-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerator.py
52 lines (43 loc) · 1.63 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from __future__ import division
import numpy as np
from keras.utils import Sequence
class DataGenerator(Sequence):
"""Generates data for Keras
Sequence based data generator. Suitable for building data generator for training and prediction.
"""
def __init__(self, data, data_len=10, batch_size=32):
self.data = data
self.data_len = data_len
self.batch_size = batch_size
self.on_epoch_end()
def __len__(self):
"""Denotes the number of batches per epoch
:return: number of batches per epoch
"""
return int((len(self.data) - self.data_len) / self.batch_size) + 1
def __getitem__(self, index):
"""Generate one batch of data
:param index: index of the batch
:return: X and y when fitting. X only when predicting
"""
# Generate indexes of the batch
indexes = self.indexes[index * self.batch_size:(index + 1) * self.batch_size]
# Generate data
X = self._generate_X(indexes)
return X[:,:self.data_len], X[:,1:]
def on_epoch_end(self):
"""Updates indexes after each epoch
"""
self.indexes = np.arange(len(self.data) - self.data_len)
def _generate_X(self, list_index):
"""Generates data containing batch_size images
:param list_IDs_temp: list of label ids to load
:return: batch of images
"""
# Initialization
X = np.empty((self.batch_size, self.data_len+1, 4))
# Generate data
for i, ID in enumerate(list_index):
data_seq = self.data[ID:ID+self.data_len+1]
X[i] = data_seq
return X