) > 0:
for coords in graph_coords_old_not_in_new:
neighbor_coords = [edge.to_node for edge in self.graph.edges[tuple(coords)].values()]
old_nodes_to_update += neighbor_coords
old_nodes_to_update = np.array(list(set(map(tuple, old_nodes_to_update)) - set(map(tuple, graph_coords_old_not_in_new))))
for coords in graph_coords_old_not_in_new:
self.node_clear(coords, remove_bidirectional_edges=True)
for coords in old_nodes_to_update:
self.edge_clear(coords)
node_coords = self.node_coords
self.find_k_neighbor(node_coords, np.array(coords), robot_belief, global_graph=self.global_graph)
for coords in self.global_graph_nodes:
if np.linalg.norm(coords - robot_location_belief[self.robot_id]) <= 2 * SENSOR_RANGE:
self.edge_clear(coords)
node_coords = self.node_coords
self.find_k_neighbor(node_coords, np.array(coords), robot_belief, global_graph=self.global_graph)
# Redefine graph edges for node coords to be ADDED
graph_coords_new_not_in_old = np.array(list(graph_coords_new_not_in_old))
if len(graph_coords_new_not_in_old) > 0:
new_node_idx_to_update = []
node_coords = self.node_coords
for coords in graph_coords_new_not_in_old:
neighbor_indices = self.find_k_neighbor(node_coords, np.array(coords), robot_belief, global_graph=self.global_graph)
new_node_idx_to_update += neighbor_indices
new_node_idx_to_update = set(new_node_idx_to_update)
for index in new_node_idx_to_update:
coords = node_coords[index]
self.edge_clear(coords)
self.find_k_neighbor(node_coords, np.array(coords), robot_belief, global_graph=self.global_graph)
##################################################################################################################################
# SPARSE GLOBAL GRAPH FORMULATION (OFFSHOOTS)
##################################################################################################################################
# Find top K nodes with highest utility that are GLOBAL_GRAPH_UNIQUE_RAD apart from each other
if extend_global_graph_towards_fronters and len(self.global_graph_nodes) > 0:
local_coords_util, local_coords_zero_util = [], []
own_local_coords = np.array(list(robots_local_nodes[self.robot_id])) # own local coords
own_local_coords = own_local_coords[np.linalg.norm(own_local_coords - robot_location_belief[self.robot_id], axis=-1) <= GLOBAL_GRAPH_OFFSHOOT_MAX_RAD] # Dist filter
for coords in own_local_coords:
util_index = self.find_index_from_coords(self.node_coords, coords)
local_coords_util.append(self.nodes_list[util_index].utility)
local_coords_zero_util.append(self.nodes_list[util_index].zero_utility_node)
# sort unique_coords_util by utility
own_util = self.nodes_list[self.find_index_from_coords(self.node_coords, robot_location_belief[self.robot_id])].utility
sorted_utility_index = np.argsort(local_coords_util)[::-1] # descending...
