From 3d1da4d54a1751f57e46dc3742b12784b4a06db0 Mon Sep 17 00:00:00 2001 From: Erick Matsen Date: Fri, 14 Jun 2024 15:13:18 -0700 Subject: [PATCH] new file: tests/test_sequences.py --- tests/test_sequences.py | 67 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 67 insertions(+) create mode 100644 tests/test_sequences.py diff --git a/tests/test_sequences.py b/tests/test_sequences.py new file mode 100644 index 00000000..8866214e --- /dev/null +++ b/tests/test_sequences.py @@ -0,0 +1,67 @@ +import pytest +import numpy as np +import torch +from Bio.Seq import Seq +from Bio.Data import CodonTable +from netam.sequences import ( + AA_STR_SORTED, + CODONS, + CODON_AA_INDICATOR_MATRIX, + aa_onehot_tensor_of_str, + nt_idx_array_of_str, + nt_subs_indicator_tensor_of, + translate_sequences, +) + + +def test_nucleotide_indices_of_codon(): + assert nt_idx_array_of_str("AAA").tolist() == [0, 0, 0] + assert nt_idx_array_of_str("TAC").tolist() == [3, 0, 1] + assert nt_idx_array_of_str("GCG").tolist() == [2, 1, 2] + + +def test_aa_onehot_tensor_of_str(): + aa_str = "QY" + + expected_output = torch.zeros((2, 20)) + expected_output[0][AA_STR_SORTED.index("Q")] = 1 + expected_output[1][AA_STR_SORTED.index("Y")] = 1 + + output = aa_onehot_tensor_of_str(aa_str) + + assert output.shape == (2, 20) + assert torch.equal(output, expected_output) + + +def test_translate_sequences(): + # sequence without stop codon + seq_no_stop = ["AGTGGTGGTGGTGGTGGT"] + assert translate_sequences(seq_no_stop) == [str(Seq(seq_no_stop[0]).translate())] + + # sequence with stop codon + seq_with_stop = ["TAAGGTGGTGGTGGTAGT"] + with pytest.raises(ValueError): + translate_sequences(seq_with_stop) + + +def test_indicator_matrix(): + reconstructed_codon_table = {} + indicator_matrix = CODON_AA_INDICATOR_MATRIX.numpy() + + for i, codon in enumerate(CODONS): + row = indicator_matrix[i] + if np.any(row): + amino_acid = AA_STR_SORTED[np.argmax(row)] + reconstructed_codon_table[codon] = amino_acid + + table = CodonTable.unambiguous_dna_by_id[1] # 1 is for the standard table + + assert reconstructed_codon_table == table.forward_table + + +def test_subs_indicator_tensor_of(): + parent = "NAAA" + child = "CAGA" + expected_output = torch.tensor([0, 0, 1, 0], dtype=torch.float) + output = nt_subs_indicator_tensor_of(parent, child) + assert torch.equal(output, expected_output)