-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrusted_core.py
executable file
·614 lines (521 loc) · 31 KB
/
rusted_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
import rust
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as clr
import cmasher as cmr
import hickle as hkl
import sys
import os
import argparse
from scipy.special import gamma
def main(input_file,
columns = np.arange(2), fields_columns = None, output_path = "", skip = 1,
rdf = False, pcf = False, nn_order = -1, mean_nn_bound = -1, voronoi_quantities = False, compute_boops = False, gyromorphic_cf = False, compute_furthest_sites = False,
metric_clusters = False,
bin_width = 1/20, phi = None, starting_box_size = None, boop_orders = np.array([6]), orientation_order = 6, cluster_threshold = 1.0, radial_bound = 0.1, nn_bound = 6,
periodic = True, connected = False,
logscaleplot = False, vmaxmax = 1e1, pcf_width = 1.0, bareplot = False, save_pcf = False):
'''
Simple front-end for Rusted Core
'''
print("Rusted Core: Computing usual correlations in point patterns since 2023.\n© M. Casiulis, 2023.\n")
input_file = os.path.abspath(input_file)
[dname,file_name] = os.path.split(input_file)
dname = os.path.abspath(dname)
if connected:
suffix = "_connected"
else:
suffix = ""
if '.hkl' in file_name:
points = hkl.load(input_file)[:,columns]
if fields_columns is not None:
fields = hkl.load(input_file)[:,fields_columns]
elif '.csv' in file_name:
points = np.loadtxt(input_file, delimiter=',', skiprows=skip)[:,columns]
elif '.txt' in file_name:
with open(input_file, 'r') as file:
for line in range(skip+1):
first_line = file.readline()
# Determine the delimiter based on the first line
if ',' in first_line:
delimiter = ','
elif "\t" in first_line:
delimiter = None
elif ' ' in first_line:
delimiter = None
else:
raise NotImplementedError("Delimiter not identified")
points = np.loadtxt(input_file, delimiter=delimiter, skiprows=skip)[:,columns]
if fields_columns is not None:
fields = np.loadtxt(input_file, delimiter=delimiter)[:,fields_columns]
else:
print("Wrong file format")
sys.exit()
ndim = points.shape[1]
npoints = points.shape[0]
# Rescale the points
points -= points.min()
if box_size is None:
points /= points.max()
else:
points /= starting_box_size
if points.max() > 1.0:
print("Wrong box size!")
sys.exit()
boxsize = 1.0
if phi is None:
radius = 0.5 * boxsize / (npoints)**(1.0/ndim)
else:
# volume = unitvolume_d * r^d, phi = N volume / boxsize^d, r = boxsize (phi/ N unitvolume_d)^(1/d)
radius = boxsize * (phi / (npoints * unitball_volume(ndim)) )**(1.0/ndim)
binsize = bin_width * radius
print(f"Found {npoints} points in {ndim}d\n")
if ndim == 2:
fig = plt.figure(figsize=[10,10])
ax = fig.gca()
ax.set_xlim((0,boxsize))
ax.set_ylim((0,boxsize))
r_ = ax.transData.transform([radius,0])[0] - ax.transData.transform([0,0])[0]
marker_size = np.pi * r_**2 *0.75 # Somehow a prefactor is necessary? Check this eventually
pc = ax.scatter(points[:,0],points[:,1], s=marker_size, edgecolors='none')
plt.savefig(os.path.join(output_path,file_name+'_scatter.png'), bbox_inches = 'tight', pad_inches = 0,dpi=300)
plt.close()
if metric_clusters:
threshold = cluster_threshold * 2.0 * radius
cluster_id = rust.cluster_by_distance(points, threshold, boxsize, periodic)
np.savetxt(os.path.join(output_path,file_name+'_cluster_id.csv'), cluster_id, fmt="%d")
# Output number of particles and gyration radius of each cluster in a txt file
distinct_cluster_ids, cluster_counts = np.unique(cluster_id, return_counts=True)
cluster_radii = []
for index in distinct_cluster_ids:
# XXX Put that on the rust side with PBCs if needed
cluster_points = points[np.where(cluster_id == index)]
cluster_radius = np.sqrt(np.mean(np.linalg.norm(cluster_points - np.mean(cluster_points),axis=-1)**2)) / (2.0 * radius)
cluster_radii.append(cluster_radius)
cluster_radii = np.array(cluster_radii)
np.savetxt(os.path.join(output_path,file_name+'_cluster_data.txt'), np.vstack([cluster_counts, cluster_radii]).T, fmt="%d %f")
if voronoi_quantities:
(areas, neighbours, distances) = rust.compute_2d_all_voronoi_quantities(points, boxsize, periodic)
local_phis = unitball_volume(ndim) * radius**ndim / areas
np.savetxt(os.path.join(output_path,file_name+'_voronoi_quantities.csv'), np.vstack([areas, local_phis, neighbours, distances]).T )
if compute_boops:
boops = rust.compute_2d_boops(points, boop_orders, boxsize, periodic)
np.savetxt(os.path.join(output_path,file_name+'_boops.csv'), boops.reshape(npoints, 2*boop_orders.shape[0]) )
if mean_nn_bound > 0:
mean_nn_distance = rust.compute_pnn_mean_nnbound_distances(points, mean_nn_bound, boxsize, periodic)
rho = npoints / boxsize**2
normalization = np.sqrt((np.arange(mean_nn_bound)+1) / (rho * np.pi))/2
print(mean_nn_distance/normalization)
fig = plt.figure()#figsize=(10,10))
ax = fig.gca()
pc = ax.scatter(np.arange(mean_nn_bound)+1,mean_nn_distance/normalization)
ax.tick_params(labelsize=18)
ax.set_xlabel(r"$n$",fontsize=18)
ax.set_ylabel(r"$d_n/\sqrt{n/\rho\pi}$",fontsize=18)
plt.savefig(file_name+"_mean_nnd_"+str(mean_nn_bound)+".png", bbox_inches = 'tight',pad_inches = 0, dpi = 300)
plt.close()
np.savetxt(os.path.join(output_path,file_name+'_mean_nnd_'+str(mean_nn_bound)+'.csv'), mean_nn_distance )
if rdf:
if fields_columns is None and not compute_boops and not gyromorphic_cf:
if nn_order > 0:
rdf_suffix = '_nno'+str(nn_order)
radial_rdf = rust.compute_pnn_rdf(points, nn_order, boxsize, binsize, periodic)
else:
rdf_suffix = ''
dummy = np.ones(points.shape)
radial_rdf, _ = rust.compute_radial_correlations_2d(points, dummy, boxsize, binsize, periodic,connected)
nbins = radial_rdf.shape[0]
bins = (np.arange(0, nbins) + 0.5)*binsize
fig = plt.figure()#figsize=(10,10))
ax = fig.gca()
pc = ax.plot(bins, radial_rdf,c=cmr.ember(0.5), linewidth=0.75)
ax.set_xlim(0,0.5*pcf_width)
ax.tick_params(labelsize=18)
ax.set_xlabel(r"$r$",fontsize=18)
ax.set_ylabel(r"$g(r)$",fontsize=18)
plt.savefig(file_name+"_rdf"+rdf_suffix+".png", bbox_inches = 'tight',pad_inches = 0, dpi = 300)
plt.close()
np.savetxt(os.path.join(output_path,file_name+'_rdf'+rdf_suffix+'.csv'), np.vstack([bins, radial_rdf]).T )
elif gyromorphic_cf:
rdf_suffix = ''
radial_rdf , or_corr = rust.compute_radial_gyromorphic_corr_2d(points, boxsize, binsize, periodic, orientation_order)
nbins = radial_rdf.shape[0]
bins = (np.arange(0, nbins) + 0.5)*binsize
fig = plt.figure()#figsize=(10,10))
ax = fig.gca()
pc = ax.plot(bins, radial_rdf,c=cmr.ember(0.5), linewidth=0.75)
ax.set_xlim(0,0.5*pcf_width)
ax.tick_params(labelsize=18)
ax.set_xlabel(r"$r$",fontsize=18)
ax.set_ylabel(r"$g(r)$",fontsize=18)
plt.savefig(file_name+"_rdf"+rdf_suffix+".png", bbox_inches = 'tight',pad_inches = 0, dpi = 300)
plt.close()
np.savetxt(os.path.join(output_path,file_name+'_rdf'+rdf_suffix+'.csv'), np.vstack([bins, radial_rdf]).T )
or_corr_mod = np.sqrt(or_corr[:,0]**2+or_corr[:,1]**2)
nbins = radial_rdf.shape[0]
bins = (np.arange(0, nbins) + 0.5)*binsize
fig = plt.figure()#figsize=(10,10))
ax = fig.gca()
pc = ax.plot(bins,or_corr_mod,c=cmr.ember(0.5), linewidth=0.75)
ax.set_xlim(0,0.5*pcf_width)