sorted_local_coords_zero_util = np.array(local_coords_zero_util)[sorted_utility_index]
sorted_local_coords = np.array(own_local_coords)[sorted_utility_index]
# Find high utility offshoot nodes (and path to it, if not line of sight)
global_nodes_added, final_global_nodes_added, final_local_nodes_added = [], [], []
robot_location = self.node_coords[self.find_index_from_coords(self.node_coords, robot_location_belief[self.robot_id])]
for i, node in enumerate(sorted_local_coords):
if sorted_utility_index[i] > own_util and not sorted_local_coords_zero_util[i]: # Higher than own utility
num_within_rad = np.count_nonzero(np.linalg.norm(self.global_graph_nodes - node, axis=-1) < GLOBAL_GRAPH_OFFSHOOT_UNIQUE_RAD)
if num_within_rad == 0:
if not self.check_collision(robot_location, node, robot_belief):
global_nodes_added.append(node)
else: # A* to check if node is reachable
_, route = self.find_shortest_path(robot_location_belief[self.robot_id], node, self.node_coords, self.graph)
if route is not None:
global_nodes_added += route
global_nodes_set = set(map(tuple, self.global_graph_nodes))
for node_added in global_nodes_added:
if tuple(node_added) not in global_nodes_set:
final_global_nodes_added.append(node_added)
self.global_graph_nodes.append(node_added)
global_nodes_set.add(tuple(node_added))
if len(global_nodes_added) >= GLOBAL_GRAPH_OFFSHOOT_FRONTIER_NODES:
break
# concat global_nodes_added
robot_global_graph_belief[self.robot_id][1] += final_global_nodes_added # Add back to route offshoot belief
# Redefine graph edges for node coords to be ADDED (GLOBAL GRAPH)
if len(final_global_nodes_added) > 0:
global_graph_nodes_np = np.array(self.global_graph_nodes)
new_node_idx_to_update = []
for coords in final_global_nodes_added:
neighbor_indices = self.find_k_neighbor_custom(global_graph_nodes_np, np.array(coords), robot_belief, self.global_graph, global_graph_knn_dist_min=0.0, max_edge_len=GLOBAL_GRAPH_KNN_RAD)
new_node_idx_to_update += neighbor_indices
new_node_idx_to_update = set(new_node_idx_to_update)
for index in new_node_idx_to_update:
coords = global_graph_nodes_np[index]
self.global_graph.clear_edge(tuple(coords))
self.find_k_neighbor_custom(global_graph_nodes_np, np.array(coords), robot_belief, self.global_graph, global_graph_knn_dist_min=0.0, max_edge_len=GLOBAL_GRAPH_KNN_RAD)
##################################################################################################################################
# Define outputs
self.node_utility = []
for i, coords in enumerate(self.node_coords):
utility = self.nodes_list[i].utility
self.node_utility.append(utility)
self.node_utility = np.array(self.node_utility)
self.guidepost = np.zeros((self.node_coords.shape[0], 1))
x = self.node_coords[:, 0] + self.node_coords[:, 1] * 1j
for node in self.route_node:
index = self.find_closest_index_from_coords(self.node_coords, node)
self.guidepost[index] += 1 # = 1
success = True
return success, self.node_coords, self.graph.edges, self.node_utility, self.guidepost
def merge_global_graph(self, robot_belief, frontiers, robot_location_belief, global_graph_unique_radius):
""" Merge different robots' global graphs """
temp_graph = copy.deepcopy(self.global_graph)
# Graph Merge algorithm: Merge in new nodes in global graph
if RAYTRACE_ZERO_UTIL_GLOBAL_NODES_TO_SPARSIFY:
self.nodes_not_to_merge = set([tuple(node.coords) for node in self.nodes_list if not node.zero_utility_node]) # NOTE: Node utility not updated at nodes closest to frontiers...
else:
self.nodes_not_to_merge = set([tuple(node.coords) for node in self.nodes_list if node.frontiers_within_utility_calc_range(frontiers)]) # Won't sparse even if frontier not LOS
# Don't remove global nodes around robots
curr_global_graph_nodes = np.array(list(self.global_graph.nodes))
for loc in robot_location_belief:
if loc is not None:
