-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·798 lines (663 loc) · 34 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
import numpy as onp
import torch as np
import scipy as sp
import os
import sys
import hickle as hkl
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.colors as clr
plt.rc('xtick',labelsize=12)
plt.rc('ytick',labelsize=12)
plt.rc('axes', labelsize=16, titlesize=24)
plt.rc('legend', fontsize=10,frameon=False)
plt.rc('text', usetex=True)
plt.rcParams['text.latex.preamble']=[r"\usepackage{amsmath}"]
import cmasher as cmr # https://github.com/1313e/CMasher
from Transmission2D import self_interaction_integral_scalar as self_interaction_integral_TM
from Transmission2D import self_interaction_integral_vector as self_interaction_integral_TE
from Transmission3D import self_interaction_integral_scalar, self_interaction_integral_vector
c = 3e8 #speed of light in vacuum, m/s
def alpha_cold_atoms_2d(k0range, omega0 = 3e15, Gamma = 5e16, Lfactor = 1e-4):
"""
Typical polarizability of cold atoms, using an elastically bound electron model for the dielectric constant, in 2d space.
Arguments:
k0range: array of k values, in rad/m
omega0: bare resonance pulsation, in rad/s
Gamma: bare linewidth, in rad/s
Lfactor: conversion factor for lengths, the values above being given for L = 100 µm
"""
return (-2*Gamma/(omega0*(k0range*k0range-omega0*omega0/(c*c)+0.5j*Gamma*k0range*k0range/omega0)))/Lfactor**2
def alpha_cold_atoms_3d(k0range, omega0 = 3e15, Gamma = 5e16, Lfactor = 1e-4):
"""
Typical polarizability of cold atoms, using an elastically bound electron model for the dielectric constant, in 3d space.
Arguments:
k0range: array of k values, in rad/m
omega0: bare resonance pulsation, in rad/s
Gamma: bare linewidth, in rad/s
Lfactor: conversion factor for lengths, the values above being given for L = 100 µm
"""
omegarange = k0range * c
omega0sq = omega0*omega0
return (-4*onp.pi*(c**3)*Gamma/(omega0sq*(omegarange*omegarange-omega0sq+1j*Gamma*omegarange*omegarange*omegarange/omega0sq)))/Lfactor**3
def alpha_Lorentz(k0range, volume, kresonant, kplasma, damping):
"""
Bare Lorentz polarizability
Arguments:
k0range: array of k values
volume: volume of scatterers
kresonant: resonance value for k
kplasma: plasma frequency converted to k-vector
damping: non-radiative losses in k units
"""
return volume * kplasma**2 / (kresonant**2 - k0range**2 - 1j * damping * k0range)
def alpha_small_dielectric_object(refractive_n, volume):
"""
Bare static polarizability of a small dielectric object
refractive_n: refractive index of the rods, can be complex
volume: volume of the ball, in m^d
"""
# Define the dielectric constant from the refractive index
epsilon = refractive_n**2
delta_epsilon = epsilon - 1
if onp.real(refractive_n) < 1.0:
contrast = refractive_n - 1
medium_n = onp.sqrt(1 - delta_epsilon)
print("Real part of provided refractive_n is smaller than 1.0. Assuming dielectric contrast delta_epsilon = n_provided**2 - 1 ="+str(delta_epsilon)+" between medium and scatterers. We will assume n = 1.0 in scatterers and a medium with n_medium = sqrt(1 - delta_epsilon) = "+str(medium_n))
return volume*delta_epsilon
def uniform_unit_disk_picking(n_points):
"""
Generates an (N,2) tensor of n_points random points with a flat distribution inside the unit disk
"""
U1 = onp.random.uniform(size = n_points)
U2 = onp.random.uniform(size = n_points)
X = onp.sqrt(U2) * onp.cos(2 * onp.pi * U1)
Y = onp.sqrt(U2) * onp.sin(2 * onp.pi * U1)
points = np.from_numpy(onp.vstack((X,Y)))
return points.t()
def uniform_unit_ball_picking(n_points, dim):
"""
Generates an (N,dim) tensor of n_points random points with a flat distribution inside the unit dim-ball
https://mathworld.wolfram.com/BallPointPicking.html
"""
normals = np.normal(0,1, size = (n_points, dim))
exps = np.empty((n_points, 1))
exps.exponential_()
exps = np.sqrt(exps)
proxies = np.cat((normals, exps),1)
points = normals/(np.linalg.norm(proxies, axis=-1)).reshape(n_points,1)
return points
def fibonacci_sphere(samples=1000):
'''
Returns a Fibonacci series sampling of the unit sphere with a set number of points.