ax.tick_params(labelsize=18)
ax.set_xlabel(r"$r$",fontsize=18)
ax.set_ylabel(r"$g_{G}(r)$",fontsize=18)
plt.savefig(file_name+"_gyro"+str(orientation_order)+"_"+rdf_suffix+".png", bbox_inches = 'tight',pad_inches = 0, dpi = 300)
plt.close()
np.savetxt(os.path.join(output_path,file_name+'_gyro'+str(orientation_order)+"_"+rdf_suffix+'.csv'), np.vstack([bins, or_corr_mod]).T )
elif compute_boops:
for i in range(boop_orders.shape[0]):
order_string = str(boop_orders[i])
radial_rdf, gboop = rust.compute_radial_correlations_2d(points, boops[:,i,:], boxsize, binsize, periodic,connected)
nbins = radial_rdf.shape[0]
bins = (np.arange(0, nbins) + 0.5)*binsize
fig = plt.figure(figsize=(10,10))
ax = fig.gca()
pc = ax.plot(bins, gboop[:,0]+gboop[:,1])
ax.set_xlim(0,0.5)
plt.savefig(file_name+"_radial_g"+order_string+"boop"+suffix+".png", dpi = 300)
plt.close()
fig = plt.figure()#figsize=(10,10))
ax = fig.gca()
pc = ax.plot(bins, radial_rdf,c=cmr.ember(0.5), linewidth=0.75)
ax.set_xlim(0,0.5)
ax.tick_params(labelsize=18)
ax.set_xlabel(r"$r$",fontsize=18)
ax.set_ylabel(r"$g(r)$",fontsize=18)
plt.savefig(file_name+"_rdf.png", bbox_inches = 'tight',pad_inches = 0, dpi = 300)
plt.close()
if i == 0:
np.savetxt(os.path.join(output_path,file_name+'_rdf.csv'), np.vstack([bins, radial_rdf]).T )
np.savetxt(file_name+"_radial_g"+order_string+"boop"+suffix+ ".csv", np.vstack([bins,gboop[:,0]+gboop[:,1]]).T)
else:
radial_rdf, fields_corr = rust.compute_radial_correlations_2d(points, fields, boxsize, binsize, periodic,connected)
nbins = radial_rdf.shape[0]
bins = (np.arange(0, nbins) + 0.5)*binsize
fig = plt.figure()#figsize=(10,10))
ax = fig.gca()
for k in range(fields_corr.shape[-1]):
pc = ax.plot(bins, fields_corr[:,k],c=cmr.ember(0.5), linewidth=0.75)
ax.set_xlim(0,0.5)
ax.tick_params(labelsize=18)
ax.set_xlabel(r"$r$",fontsize=18)
ax.set_ylabel(r"$C(r)$",fontsize=18)
plt.savefig(file_name+"_radial_corr.png", bbox_inches = 'tight',pad_inches = 0, dpi = 300)
plt.close()
np.savetxt(os.path.join(output_path,file_name+'_rdf.csv'), np.vstack([bins, radial_rdf]).T )
np.savetxt(os.path.join(output_path,file_name+'_radial_corr.csv'), np.vstack([bins, fields_corr]).T )
if pcf:
if gyromorphic_cf:
vector_rdf, vector_orientation = rust.compute_vector_gyromorphic_corr_2d(points, boxsize, binsize, periodic, orientation_order)
vector_orientation = np.sum(vector_orientation**2,axis=-1)
else:
if nn_order > 0:
pcf_suffix = '_nno'+str(nn_order)
vector_rdf = rust.compute_pnn_vector_rdf2d(points, nn_order, boxsize, binsize, periodic)
elif radial_bound > 0.0:
pcf_suffix = '_rb'+str(radial_bound)
vector_rdf = rust.compute_bounded_vector_rdf2d(points, boxsize, binsize, radial_bound, periodic)
elif nn_bound > 0:
pcf_suffix = '_nnb'+str(nn_bound)
vector_rdf = rust.compute_nnbounded_vector_rdf2d(points, boxsize, binsize, nn_bound, periodic)
else:
pcf_suffix = ''
vector_rdf = rust.compute_vector_rdf2d(points, boxsize, binsize, periodic)
nbins = np.ceil(boxsize/binsize)
rho_n = npoints * npoints / ( boxsize * boxsize)
vector_rdf /= rho_n * binsize * binsize
if save_pcf:
np.savetxt(output_path+file_name+"vector_rdf"+pcf_suffix+".csv", vector_rdf)
if periodic:
center = int(vector_rdf.shape[0]/2)
width = int(pcf_width * vector_rdf.shape[1]/2)
else:
center = int(vector_rdf.shape[0]/2)
width = int(pcf_width * vector_rdf.shape[1]/2)
extent_value = 0.5 * pcf_width
fig = plt.figure(figsize=(10,10))
ax = fig.gca()
if logscaleplot:
pc = ax.imshow(vector_rdf[center-width:center+width+1, center-width:center+width+1],norm=clr.LogNorm(vmin=1e-3,vmax=1e1), cmap=cmr.ember, extent=[-extent_value,extent_value,extent_value,-extent_value])