dist_list = np.linalg.norm((curr_global_graph_nodes - np.array(loc)), axis=1)
neighboring_global_nodes = curr_global_graph_nodes[dist_list < global_graph_unique_radius]
self.nodes_not_to_merge.update([tuple(coord) for coord in neighboring_global_nodes])
merged_nodes = set(self.nodes_not_to_merge) # Don't remove non-zero utility nodes
for local_iter, curr_node in enumerate(np.array(list(self.global_graph.nodes))): # separate copy (affected_global_nodes)
if tuple(curr_node) in merged_nodes:
continue
curr_global_graph_nodes = np.array(list(temp_graph.nodes))
# Get nearest neighbors within RAD
dist_list = np.linalg.norm((curr_global_graph_nodes-curr_node), axis=1)
closest_neighbors = curr_global_graph_nodes[dist_list < global_graph_unique_radius]
closest_neighbors_to_merge = [neighbor for neighbor in closest_neighbors if tuple(neighbor) != tuple(curr_node) and tuple(neighbor) not in merged_nodes]
# Check if merging nearest neighbors will maintain graph connectivity
if len(closest_neighbors_to_merge) > 0:
# Find all affected neighbors' coords due to merging
affected_graph_edges_copied = {}
coords_with_edges_to_save = copy.deepcopy(closest_neighbors_to_merge)
for neighbor in closest_neighbors_to_merge:
coords_with_edges_to_save += [tuple(edge.to_node) for edge in temp_graph.edges[tuple(neighbor)].values()]
coords_with_edges_to_save += [tuple(edge.to_node) for edge in temp_graph.edges[tuple(curr_node)].values()]
coords_with_edges_to_save = set(map(tuple, coords_with_edges_to_save))
for edge_to_save in coords_with_edges_to_save:
affected_graph_edges_copied[tuple(edge_to_save)] = copy.deepcopy(temp_graph.edges[tuple(edge_to_save)])
# Clear all edges associated with curr and neighbor nodes
for neighbor in closest_neighbors_to_merge:
temp_graph.clear_node(tuple(neighbor), remove_bidirectional_edges=True)
temp_graph.clear_edge(tuple(curr_node))
# Find all affected neighbors' coords due to KNN of curr_node
graph_nodes_np = np.array(list(temp_graph.nodes))
neighbor_index_list = self.find_k_neighbor_custom(graph_nodes_np, tuple(curr_node), robot_belief, temp_graph, modify_graph=False, global_graph_knn_dist_min=0.0, max_edge_len=GLOBAL_GRAPH_KNN_RAD)
for node_idx in neighbor_index_list:
if affected_graph_edges_copied is not None and tuple(graph_nodes_np[node_idx]) not in affected_graph_edges_copied:
affected_graph_edges_copied[tuple(graph_nodes_np[node_idx])] = copy.deepcopy(temp_graph.edges[tuple(graph_nodes_np[node_idx])])
# Redefine edges for curr_node (given old neighboring nodes alr removed)
self.find_k_neighbor_custom(graph_nodes_np, tuple(curr_node), robot_belief, temp_graph, modify_graph=True, global_graph_knn_dist_min=0.0, max_edge_len=GLOBAL_GRAPH_KNN_RAD)
# Ensure bi-directional edges
for node in temp_graph.nodes:
for edge in temp_graph.edges[tuple(node)].values():
temp_graph.add_edge(edge.to_node, node, edge.length)
graph_is_connected, visited_nodes = temp_graph.is_connected_bfs(tuple(curr_node), criteria=coords_with_edges_to_save)
# If graph is connected, continue to use temp_graph. Else, undo changes...
if graph_is_connected:
merged_nodes.add(tuple(curr_node))
merged_nodes.update([tuple(coord) for coord in closest_neighbors_to_merge])
else:
for node, edges in affected_graph_edges_copied.items():
temp_graph.add_node(node)
temp_graph.edges[node] = edges
self.global_graph = copy.deepcopy(temp_graph)
self.global_graph_nodes = list(self.global_graph.nodes)
def prune_global_graph(self, robot_belief, robot_location_belief, centers, eps=None):
""" Prune useless graph branches that does not lead to frontier centers """
### Perform A* between Agents-2-Agents and Agents-2-Frontiers
route_nodes = set()
outer_loop_centers = centers if SPARSIFY_RETAIN_FRONTIER_TO_FRONTIER_ASTAR else robot_location_belief
global_graph_nodes_np = np.array(list((self.global_graph.nodes)))