See https://stackoverflow.com/questions/9600801/evenly-distributing-n-points-on-a-sphere
'''
points = []
golden = onp.pi * (onp.sqrt(5.) - 1.) # golden angle in radians
i = np.arange(samples)
z = 1 - (i / (samples - 1)) * 2 # z goes from 1 to -1
radii = onp.sqrt(1 - z**2)
thetas = i * golden
x = onp.cos(thetas) * radii
y = onp.sin(thetas) * radii
points = onp.stack([x,y,z]).transpose()
# plot_3d_points(np.array(points), 'testfibo')
return points.astype(onp.float64)
def vector_3d_u_and_p(thetas, rotate_u = [0,0], polarization_angle_radians = 0.0, switch_angle_scans = False):
'''
Generate tensors of incoming wave vector orientations u and polarization orientations p based on thetas, rotation angles
Allows user to switch between incoming orientation scan and polarization scan
'''
u = onp.stack([onp.cos(thetas),onp.sin(thetas),onp.zeros(len(thetas))]).T
u = np.from_numpy(u)
# Define orthoradial spherical basis vectors perp to u(altitude = 0, azimuth = theta)
# Here make it so p is 0 0 1 if polarization_angle_degrees = 0: minus sign compared to usual physics convention
e_alt = np.zeros(u.shape)
e_alt[:,2] = 1
e_azim = onp.stack([onp.sin(thetas),-onp.cos(thetas),onp.zeros(len(thetas))]).T
p = e_alt * onp.cos(polarization_angle_radians) + e_azim * onp.sin(polarization_angle_radians)
if rotate_u != [0,0]:
u = rotate_3d_xy(u, rotate_u)
p = rotate_3d_xy(p, rotate_u)
# Do a polarization scan instead of a u scan
if switch_angle_scans:
return p, u
else:
return u, p
def rotation_matrix(vector, angle):
# https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle
return onp.cos(angle) * onp.eye(3) + onp.sin(angle) * onp.cross(vector, onp.eye(3)) + (1 - onp.cos(angle)) * onp.outer(vector,vector)
def rotate_3d_xy(u, rotate_u):
'''
Rotate incoming vectors by a list of 2 angles in DEGREES encoding rotation around x and rotation around y in 3d
'''
Rx = rotation_matrix(onp.array([1,0,0]), rotate_u[0] * onp.pi / 180.0)
Ry = rotation_matrix(onp.array([0,1,0]), rotate_u[1] * onp.pi / 180.0)
Rtot = onp.matmul(Rx,Ry)
Rtot = np.from_numpy(Rtot)
rotated =np.matmul(Rtot.reshape(1,3,3),u.reshape(-1,3,1)).squeeze()
return(rotated)
def plot_transmission_angularbeam(k0range, L, thetas, intensity, file_name_root, n_thetas_trans = 0.0, adapt_scale = False, normalization = onp.array([]), appended_string=''):
"""
Plots a radial version of the frequency-angle transmission plot given
k0range: list of wave vector moduli, in rad/m
L: system sidelength, in m
thetas: list of angles used for the orientation of the laser, in radians
intensity: the relevant field intensity (dimensions: ks, detection angles, beam angles)
file_name_root: prepended to the name of the file
appended_string: possible postfix for the name of the file, e.g. "TM" or "TE"
"""
freqs = onp.real(k0range*L/(2*onp.pi))
# Define a matrix that encodes the width of the detector as a number of 1s every line around the central angle
n_angles = intensity.shape[1]
anglewidth_matrix = onp.diag(onp.ones(n_angles))
if n_thetas_trans > 0:
half_width = onp.int(onp.floor(n_thetas_trans/2))
anglewidth_matrix = onp.fromfunction(lambda i, j: onp.abs( (i - j + n_angles/2)%n_angles - n_angles/2) <= half_width, (n_angles, n_angles))
total_ = onp.sum(intensity*anglewidth_matrix,axis=1)
#Normalize the field differently if needed
if normalization.shape[0] != 0:
total_norm = onp.sum(normalization,axis=1)
total_ /= total_norm
else:
total_ /= n_thetas_trans + 1
# total_ /= onp.max(total_)
if adapt_scale:
vmin = None
vmax = None
else:
vmin = 1e-3
vmax = 1e0
fig, ax = plt.subplots(subplot_kw={'projection':'polar'})
pc = ax.pcolormesh(thetas,freqs,total_,norm=clr.LogNorm(vmin=vmin,vmax=vmax), cmap=cmr.ember)#cmap=cmr.torch) #cmap='inferno')
#ax.set_rmin(10.0)
#ax.set_rticks([20,40])
ax.set_axis_off()
cbar = fig.colorbar(pc, location='left')