else:
vmax = np.min([vector_rdf.max(), vmaxmax])
pc = ax.imshow(vector_rdf[center-width:center+width+1, center-width:center+width+1], vmin = 0, vmax = vmax, cmap=cmr.ember, extent=[-extent_value,extent_value,extent_value,-extent_value])
if not bareplot:
fig.colorbar(pc)
else:
ax.set_axis_off()
plt.savefig(output_path+file_name+"_vector_rdf"+pcf_suffix+".png", dpi = 300)
plt.close()
if gyromorphic_cf:
vector_orientation /= rho_n * binsize * binsize
vector_orientation /= npoints
np.savetxt(output_path+file_name+"vector_orientation.csv", vector_orientation)
fig = plt.figure(figsize=(10,10))
ax = fig.gca()
if logscaleplot:
pc = ax.imshow(vector_orientation[center-width:center+width+1, center-width:center+width+1],norm=clr.LogNorm(vmin=1e-3,vmax=1e1), cmap=cmr.ember)
else:
vmax = np.min([vector_orientation.max(), vmaxmax])
pc = ax.imshow(vector_orientation[center-width:center+width+1, center-width:center+width+1], vmin = 0, vmax = None, cmap=cmr.ember)
if not bareplot:
fig.colorbar(pc)
else:
ax.set_axis_off()
plt.savefig(output_path+file_name+"_vector_orientation.png", dpi = 300)
plt.close()
if compute_furthest_sites:
furthest_sites = rust.voronoi_furthest_sites(points, boxsize, periodic)
furthest_sites = furthest_sites[np.argwhere(furthest_sites[:,0]>= 0)[:,0],:]
furthest_sites = furthest_sites[np.argwhere(furthest_sites[:,1]>= 0)[:,0],:]
furthest_sites = furthest_sites[np.argwhere(furthest_sites[:,0] < boxsize)[:,0],:]
furthest_sites = furthest_sites[np.argwhere(furthest_sites[:,1] < boxsize)[:,0],:]
furthest_sites = furthest_sites[np.argsort(furthest_sites[:,2])]
fig = plt.figure(figsize=[10,10])
ax = fig.gca()
ax.set_xlim((0,boxsize))
ax.set_ylim((0,boxsize))
r_ = ax.transData.transform([radius,0])[0] - ax.transData.transform([0,0])[0]
marker_size = np.pi * r_**2 *0.75 # Somehow a prefactor is necessary? Check this eventually
pc = ax.scatter(points[:,0],points[:,1], s=marker_size, edgecolors='none')
pc = ax.scatter(furthest_sites[-5:,0],furthest_sites[-5:,1], s=0.1*marker_size, edgecolors='none', c = 'r')
plt.savefig(os.path.join(output_path,file_name+'_furthest_site.png'), bbox_inches = 'tight', pad_inches = 0,dpi=300)
plt.close()
print(furthest_sites.shape)
print(furthest_sites)
elif ndim == 3:
if metric_clusters:
threshold = cluster_threshold * 2.0 * radius
cluster_id = rust.cluster_by_distance(points, threshold, boxsize, periodic)
np.savetxt(os.path.join(output_path,file_name+'_cluster_id.csv'), cluster_id, fmt="%d")
# Output number of particles and gyration radius of each cluster in a txt file
distinct_cluster_ids, cluster_counts = np.unique(cluster_id, return_counts=True)
cluster_radii = []
for index in distinct_cluster_ids:
# XXX Put that on the rust side with PBCs if needed
cluster_points = points[np.where(cluster_id == index)]
cluster_radius = np.sqrt(np.mean(np.linalg.norm(cluster_points - np.mean(cluster_points),axis=-1)**2)) / (2.0 * radius)
cluster_radii.append(cluster_radius)
cluster_radii = np.array(cluster_radii)
np.savetxt(os.path.join(output_path,file_name+'_cluster_data.txt'), np.vstack([cluster_counts, cluster_radii]).T, fmt="%d %f")
if voronoi_quantities:
raise NotImplementedError
if compute_boops:
raise NotImplementedError
if mean_nn_bound > 0:
mean_nn_distance = rust.compute_pnn_mean_nnbound_distances(points, mean_nn_bound, boxsize, periodic)
fig = plt.figure()#figsize=(10,10))
ax = fig.gca()
pc = ax.scatter(np.arange(mean_nn_bound)+1,mean_nn_distance)
ax.tick_params(labelsize=18)