for outer_loop_center in outer_loop_centers:
if outer_loop_center is not None:
path_start = outer_loop_center
for center in centers:
_, route = self.find_shortest_path(path_start, center, global_graph_nodes_np, self.global_graph)
# Attempt to run A* with edges forced bidirectional - if 1st attempt failed
# # Ensure all graph edges are bidirectional
if route is None:
t0 = time()
temp_graph = copy.deepcopy(self.global_graph)
for node in temp_graph.nodes:
for edge in temp_graph.edges[tuple(node)].values():
temp_graph.add_edge(edge.to_node, node, edge.length)
# print(YELLOW, "[Eps {} | Robot {} | Step {}] A* path is none for graph pruning. Redefining all graph edges to be bi-directional! ({:.2f}s) ".format(eps, self.robot_id, step, time()-t0), NC)
_, route = self.find_shortest_path(path_start, center, global_graph_nodes_np, temp_graph)
if route is None:
success = False
print(RED, "Astar path is None, for prune_global_graph! Skipping Episode {}! ".format(eps), NC)
return success
# List of tuples --> list of np.array
route = [np.array(coord) for coord in route]
# Densify A* route if too sparse
coords_to_insert = {}
for i, node in enumerate(route):
if i+1 < len(route):
dist = np.linalg.norm(route[i] - route[i+1])
num_coords_to_insert = int(dist // GLOBAL_GRAPH_UNIQUE_RAD)
if num_coords_to_insert >= 1:
for j in range(1, num_coords_to_insert+1):
partial_frac = j / (num_coords_to_insert+1) # (0,1)
x = route[i][0] + partial_frac * (route[i+1][0] - route[i][0])
y = route[i][1] + partial_frac * (route[i+1][1] - route[i][1])
coords_to_insert.setdefault(i+1, []).append(np.array([round(x), round(y)]))
num_inserted = 0
for idx, coords in sorted(coords_to_insert.items()):
route[(idx+num_inserted):(idx+num_inserted)] = coords # Merge additional nodes into route list
num_inserted += len(coords)
# Locate original global graph paths along A* paths
knn = NearestNeighbors(radius=2*GLOBAL_GRAPH_UNIQUE_RAD)
knn.fit(global_graph_nodes_np)
for i, curr_coord in enumerate(reversed(route)):
_, indices = knn.radius_neighbors(curr_coord.reshape(1,2))
for index in indices[0]:
node = global_graph_nodes_np[index]
if tuple(node) in route_nodes:
continue
elif not self.check_collision(curr_coord, node, robot_belief):
route_nodes.add(tuple(node))
# Reconstruct pruned global graph
route_nodes = np.array(list(route_nodes)).reshape(-1, 2)
self.global_graph = Graph()
self.find_k_neighbor_all_nodes_custom(robot_belief, route_nodes, self.global_graph, global_graph_knn_dist_max=2*GLOBAL_GRAPH_KNN_RAD, global_graph_knn_dist_min=0.0)
self.global_graph_nodes = list(route_nodes)
success = True
return success
def generate_uniform_points(self):
""" Generate uniform grid in free space of map belief """
x = np.linspace(0, self.map_x - 1, NUM_DENSE_COORDS_WIDTH).round().astype(int)
y = np.linspace(0, self.map_y - 1, NUM_DENSE_COORDS_WIDTH).round().astype(int)
t1, t2 = np.meshgrid(x, y)
points = np.vstack([t1.T.ravel(), t2.T.ravel()]).T
return points
def free_area(self, robot_belief):
""" Identify free space in map belief """
index = np.where(robot_belief == 255)
free = np.asarray([index[1], index[0]]).T
return free
def unique_coords(self, coords):
""" Remove duplicates in node coords """
x = coords[:, 0] + coords[:, 1] * 1j
indices = np.unique(x, return_index=True)[1]
coords = np.array([coords[idx] for idx in sorted(indices)])
return coords
def find_k_neighbor(self, node_coords, coords, robot_belief, global_graph=None, global_graph_knn_dist_max=GLOBAL_GRAPH_KNN_RAD, global_graph_knn_dist_min=CUR_AGENT_KNN_RAD):
""" Find nearest k neighbors to specified coords """
dist_list = np.linalg.norm((node_coords-coords), axis=1)
sorted_index = np.argsort(dist_list)
k = 0
neighbor_index_list, topk_global_graph_nodes = [], []
count = 0
# Append global graph edges to each node first (to ensure connectivity)
num_global_neighbours = 0
