-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
142 lines (121 loc) · 3.7 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import pickle
import time
import numpy as np
import torch
import utils
from dataset import BaseDataset, collate_fn
from model import GLeMaNet
from sklearn.metrics import (
accuracy_score,
average_precision_score,
f1_score,
precision_score,
recall_score,
roc_auc_score,
)
from torch.utils.data import DataLoader
from tqdm import tqdm
def main(args):
# hyper parameters
data_path = os.path.join(args.data_path, args.dataset)
if args.directed:
data_path += "_directed"
result_dir = utils.ensure_dir(args.result_dir, args)
result_file = f"result{args.test_keys[9:-4]}.csv"
args.train_keys = os.path.join(data_path, args.train_keys)
args.test_keys = os.path.join(data_path, args.test_keys)
with open(args.test_keys, "rb") as fp:
test_keys = pickle.load(fp)
print(f"Number of test data: {len(test_keys)}")
# Initialize model
model = GLeMaNet(args)
print(
"Number of parameters: ",
sum(p.numel() for p in model.parameters() if p.requires_grad),
)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = utils.initialize_model(model, device, load_save_file=args.ckpt)
test_dataset = BaseDataset(test_keys, data_path, embedding_dim=args.embedding_dim)
test_dataloader = DataLoader(
test_dataset,
args.batch_size,
shuffle=False,
num_workers=args.num_workers,
collate_fn=collate_fn,
)
# Starting evaluation
test_true = []
test_pred = []
model.eval()
st_eval = time.time()
for sample in tqdm(test_dataloader):
H, A1, A2, M, S, Y, V, _ = sample
H, A1, A2, M, S, Y, V = (
H.to(device),
A1.to(device),
A2.to(device),
M.to(device),
S.to(device),
Y.to(device),
V.to(device),
)
# Test neural network
with torch.no_grad():
pred = model((H, A1, A2, V))
# Collect true label and predicted label
test_true.append(Y.data.cpu().numpy())
test_pred.append(pred.data.cpu().numpy())
end = time.time()
test_pred = np.concatenate(test_pred, 0)
test_true = np.concatenate(test_true, 0)
result_rows = []
for conf_step in [
0.5,
0.6,
0.7,
0.8,
0.9,
0.91,
0.92,
0.93,
0.94,
0.95,
0.96,
0.97,
0.98,
0.99,
]:
test_pred_by_conf = test_pred.copy()
test_pred_by_conf[test_pred_by_conf < conf_step] = 0
test_pred_by_conf[test_pred_by_conf > 0] = 1
test_roc = roc_auc_score(test_true, test_pred_by_conf)
test_acc = accuracy_score(test_true, test_pred_by_conf)
test_pre = precision_score(test_true, test_pred_by_conf)
test_rec = recall_score(test_true, test_pred_by_conf)
test_f1s = f1_score(test_true, test_pred_by_conf)
test_prc = average_precision_score(test_true, test_pred_by_conf)
test_time = (end - st_eval) / len(test_dataset)
result_rows.append(
[
conf_step,
test_time,
test_roc,
test_prc,
test_pre,
test_rec,
test_f1s,
test_acc,
]
)
with open(os.path.join(result_dir, result_file), "w", encoding="utf-8") as f:
f.write(
"Confident,Execution Time,ROC AUC,PR AUC,Precision,Recall,F1-Score,Accuracy\n"
)
for row in result_rows:
f.write(",".join([str(x) for x in row]))
f.write("\n")
if __name__ == "__main__":
args = utils.parse_args()
print(args)
main(args)