ax.set_xlabel(r"$n$",fontsize=18)
ax.set_ylabel(r"$d_n$",fontsize=18)
plt.savefig(file_name+"_mean_nnd_"+str(mean_nn_bound)+".png", bbox_inches = 'tight',pad_inches = 0, dpi = 300)
plt.close()
np.savetxt(os.path.join(output_path,file_name+'_mean_nnd_'+str(mean_nn_bound)+'.csv'), mean_nn_distance )
if rdf:
if fields_columns is None and not compute_boops:
if nn_order > 0:
rdf_suffix = '_nno'+str(nn_order)
radial_rdf = rust.compute_pnn_rdf(points, nn_order, boxsize, binsize, periodic)
else:
rdf_suffix = ''
dummy = np.ones(points.shape)
radial_rdf, _ = rust.compute_radial_correlations_3d(points, dummy, boxsize, binsize, periodic,connected)
nbins = radial_rdf.shape[0]
bins = (np.arange(0, nbins) + 0.5)*binsize
fig = plt.figure()#figsize=(10,10))
ax = fig.gca()
pc = ax.plot(bins, radial_rdf,c=cmr.ember(0.5), linewidth=0.75)
ax.set_xlim(0,0.5*pcf_width)
ax.tick_params(labelsize=18)
ax.set_xlabel(r"$r$",fontsize=18)
ax.set_ylabel(r"$g(r)$",fontsize=18)
plt.savefig(file_name+"_rdf"+rdf_suffix+".png", bbox_inches = 'tight',pad_inches = 0, dpi = 300)
plt.close()
np.savetxt(os.path.join(output_path,file_name+'_rdf'+rdf_suffix+'.csv'), np.vstack([bins, radial_rdf]).T )
elif compute_boops:
raise NotImplementedError
else:
radial_rdf, fields_corr = rust.compute_radial_correlations_3d(points, fields, boxsize, binsize, periodic,connected)
nbins = radial_rdf.shape[0]
bins = (np.arange(0, nbins) + 0.5)*binsize
fig = plt.figure()#figsize=(10,10))
ax = fig.gca()
for k in range(fields_corr.shape[-1]):
pc = ax.plot(bins, fields_corr[:,k],c=cmr.ember(0.5), linewidth=0.75)
ax.set_xlim(0,0.5)
ax.tick_params(labelsize=18)
ax.set_xlabel(r"$r$",fontsize=18)
ax.set_ylabel(r"$C(r)$",fontsize=18)
plt.savefig(file_name+"_radial_corr.png", bbox_inches = 'tight',pad_inches = 0, dpi = 300)
plt.close()
np.savetxt(os.path.join(output_path,file_name+'_rdf.csv'), np.vstack([bins, radial_rdf]).T )
np.savetxt(os.path.join(output_path,file_name+'_radia_corr.csv'), np.vstack([bins, fields_corr]).T )
if pcf:
if gyromorphic_cf:
raise NotImplementedError
else:
if nn_order > 0:
pcf_suffix = '_nno'+str(nn_order)
vector_rdf = rust.compute_pnn_vector_rdf3d(points, nn_order, boxsize, binsize, periodic)
elif radial_bound > 0.0:
pcf_suffix = '_rb'+str(radial_bound)
vector_rdf = rust.compute_bounded_vector_rdf3d(points, boxsize, binsize, radial_bound, periodic)
elif nn_bound > 0:
pcf_suffix = '_nnb'+str(nn_bound)
vector_rdf = rust.compute_nnbounded_vector_rdf3d(points, boxsize, binsize, nn_bound, periodic)
else:
pcf_suffix = ''
vector_rdf = rust.compute_vector_rdf3d(points, boxsize, binsize, periodic)
nbins = np.ceil(boxsize/binsize)
rho_n = npoints * npoints / ( boxsize * boxsize * boxsize)
vector_rdf /= rho_n * binsize * binsize * binsize
if save_pcf:
hkl.dump(vector_rdf, file_name+"vector_rdf"+pcf_suffix+".hkl")
# np.savetxt(output_path+file_name+"vector_rdf"+pcf_suffix+".csv", vector_rdf)
if periodic:
center = int(vector_rdf.shape[0]/2)
width = int(pcf_width * vector_rdf.shape[1]/2)
else:
center = int(vector_rdf.shape[0]/2)
width = int(pcf_width * vector_rdf.shape[1]/2)
extent_value = 0.5 * pcf_width
fig = plt.figure(figsize=(10,10))
ax = fig.gca()
if logscaleplot:
pc = ax.imshow(vector_rdf[center-width:center+width+1, center-width:center+width+1,center],norm=clr.LogNorm(vmin=1e-3,vmax=1e1), cmap=cmr.ember, extent=[-extent_value,extent_value,extent_value,-extent_value])
else:
vmax = np.min([vector_rdf.max(), vmaxmax])
pc = ax.imshow(vector_rdf[center-width:center+width+1, center-width:center+width+1,center], vmin = 0, vmax = vmax, cmap=cmr.ember, extent=[-extent_value,extent_value,extent_value,-extent_value])