if global_graph is not None and tuple(coords) in global_graph.edges:
global_graph_edges = global_graph.edges[tuple(coords)].values()
global_graph_nodes = np.array([edge.to_node for edge in global_graph_edges])
global_graph_dist = np.array([edge.length for edge in global_graph_edges])
filtered_global_graph_idx = (global_graph_dist <= global_graph_knn_dist_max) & (global_graph_dist > global_graph_knn_dist_min)
filtered_global_graph_nodes = global_graph_nodes[filtered_global_graph_idx]
filtered_global_graph_dist = global_graph_dist[filtered_global_graph_idx]
num_global_neighbours = len(filtered_global_graph_nodes) if len(filtered_global_graph_nodes) < self.k_size else self.k_size
topk_global_graph_nodes = filtered_global_graph_nodes[np.argsort(filtered_global_graph_dist)[:num_global_neighbours]]
topk_global_graph_nodes = set(map(tuple, topk_global_graph_nodes))
for neighbour_node in topk_global_graph_nodes:
self.graph.add_node(tuple(coords))
self.graph.add_edge(tuple(coords), tuple(neighbour_node), np.linalg.norm(coords-neighbour_node))
max_neighbours = self.k_size - num_global_neighbours
num_neighbours = len(node_coords) if len(node_coords) < max_neighbours else max_neighbours
for neighbor_index in sorted_index:
neighbor_index_list.append(neighbor_index)
dist = dist_list[k]
start = coords
end = node_coords[neighbor_index]
if tuple(end) in topk_global_graph_nodes: # Don't consider global nodes already added
continue
if not self.check_collision(start, end, robot_belief):
self.graph.add_node(tuple(start))
self.graph.add_edge(tuple(start), tuple(end), np.linalg.norm(start-end))
if self.plot:
self.x.append([start[0], end[0]])
self.y.append([start[1], end[1]])
count += 1
k += 1
if k >= num_neighbours:
break
return neighbor_index_list
def find_k_neighbor_all_nodes(self, robot_belief, update_dense=True, global_graph=None, global_graph_knn_dist_max=GLOBAL_GRAPH_KNN_RAD, global_graph_knn_dist_min=CUR_AGENT_KNN_RAD):
""" Find nearest k neighbors to all coords """
kd_tree = KDTree(self.node_coords)
for i, p in enumerate(self.node_coords):
# Append global graph edges to each node first (to ensure connectivity)
num_global_neighbours = 0
if global_graph is not None and tuple(p) in global_graph.edges:
global_graph_edges = global_graph.edges[tuple(p)].values()
global_graph_nodes = np.array([edge.to_node for edge in global_graph_edges])
global_graph_dist = np.array([edge.length for edge in global_graph_edges])
filtered_global_graph_idx = (global_graph_dist <= global_graph_knn_dist_max) & (global_graph_dist > global_graph_knn_dist_min)
filtered_global_graph_nodes = global_graph_nodes[filtered_global_graph_idx]
filtered_global_graph_dist = global_graph_dist[filtered_global_graph_idx]
num_global_neighbours = len(filtered_global_graph_nodes) if len(filtered_global_graph_nodes) < self.k_size else self.k_size
topk_global_graph_nodes = filtered_global_graph_nodes[np.argsort(filtered_global_graph_dist)[:num_global_neighbours]]
topk_global_graph_nodes = set(map(tuple, topk_global_graph_nodes))
for neighbour_node in topk_global_graph_nodes:
self.graph.add_node(tuple(p))
self.graph.add_edge(tuple(p), tuple(neighbour_node), np.linalg.norm(p-neighbour_node))
max_neighbours = self.k_size - num_global_neighbours
num_neighbours = len(self.node_coords) if len(self.node_coords) < max_neighbours else max_neighbours
if num_neighbours > 0:
_, indices = kd_tree.query(p, k=num_neighbours)
if np.isscalar(indices):
indices = np.array([indices])
for j, neighbour in enumerate(self.node_coords[indices]):
start = p
end = neighbour
if not self.check_collision(start, end, robot_belief):
if update_dense:
self.graph.add_node(tuple(start))
self.graph.add_edge(tuple(start), tuple(end), np.linalg.norm(start-end))
if self.plot:
self.x.append([p[0], neighbour[0]])