cbar.ax.tick_params(labelsize=24)
plt.savefig(file_name_root+'_transmission_angularbeam_'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0.1)
plt.close()
fig = plt.figure()
ax = fig.gca()
pc = ax.imshow(total_[:,:int(total_.shape[1]/2)], norm=clr.LogNorm(vmin=vmin,vmax=vmax), cmap=cmr.ember, extent =[0,180,freqs[0],freqs[-1]], origin='lower')
ax.set_xlabel(r'$\theta$')
ax.set_ylabel(r'$k_0L/2\pi$')
ax.set_aspect(180/(freqs[-1] - freqs[0]))
fig.colorbar(pc)
plt.savefig(file_name_root+'_transmission_beam_'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0.1)
plt.close()
avg_intensity = onp.mean(total_, axis=1)
fig = plt.figure()
ax = fig.gca()
freqs = onp.real(k0range*L/(2*onp.pi))
ax.plot(freqs, avg_intensity)
ax.set_xlabel(r'$k_0L/2\pi$')
ax.set_ylabel('Intensity')
ax.set_yscale('log')
plt.savefig(file_name_root+'_transmission_beam_avg'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0)
plt.close()
onp.savetxt(file_name_root+'_transmission_beam_avg'+appended_string+'.csv',onp.stack([freqs,avg_intensity]).T)
def plot_transmission_angularbeam_3d(k0range, L, thetas, u, intensity, measurement_points, file_name_root, angular_width = 1.0, adapt_scale = False, normalization = onp.array([]), appended_string=''):
"""
Plots a radial version of the frequency-angle transmission plot given
k0range: list of wave vector moduli, in rad/m
L: system sidelength, in m
thetas: list of angles used for the orientation of the laser, in radians
intensity: the relevant field intensity (dimensions: ks, detection angles, beam angles)
file_name_root: prepended to the name of the file
appended_string: possible postfix for the name of the file, e.g. "TM" or "TE"
"""
freqs = onp.real(k0range*L/(2*onp.pi))
cos_max_angle = onp.cos(angular_width * (onp.pi/2))
u = u.numpy()
u_out = measurement_points/onp.linalg.norm(measurement_points,axis=-1)[:,onp.newaxis]
dotprod = onp.sum(u[:,onp.newaxis] * u_out.numpy(), axis = -1)
dotprod = dotprod.transpose()
forward = dotprod >= cos_max_angle
total_ = onp.sum(intensity*forward[onp.newaxis,:],axis=1)
#Normalize the field differently if needed
if normalization.shape[0] != 0:
total_norm = onp.sum(normalization,axis=1)
total_ /= total_norm
else:
total_ /= onp.sum(forward, axis=0)[onp.newaxis,:] + 1
# total_ /= onp.max(total_)
if adapt_scale:
vmin = None
vmax = None
else:
vmin = 1e-3
vmax = 1e0
fig, ax = plt.subplots(subplot_kw={'projection':'polar'})
pc = ax.pcolormesh(thetas,freqs,total_,norm=clr.LogNorm(vmin=vmin,vmax=vmax), cmap=cmr.ember)
#ax.set_rmin(10.0)
#ax.set_rticks([20,40])
ax.set_axis_off()
cbar = fig.colorbar(pc)
cbar.ax.tick_params(labelsize=24)
plt.savefig(file_name_root+'_transmission_angularbeam_'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0.1)
plt.close()
fig = plt.figure()
ax = fig.gca()
pc = ax.imshow(total_[:,:int(total_.shape[1]/2)], norm=clr.LogNorm(vmin=vmin,vmax=vmax), cmap=cmr.ember, extent =[0,180,freqs[0],freqs[-1]], origin='lower')
ax.set_xlabel(r'$\theta$')
ax.set_ylabel(r'$k_0L/2\pi$')
ax.set_aspect(180/(freqs[-1] - freqs[0]))
fig.colorbar(pc)
plt.savefig(file_name_root+'_transmission_beam_'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0.1)
plt.close()
avg_intensity = onp.mean(total_, axis=1)
fig = plt.figure()
ax = fig.gca()
freqs = onp.real(k0range*L/(2*onp.pi))
ax.plot(freqs, avg_intensity)
ax.set_xlabel(r'$k_0L/2\pi$')
ax.set_ylabel('Intensity')
ax.set_yscale('log')
plt.savefig(file_name_root+'_transmission_beam_avg'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0)
plt.close()
onp.savetxt(file_name_root+'_transmission_beam_avg'+appended_string+'.csv',onp.stack([freqs,avg_intensity]).T)
def plot_transmission_flat(k0range, L, thetas, intensity, file_name_root, n_thetas_trans = 0.0, adapt_scale = False, normalization = onp.array([]), appended_string=''):
"""