if not bareplot:
fig.colorbar(pc)
else:
ax.set_axis_off()
plt.savefig(output_path+file_name+"_vector_rdf"+pcf_suffix+"_xy.png", dpi = 300)
plt.close()
if gyromorphic_cf:
raise NotImplementedError
if compute_furthest_sites:
raise NotImplementedError
else:
raise NotImplementedError
def unitball_volume(ndim):
return np.pi**(ndim/2.0) / gamma(ndim/2.0 + 1)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Compute user-defined correlations in a configuration provided via an input file.")
# Required arguments
parser.add_argument("input_file", type=str, help="File name")
# Optional arguments
## Tasks
parser.add_argument("-rdf", "--radial_distribution_function", action = 'store_true', help = "Compute the rdf\
default = false", default = False)
parser.add_argument("-pcf", "--pair_correlation_function", action = 'store_true', help = "Compute the pcf\
default = false", default = False)
parser.add_argument("-voro", "--voronoi_quantities", action="store_true", help = "Compute Voronoi cell areas, number of neighbours, and nn distances\
default = False", default = False)
parser.add_argument("-boops", "--compute_boops", action="store_true", help = "Compute Steinhardt's Bond-Orientational Order Parameters\
default = False", default = False)
parser.add_argument("--boop_orders", nargs = "+", type = int, help = "BOOP orders to compute\
default=6", default = None)
parser.add_argument("-gcf", "--gyromorphic_cf", action = 'store_true', help = "Compute the ocf\
default = false", default = False)
parser.add_argument("-oo", "--orientation_order", type = int, help = "OCF order to compute\
default=6", default = 6)
parser.add_argument("-fs", "--furthest_sites", action = 'store_true', help = "Compute the list of Voronoi sites with distance to closest point\
default = false", default = False)
parser.add_argument("-mc","--metric_clusters", action = 'store_true', help = "Cluster particles into groups using metric distance as a filter\
default = false", default = False)
parser.add_argument("-th", "--cluster_threshold", type = float, help = "Value of the threshold in distance used to cluster points, in units of the diameter defined through phi\
default = 1.0", default = 1.0)
## Parameters
parser.add_argument("-col", "--columns", nargs = "+", type = int, help = "indices of columns to use for point coordinates\
default=first two", default = None)
parser.add_argument("-fcol", "--fields_columns", nargs = "+", type = int, help = "indices of columns to use for fields to correlate\
default=None", default = None)
parser.add_argument("-s", "--skip", type = int, help = "Number of lines to skip in file\
default = 0", default = 0)
parser.add_argument("--n_cpus", type=int, help="Number of cpus to use for computation\
default = os.cpu_count", default=os.cpu_count())
parser.add_argument("--phi", type=float, help = "Packing fraction, used to determine radius\
default = None", default = None)
parser.add_argument("-rbv", "--radial_bound", type = float, help = "Value of finite metric bound, in units of L\
default = inf", default = -1.0)
parser.add_argument("-nnbv", "--nn_bound", type = int, help = "Value of finite neighbor index bound\
default = inf", default = -1)
parser.add_argument("-nno", "--nn_order", type = int, help = "Value of nn order to compute rdf at\
default = inf", default = -1)
parser.add_argument("-mnnb", "--mean_nn_bound", type = int, help = "Order p up to which mean p-th metric distance is computed\
default = None", default = -1)