self.y.append([p[1], neighbour[1]])
def find_k_neighbor_custom(self, node_coords, coords, robot_belief, graph, global_graph=None, global_graph_knn_dist_max=GLOBAL_GRAPH_KNN_RAD, global_graph_knn_dist_min=CUR_AGENT_KNN_RAD, modify_graph=True, max_edge_len=0):
""" Find nearest k neighbors to specified coords (with more options) """
dist_list = np.linalg.norm((node_coords-coords), axis=1)
sorted_index = np.argsort(dist_list)
k = 0
neighbor_index_list, topk_global_graph_nodes = [], []
count = 0
# Append global graph edges to each node first (to ensure connectivity)
num_global_neighbours = 0
if global_graph is not None and tuple(coords) in global_graph.edges:
global_graph_edges = global_graph.edges[tuple(coords)].values()
global_graph_nodes = np.array([edge.to_node for edge in global_graph_edges])
global_graph_dist = np.array([edge.length for edge in global_graph_edges])
filtered_global_graph_idx = (global_graph_dist <= global_graph_knn_dist_max) & (global_graph_dist > global_graph_knn_dist_min)
filtered_global_graph_nodes = global_graph_nodes[filtered_global_graph_idx]
filtered_global_graph_dist = global_graph_dist[filtered_global_graph_idx]
num_global_neighbours = len(filtered_global_graph_nodes) if len(filtered_global_graph_nodes) < self.k_size else self.k_size
topk_global_graph_nodes = filtered_global_graph_nodes[np.argsort(filtered_global_graph_dist)[:num_global_neighbours]]
topk_global_graph_nodes = set(map(tuple, topk_global_graph_nodes))
for neighbour_node in topk_global_graph_nodes:
if modify_graph:
graph.add_node(tuple(coords))
graph.add_edge(tuple(coords), tuple(neighbour_node), np.linalg.norm(coords-neighbour_node))
max_neighbours = self.k_size - num_global_neighbours
num_neighbours = len(node_coords) if len(node_coords) < max_neighbours else max_neighbours
for neighbor_index in sorted_index:
neighbor_index_list.append(neighbor_index)
start = coords
end = node_coords[neighbor_index]
if tuple(end) in topk_global_graph_nodes: # Don't consider global nodes alr added
continue
edge_len = np.linalg.norm(start-end)
if edge_len > max_edge_len:
k += 1
continue
if not self.check_collision(start, end, robot_belief):
if modify_graph:
graph.add_node(tuple(start))
graph.add_edge(tuple(start), tuple(end), edge_len)
count += 1
k += 1
if k >= num_neighbours:
break
return neighbor_index_list
def find_k_neighbor_all_nodes_custom(self, robot_belief, node_coords, graph, global_graph=None, global_graph_knn_dist_max=GLOBAL_GRAPH_KNN_RAD, global_graph_knn_dist_min=CUR_AGENT_KNN_RAD):
""" Find nearest k neighbors to all coords (with more options) """
kd_tree = KDTree(node_coords)
for i, p in enumerate(node_coords):
# Append global graph edges to each node first (to ensure connectivity)
num_global_neighbours = 0
if global_graph is not None and tuple(p) in global_graph.edges:
global_graph_edges = global_graph.edges[tuple(p)].values()
global_graph_nodes = np.array([edge.to_node for edge in global_graph_edges])
global_graph_dist = np.array([edge.length for edge in global_graph_edges])
filtered_global_graph_idx = (global_graph_dist <= global_graph_knn_dist_max) & (global_graph_dist > global_graph_knn_dist_min)
filtered_global_graph_nodes = global_graph_nodes[filtered_global_graph_idx]
filtered_global_graph_dist = global_graph_dist[filtered_global_graph_idx]
num_global_neighbours = len(filtered_global_graph_nodes) if len(filtered_global_graph_nodes) < self.k_size else self.k_size
topk_global_graph_nodes = filtered_global_graph_nodes[np.argsort(filtered_global_graph_dist)[:num_global_neighbours]]
topk_global_graph_nodes = set(map(tuple, topk_global_graph_nodes))
for neighbour_node in topk_global_graph_nodes:
graph.add_node(tuple(p))
graph.add_edge(tuple(p), tuple(neighbour_node), np.linalg.norm(p-neighbour_node))
max_neighbours = self.k_size - num_global_neighbours