Plots one a flattened version of the frequency-angle transmission plot given
k0range: list of wave vector moduli, in rad/m
L: system sidelength, in m
thetas: list of angles used for the orientation of the laser, in radians
intensity: the relevant field intensity (dimensions: ks, detection angles, beam angles)
file_name_root: prepended to the name of the file
appended_string: possible postfix for the name of the file, e.g. "TM" or "TE"
"""
freqs = onp.real(k0range*L/(2*onp.pi))
# Define a matrix that encodes the width of the detector as a number of 1s every line around the central angle
n_angles = intensity.shape[1]
anglewidth_matrix = onp.diag(onp.ones(n_angles))
if n_thetas_trans > 0:
half_width = onp.int(onp.floor(n_thetas_trans/2))
anglewidth_matrix = onp.fromfunction(lambda i, j: onp.abs( (i - j + n_angles/2)%n_angles - n_angles/2) <= half_width, (n_angles, n_angles))
total_ = onp.sum(intensity*anglewidth_matrix,axis=1)
if normalization.shape[0] != 0:
total_norm = onp.sum(normalization,axis=1)
total_ /= total_norm
else:
total_ /= n_thetas_trans + 1
# total_ /= onp.max(total_)
if adapt_scale:
vmin = None
vmax = None
else:
vmin = 1e-2
vmax = 1e0
fig = plt.figure()
ax = fig.gca()
pc = ax.imshow(total_[:,:int(total_.shape[1]/2)], norm=clr.LogNorm(vmin=vmin,vmax=vmax), cmap=cmr.ember, extent =[0,180,freqs[0],freqs[-1]], origin='lower')
ax.set_xlabel(r'$\theta$')
ax.set_ylabel(r'$k_0L/2\pi$')
ax.set_aspect(180/(freqs[-1] - freqs[0]))
fig.colorbar(pc)
plt.savefig(file_name_root+'_transmission_beam_'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0.1)
plt.close()
avg_intensity = onp.mean(total_, axis=1)
fig = plt.figure()
ax = fig.gca()
freqs = onp.real(k0range*L/(2*onp.pi))
ax.plot(freqs, avg_intensity)
ax.set_xlabel(r'$k_0L/2\pi$')
ax.set_ylabel('Intensity')
ax.set_yscale('log')
plt.savefig(file_name_root+'_transmission_beam_avg'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0)
plt.close()
onp.savetxt(file_name_root+'_transmission_beam_avg'+appended_string+'.csv',onp.stack([freqs,avg_intensity]).T)
def plot_transmission_linear(k0range, L,x, intensity, file_name_root,cmap='viridis', appended_string=''):
"""
Plots one a flattened version of the frequency-angle transmission plot given
k0range: list of wave vector moduli, in rad/m
L: system sidelength, in m
thetas: list of angles used for the orientation of the laser, in radians
intensity: the relevant field intensity (dimensions: ks, detection angles, beam angles)
file_name_root: prepended to the name of the file
appended_string: possible postfix for the name of the file, e.g. "TM" or "TE"
"""
freqs = onp.real(k0range*L/(2*onp.pi))
fig = plt.figure()
ax = fig.gca()
colors = onp.linspace(0,1,len(k0range))
cmap = plt.get_cmap(cmap)
for k in range(len(k0range)):
ax.plot(x,intensity[k,:,0],c=cmap(colors[k]))
ax.set_xlabel(r'$x$')
ax.set_ylabel('Intensity')
ax.set_yscale('log')
plt.savefig(file_name_root+'_transmission_linear_'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0.1)
plt.close()
def plot_singlebeam_angular_frequency_plot(k0range, L, thetas, intensity, file_name_root, n_thetas_trans = 0, normalization = onp.array([]), plot_theta_index = 0, appended_string=''):
"""
Plots specific intensity for a single beam, in a radial frequency-angle plot
k0range: list of wave vector moduli, in rad/m
L: system sidelength, in m
thetas: list of angles used for the orientation of the laser, in radians
intensity: the relevant field intensity (dimensions: ks, detection angles, beam angles)
file_name_root: prepended to the name of the file
appended_string: possible postfix for the name of the file, e.g. "TM" or "TE"
"""
fig, ax = plt.subplots(subplot_kw={'projection':'polar'})
freqs = onp.real(k0range*L/(2*onp.pi))
total_ = intensity[:,:,plot_theta_index]
if normalization.shape[0] != 0:
total_norm = onp.sum(normalization,axis=1)