parser.add_argument("-L", "--box_size", type=float, help = "Box size, if exact value known\
default = None", default = None)
parser.add_argument("-bw", "--bin_width", type=float, help = "Width of the bins, in units of radii OR typical distances\
default = 1/20", default = 1/20)
parser.add_argument("-fbc", "--free_boundary_condition", action='store_true', help = "Switch to free boundary conditions instead of periodic ones\
default = False", default = False)
parser.add_argument("-c", "--connected", action='store_true', help = "Switch to connected correlation functions\
default = False", default = False)
## Plotting options
parser.add_argument("--logscaleplot", action='store_true', help = "Use log scales on plots where it's an option\
default = False", default = False)
parser.add_argument("--pcf_width", type = float, help = "Extent of plot range for pcf plots, in units of max full range\
default = 1.0", default = 1.0)
parser.add_argument("--bareplot", action='store_true', help = "Remove color bars and ticks from intensity maps\
default = False", default=False)
parser.add_argument("--save_pcf", action='store_true', help = "Save a csv of the full pcf (storage heavy!)\
default = False", default=False)
parser.add_argument("--vmaxmax", type=float, help = "Vmax at which maps are cropped\
default = 1e9", default = 1e9)
parser.add_argument("-o", "--output_path", type=str, help="Path to output directory\
Default = here", default = "")
args = parser.parse_args()
rdf = args.radial_distribution_function
pcf = args.pair_correlation_function
nn_order = args.nn_order
voronoi_quantities = args.voronoi_quantities
compute_boops = args.compute_boops
boop_orders_args = args.boop_orders
if boop_orders_args != None:
boop_orders_args = tuple(boop_orders_args)
boop_orders = np.array(boop_orders_args)
else:
boop_orders = np.array([6])
gyromorphic_cf = args.gyromorphic_cf
orientation_order = args.orientation_order
compute_furthest_sites = args.furthest_sites
metric_clusters = args.metric_clusters
cluster_threshold = args.cluster_threshold
input_file = args.input_file
columns_args = args.columns
if columns_args != None:
columns_args = tuple(columns_args)
columns = np.array(columns_args)
else:
columns = np.arange(2)
fields_columns_args = args.fields_columns
if fields_columns_args != None:
fields_columns_args = tuple(fields_columns_args)
fields_columns = np.array(fields_columns_args)
else:
fields_columns = None
skip = args.skip
phi = args.phi
radial_bound = args.radial_bound
nn_bound = args.nn_bound
mean_nn_bound = args.mean_nn_bound
box_size = args.box_size
bin_width = args.bin_width
periodic = not args.free_boundary_condition
connected = args.connected
logscaleplot = args.logscaleplot
vmaxmax = args.vmaxmax
pcf_width = args.pcf_width
bareplot = args.bareplot
save_pcf = args.save_pcf
output_path = args.output_path
main(input_file,
columns = columns, fields_columns = fields_columns, skip = skip, phi = phi, starting_box_size=box_size,
bin_width=bin_width, periodic = periodic, connected=connected,
rdf = rdf, pcf = pcf, nn_order = nn_order, mean_nn_bound=mean_nn_bound, voronoi_quantities = voronoi_quantities, compute_boops=compute_boops, gyromorphic_cf = gyromorphic_cf, compute_furthest_sites = compute_furthest_sites,
metric_clusters= metric_clusters,
orientation_order = orientation_order, boop_orders= boop_orders, cluster_threshold = cluster_threshold, radial_bound=radial_bound, nn_bound=nn_bound,
logscaleplot = logscaleplot, vmaxmax = vmaxmax, pcf_width=pcf_width, bareplot = bareplot, save_pcf = save_pcf, output_path = output_path)