num_neighbours = len(node_coords) if len(node_coords) < max_neighbours else max_neighbours
if num_neighbours > 0:
_, indices = kd_tree.query(p, k=num_neighbours)
if np.isscalar(indices):
indices = np.array([indices])
for j, neighbour in enumerate(node_coords[indices]):
start = p
end = neighbour
if not self.check_collision(start, end, robot_belief):
graph.add_node(tuple(start))
graph.add_edge(tuple(start), tuple(end), np.linalg.norm(start-end))
def find_index_from_coords(self, node_coords, p):
if len(np.where(np.linalg.norm(node_coords - p, axis=1) < 1e-1)[0]) == 0:
return -1
else:
return np.where(np.linalg.norm(node_coords - p, axis=1) < 1e-1)[0][0]
def find_closest_index_from_coords(self, node_coords, p):
return np.argmin(np.linalg.norm(node_coords - p, axis=1))
def check_collision(self, start, end, robot_belief):
# # Bresenham line algorithm checking
collision = False
map = robot_belief
x0 = start[0]
y0 = start[1]
x1 = end[0]
y1 = end[1]
dx, dy = abs(x1 - x0), abs(y1 - y0)
x, y = x0, y0
error = dx - dy
x_inc = 1 if x1 > x0 else -1
y_inc = 1 if y1 > y0 else -1
dx *= 2
dy *= 2
while 0 <= x < map.shape[1] and 0 <= y < map.shape[0]:
k = map.item(int(y), int(x))
if x == x1 and y == y1:
break
if k == 1:
collision = True
break
if k == 127:
collision = True
break
if error > 0:
x += x_inc
error -= dy
else:
y += y_inc
error += dx
return collision
def find_shortest_path(self, current, destination, node_coords, graph):
t1 = time()
start_node = tuple(node_coords[self.find_closest_index_from_coords(node_coords, current)])
end_node = tuple(node_coords[self.find_closest_index_from_coords(node_coords, destination)])
route, dist, _, _ = a_star(start_node, end_node, graph)
if start_node != end_node:
assert route != []
elif route is not None:
route = list(map(tuple, route))
return dist, route
def extract_frontier_centers_new(self, robot_belief, robot_location_belief):
global_nodes = np.array([node.coords for node in self.nodes_list if tuple(node.coords) in self.global_graph.nodes])
global_node_utility = np.array([node.utility for node in self.nodes_list if tuple(node.coords) in self.global_graph.nodes])
if len(global_nodes > 0):
center_indices = np.argwhere(np.array(global_node_utility) > MAX_UTILITY_TO_SPARSE)[:, 0].tolist()
sorted_center_indices = sorted(center_indices, key=lambda idx: global_node_utility[idx], reverse=True)
centers = global_nodes[sorted_center_indices]
### Sparsify centers derivedd from 'non_zero_utility_node_indices' (if enough centers)
if centers.shape[0] >= MIN_CENTERS_BEFORE_SPARSIFY:
knn = NearestNeighbors(radius=SPARSIFICATION_CENTERS_KNN_RAD)
knn.fit(centers)
key_center_indices = []
coverd_center_indices = []
for i, center in enumerate(centers):
if i in coverd_center_indices:
pass
else:
_, indices = knn.radius_neighbors(center.reshape(1,2))
key_center_indices.append(i)
for index in indices[0]:
node = centers[index]
if not self.check_collision(center, node, robot_belief):
coverd_center_indices.append(index)
center_indices = [self.find_closest_index_from_coords(global_nodes, centers[i]) for i in key_center_indices]
center_indices = list(set(center_indices))
centers = global_nodes[center_indices]
if SPARSIFY_RETAIN_AGENT_TO_AGENT_ASTAR:
center_indices += [self.find_closest_index_from_coords(global_nodes, pose) for pose in robot_location_belief if pose is not None]
center_indices = list(set(center_indices))
centers = global_nodes[center_indices]
return centers
def generate_coords_from_map(self, map):
new_free_area = self.free_area(map)
free_area_to_check = new_free_area[:, 0] + new_free_area[:, 1] * 1j
uniform_points_to_check = self.uniform_points[:, 0] + self.uniform_points[:, 1] * 1j
_, _, candidate_indices = np.intersect1d(free_area_to_check, uniform_points_to_check, return_indices=True)
return self.uniform_points[candidate_indices]