total_ /= total_norm
# XXX Use n_thetas_trans here as well on second dim if needed. Useful?
# pc = ax.pcolormesh(thetas,freqs,total_,norm=clr.LogNorm(vmin=total_.min(),vmax=total_.max()), cmap=cmr.ember)
pc = ax.pcolormesh(thetas,freqs,total_,norm=clr.LogNorm(vmin=1e-2,vmax=1e0), cmap=cmr.ember)
ax.set_axis_off()
# fig.colorbar(pc)
plt.savefig(file_name_root+'_transmission_angular'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0)
plt.close()
def plot_full_fields(field, ngridx, ngridy, k0_, angle_, intensity_fields, amplitude_fields, phase_fields, file_name_root, appended_string='', my_dpi = 1):
if intensity_fields:
intensity = onp.absolute(field)**2
intensity = np.where(intensity <= 1e-10, 1e-10, intensity)
fig = plt.figure(figsize = (ngridx/my_dpi, ngridy/my_dpi), dpi = my_dpi)
ax = plt.gca()
pc = ax.imshow(intensity, cmap='magma' , norm=clr.LogNorm(vmin=1e-6,vmax=2e0))
ax.tick_params(left = False, right = False , labelleft = False , labelbottom = False, bottom = False)
plt.savefig(file_name_root+'_log_capped_intensity_k0'+str(k0_)+'_angle_'+str(angle_)+appended_string+'.png', bbox_inches = 'tight', dpi=my_dpi, pad_inches = 0)
plt.close()
fig = plt.figure(figsize=(ngridx/my_dpi, ngridy/my_dpi), dpi = my_dpi)
ax = plt.gca()
pc = ax.imshow(intensity, cmap='magma', vmin=0, vmax=2e0)
ax.tick_params(left = False, right = False , labelleft = False , labelbottom = False, bottom = False)
plt.savefig(file_name_root+'_linear_capped_intensity_k0'+str(k0_)+'_angle_'+str(angle_)+appended_string+'.png', bbox_inches = 'tight',dpi=my_dpi, pad_inches = 0)
plt.close()
if amplitude_fields:
amplitude = onp.real(field)
scale_max = onp.sqrt(2.0)
fig = plt.figure(figsize=(ngridx/my_dpi,ngridy/my_dpi), dpi=my_dpi)
ax = plt.gca()
pc = ax.imshow(amplitude, cmap=cmr.redshift, vmin=-scale_max, vmax=scale_max)
ax.tick_params(left = False, right = False , labelleft = False , labelbottom = False, bottom = False)
plt.savefig(file_name_root+'_linear_capped_amplitude_k0'+str(k0_)+'_angle_'+str(angle_)+appended_string+'.png', bbox_inches = 'tight',dpi=my_dpi, pad_inches = 0)
plt.close()
if phase_fields:
pure_phase = onp.angle(field)
fig = plt.figure(figsize=(ngridx/my_dpi,ngridy/my_dpi), dpi=my_dpi)
ax = plt.gca()
pc = ax.imshow(pure_phase,cmap=cmr.emergency_s, vmin=-onp.pi,vmax=onp.pi,)
ax.tick_params(left = False, right = False , labelleft = False , labelbottom = False, bottom = False)
plt.savefig(file_name_root+'_phase_k0'+str(k0_)+'_angle_'+str(angle_)+appended_string+'.png', bbox_inches = 'tight',dpi=my_dpi, pad_inches = 0)
plt.close()
def plot_2d_field(intensity, ngrid, file_name_root, cmap=cmr.ember,logscale = True, vmin=1e-3, vmax=1e0,appended_string=''):
fig = plt.figure()
ax = plt.gca()
if logscale:
pc = ax.imshow(intensity.reshape(ngrid,ngrid),cmap=cmap,norm=clr.LogNorm(vmin=vmin,vmax=vmax))
else:
pc = ax.imshow(intensity.reshape(ngrid,ngrid),cmap=cmap,vmin=vmin,vmax=vmax)
fig.colorbar(pc)
plt.savefig(file_name_root+'_intensity'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0)
plt.close()
def plot_3d_points(points, file_name):
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.scatter(points[:,0], points[:,1], points[:,2])
plt.savefig(file_name+'_3dplot.png', dpi = 300)
def plot_2d_points(points, file_name):
fig = plt.figure(figsize=(10,10),dpi=300)
ax = fig.gca()
ax.scatter(points[:,0], points[:,1], s = 2)
plt.savefig(file_name+'_2dplot.png', dpi = 300)
def plot_IPR_damping_values(lambdas, IPRs, file_name, appended_string = '', logscale = False):
fig = plt.figure(figsize=(10,10),dpi=300)
ax = fig.gca()
scatterplot = ax.scatter(np.real(lambdas), np.imag(lambdas), c=IPRs, s = 100, edgecolors='none', cmap=cmr.bubblegum, vmin = 0, vmax = 0.5)
cbar = plt.colorbar(scatterplot)
cbar.set_label('IPR', rotation=270)
ax.set_xlabel(r'$Re \Delta_n$')
ax.set_ylabel(r'$Im \Delta_n$')
if logscale:
ax.set_yscale('log')
plt.savefig(file_name+'_deltas_IPRs'+appended_string+'.png', dpi = 300)
plt.close()
fig = plt.figure(figsize=(10,10),dpi=300)
ax = fig.gca()
scatterplot = ax.scatter(np.imag(lambdas), IPRs, c=IPRs, s = 100, edgecolors='none', cmap=cmr.bubblegum, vmin = 0, vmax = 0.5)
ax.set_xlabel(r'$Im \Delta_n$')
ax.set_ylabel(r'$IPR$')
if logscale:
ax.set_xscale('log')
ax.set_yscale('log')
plt.savefig(file_name+'_damping_IPRs'+appended_string+'.png', dpi = 300)
plt.close()
def plot_LDOS_2D(ldos_change,k0_,ngridx,ngridy,file_name,my_dpi=1, appended_string=''):
# Matplotlib deals with figure sizes in a completely idiotic way, workaround https://stackoverflow.com/questions/13714454/specifying-and-saving-a-figure-with-exact-size-in-pixels
fig = plt.figure(figsize=(ngridx/my_dpi,ngridy/my_dpi), dpi=my_dpi)
ax = plt.gca()
pc=ax.imshow(ldos_change.numpy().reshape(ngridy,ngridx),cmap=cmr.iceburn, vmin=-1.0, vmax=1.0)
ax.tick_params(left = False, right = False , labelleft = False , labelbottom = False, bottom = False)
plt.savefig(file_name+'_k0_'+str(k0_)+'_ldos_capped'+appended_string+'.png', bbox_inches='tight', pad_inches=0., dpi=my_dpi)
plt.close()
def plot_angular_averaged_transmission(k0range, L, intensities, file_name, appended_string=''):
# Angular-averaged transmission
intensities_ = onp.sum(intensities*onp.diag(onp.ones(intensities.shape[-1])),axis=1)
avg_intensity = onp.mean(intensities_, axis=1)
fig = plt.figure()
ax = fig.gca()
freqs = onp.real(k0range*L/(2*onp.pi))
ax.plot(freqs, avg_intensity)
ax.set_xlabel(r'$k_0L/2\pi$')
ax.set_ylabel('Intensity')
ax.set_yscale('log')
plt.savefig(file_name+'_transmission_avg'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0)
plt.close()
def plot_optical_thickness(k0range, L, alpharange, ndim, phi, volume, file_name, appended_string=''):
# Determine and plot optical thickness against k for the system
if ndim == 2:
scattering_cross_section = 0.25 * k0range**3 * onp.absolute(alpharange)**2
elif ndim == 3:
scattering_cross_section = (1.0 / (6.0 * onp.pi)) * k0range**4 * onp.absolute(alpharange)**2
rho = phi / volume
scattering_mean_free_path_IS = 1. / ( rho * scattering_cross_section )
optical_thickness = L / scattering_mean_free_path_IS
fig = plt.figure()
ax = fig.gca()
freqs = onp.real(k0range*L/(2*onp.pi))
ax.plot(freqs, optical_thickness)
ax.set_xlabel(r'$k_0L/2\pi$')
ax.set_ylabel('Optical thickness')
plt.savefig(file_name+'_opticalthickness'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0)
plt.close()
def plot_dressed_polarizability(k0range, L, alpharange, ndim, radius, volume, self_interaction, file_name, appended_string = '', scalar = False, self_interaction_type = "Rayleigh"):
# Plot dressed polarizability taking into account self_interaction to find resonances
if ndim == 3:
alpha_d = alpharange.copy()
if self_interaction:
if scalar:
self_int = self_interaction_integral_scalar(k0range, radius, self_interaction_type)
else:
self_int = self_interaction_integral_vector(k0range, radius, self_interaction_type)
alpha_d /= (1 - k0range**2 * alpharange * self_int / volume)
if scalar:
scattering_cross_section = (1.0 / (4.0 * onp.pi)) * k0range**4 * onp.absolute(alpha_d)**2
else:
scattering_cross_section = (1.0 / (6.0 * onp.pi)) * k0range**4 * onp.absolute(alpha_d)**2
extinction_cross_section = k0range * onp.imag(alpha_d)
alpha_d = onp.absolute(alpha_d)
max_alpha = onp.argmax(alpha_d)
k0_max = k0range[max_alpha] * L / (2 * onp.pi)
if max_alpha != alpha_d.shape[0] - 1:
print("Resonance in the explored interval, at k0 = "+ str(k0_max) +"!")
fig = plt.figure()
ax = fig.gca()
freqs = onp.real(k0range*L/(2*onp.pi))
ax.plot(freqs, alpha_d, c = 'r', label = 'dressed')
if self_interaction:
ax.plot(freqs, onp.absolute(alpharange[0])*onp.ones(alpharange.shape), c='k', ls = '--', label = 'bare')
deltaeps = alpharange[0]*onp.ones(alpharange.shape) / volume
clausius = 3 * volume * deltaeps / (deltaeps + 3)
ax.plot(freqs, onp.absolute(clausius), c='k', ls =':', label = 'Clausius-Mossotti')
ax.set_xlabel(r'$k_0L/2\pi$')
ax.set_ylabel(r"$|\alpha_d|$")
ax.legend()
plt.savefig(file_name+'_alphad'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0)
plt.close()
fig = plt.figure()
ax = fig.gca()
freqs = onp.real(k0range*L/(2*onp.pi))
ax.plot(freqs, scattering_cross_section, c='r', label = "Rayleigh scattering CS")
ax.plot(freqs, extinction_cross_section, c='k', label = "Rayleigh extinction CS")
ax.plot(freqs, extinction_cross_section - scattering_cross_section, c='b', label = "Rayleigh absorption CS")
ax.set_xlabel(r'$k_0L/2\pi$')
ax.set_ylabel('Cross-sections')
ax.legend()
plt.savefig(file_name+'_crosssections'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0)
plt.close()
elif ndim == 2:
alpha_d_TE = alpharange.copy()
alpha_d_TM = alpharange.copy()
if self_interaction:
self_int_TM = self_interaction_integral_TM(k0range, radius, self_interaction_type)
self_int_TE = self_interaction_integral_TE(k0range, radius, self_interaction_type)
alpha_d_TM /= (1 - k0range**2 * alpharange * self_int_TM / volume)
alpha_d_TE /= (1 - k0range**2 * alpharange * self_int_TE / volume)
scattering_cross_section_TE = (1.0 / 8.0) * k0range**3 * onp.absolute(alpha_d_TE)**2
extinction_cross_section_TE = k0range * onp.imag(alpha_d_TE)
scattering_cross_section_TM = (1.0 / 4.0) * k0range**3 * onp.absolute(alpha_d_TM)**2
extinction_cross_section_TM = k0range * onp.imag(alpha_d_TM)
alpha_d_TE = onp.absolute(alpha_d_TE)
alpha_d_TM = onp.absolute(alpha_d_TM)
if scalar:
max_TM = onp.argmax(alpha_d_TM)
k0_max_TM = k0range[max_TM] * L / (2 * onp.pi)
if onp.argmax(alpha_d_TM) != alpha_d_TM.shape[0] - 1:
print("Resonance in the explored interval, at k0 = "+ str(k0_max_TM) +"!")
fig = plt.figure()
ax = fig.gca()
freqs = onp.real(k0range*L/(2*onp.pi))
ax.plot(freqs, alpha_d_TM, c = 'r')
ax.plot(freqs, onp.absolute(alpharange[0])*onp.ones(alpharange.shape), c='k', ls ='--', label = 'bare')
ax.set_xlabel(r'$k_0L/2\pi$')
ax.set_ylabel(r"$|\alpha_d|$")
ax.legend()
plt.savefig(file_name+'_alphad'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0)
plt.close()
fig = plt.figure()
ax = fig.gca()
freqs = onp.real(k0range*L/(2*onp.pi))
ax.plot(freqs, scattering_cross_section_TM, c='r', label = "Rayleigh scattering CS")
ax.plot(freqs, extinction_cross_section_TM, c='k', label = "Rayleigh extinction CS")
ax.plot(freqs, extinction_cross_section_TM - scattering_cross_section_TM, c='b', label = "Rayleigh absorption CS")
ax.set_xlabel(r'$k_0L/2\pi$')
ax.set_ylabel('Cross-sections')
ax.legend()
plt.savefig(file_name+'_crosssections'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0)
plt.close()
else:
max_TE = onp.argmax(alpha_d_TE)
k0_max_TE = k0range[max_TE] * L / (2 * onp.pi)
if max_TE != alpha_d_TE.shape[0] - 1:
print("Vector Resonance in the explored interval, at k0 = "+ str(k0_max_TE) +"!")
max_TM = onp.argmax(alpha_d_TM)
k0_max_TM = k0range[max_TM] * L / (2 * onp.pi)
if onp.argmax(alpha_d_TM) != alpha_d_TM.shape[0] - 1:
print("Scalar Resonance in the explored interval, at k0 = "+ str(k0_max_TM) +"!")
fig = plt.figure()
ax = fig.gca()
freqs = onp.real(k0range*L/(2*onp.pi))
ax.plot(freqs, alpha_d_TE, c = 'r', label = 'vector')
ax.plot(freqs, alpha_d_TM, c = 'b', label = 'scalar')
if self_interaction:
ax.plot(freqs, onp.absolute(alpharange[0])*onp.ones(alpharange.shape), c='k', ls ='--', label = 'bare')
deltaeps = alpharange[0]*onp.ones(alpharange.shape) / volume
clausius = 2 * volume * deltaeps / (deltaeps + 2)
ax.plot(freqs, onp.absolute(clausius), c='k', ls =':', label = 'Clausius-Mossotti')
ax.set_xlabel(r'$k_0L/2\pi$')
ax.set_ylabel(r"$|\alpha_d|$")
ax.legend()
plt.savefig(file_name+'_alphad'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0)
plt.close()
fig = plt.figure()
ax = fig.gca()
freqs = onp.real(k0range*L/(2*onp.pi))
ax.plot(freqs, scattering_cross_section_TE, c='r', label = "Rayleigh scattering CS")
ax.plot(freqs, extinction_cross_section_TE, c='k', label = "Rayleigh extinction CS")
ax.plot(freqs, extinction_cross_section_TE - scattering_cross_section_TE, c='b', label = "Rayleigh absorption CS")
ax.set_xlabel(r'$k_0L/2\pi$')
ax.set_ylabel('Cross-sections')
ax.legend()
plt.savefig(file_name+'_crosssections_TE'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0)
plt.close()
fig = plt.figure()
ax = fig.gca()
freqs = onp.real(k0range*L/(2*onp.pi))
ax.plot(freqs, scattering_cross_section_TM, c='r', label = "Rayleigh scattering CS")
ax.plot(freqs, extinction_cross_section_TM, c='k', label = "Rayleigh extinction CS")
ax.plot(freqs, extinction_cross_section_TM - scattering_cross_section_TM, c='b', label = "Rayleigh absorption CS")
ax.set_xlabel(r'$k_0L/2\pi$')
ax.set_ylabel('Cross-sections')
ax.legend()
plt.savefig(file_name+'_crosssections_scalar'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0)
plt.close()
else:
print("ndim not implemented!")
sys.exit()
def plot_k_times_radius(k0range, radius, L, file_name, appended_string=''):
# Plot the value of k times a to check whether hypotheses are still consistent
ka = k0range * radius / (2 * onp.pi)
fig = plt.figure()
ax = fig.gca()
freqs = onp.real(k0range*L/(2*onp.pi))
ax.plot(freqs, ka)
ax.set_xlabel(r'$k_0L/2\pi$')
ax.set_ylabel(r'$k_0 a/2\pi$')
plt.savefig(file_name+'_k_times_radius'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0)
plt.close()
def plot_averaged_DOS(k0range, L, DOS, file_name, DOS_type, appended_string='', debug=False):
# Averaged LDOS plot
if debug:
# XXX DEBUG: threshold values to -1
DOS = onp.array(DOS)
DOS = onp.where(DOS < -1, -1, DOS)
fig = plt.figure()
ax = fig.gca()
freqs = onp.real(k0range*L/(2*onp.pi))
ax.plot(freqs, DOS)
ax.set_xlabel(r'$k_0L/2\pi$')
ax.set_ylabel(r'$\delta\varrho$')
plt.savefig(file_name+'_'+DOS_type+'_avg'+appended_string+'.png', bbox_inches = 'tight',dpi=100, pad_inches = 0)
plt.close()
def loadpoints(file_path, ndim):
if '.hkl' in file_path:
points = hkl.load(file_path)[:,0:ndim]
elif '.csv' in file_path:
points = np.loadtxt(file_path, delimiter=',')
elif '.txt' in file_path:
with open(file_path, 'r') as file:
first_line = file.readline()
# Determine the delimiter based on the first line
if ',' in first_line:
delimiter = ','
elif "\t" in first_line:
delimiter = None
elif ' ' in first_line:
delimiter = None
else:
raise NotImplementedError("Delimiter not identified")
points = onp.loadtxt(file_path, delimiter=delimiter)[:,0:ndim]
else:
print("Wrong file format")
sys.exit()
return points
def trymakedir(path):
"""this function deals with common race conditions"""
while True:
if not os.path.exists(path):
try:
os.makedirs(path)
break
except OSError as e:
if e.errno != 17:
raise
# time.sleep might help here
pass
else:
break